Skip to main content

Marine Cold Seeps: Background and Recent Advances

  • Living reference work entry
  • First Online:
Book cover Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Marine cold seeps are windows into different depth levels of the submerged geosphere. Subduction zones and organic-rich passive margins host most of the world’s cold seeps. The source of seep fluids ranges from 10s of meters (groundwater aquifers) to 10s of km (subducted oceanic plates) below the seafloor. Seeps transport dissolved and gaseous compounds upward and sustain oasis-type ecosystems at the seafloor. Hereby the single most important reaction is anoxic oxidation of methane (AOM) by Archaea. Subsequent reactions involve sulfur biogeochemistry and carbonate mineral precipitation generating an association of methane, metazoans, microbes, and minerals – a biogeochemical footprint. Currently 100s of cold seeps are known globally. Elucidating function, structure, and composition of the characteristic association are high-priority topics of cold seep research. Ancient seep sites are identified with increasing frequency as the libraries of biomarkers and fossilized microbial bodies grow aided by their fortuitous preservation as they become encased in carbonate precipitates. Seep footprints provide clues as to source depth, fluid-sediment/rock interaction during ascent, lifetime, and cyclicity of seepage events. The Gulf of Mexico, the Black Sea, and the Eastern Mediterranean Sea are sites of classic and ongoing seep studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    Article  CAS  PubMed  Google Scholar 

  • Boetius A et al (2000) A marine consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Bohrmann G, Jørgensen BB (eds) (2010) Proceeding of the 9th international conferences on gas in marine sediments. Geo-Mar Lett 30(3/4)

    Google Scholar 

  • Bohrmann G, Greinert J, Suess E, Torres ME (1998) Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology 26:647–650

    Article  CAS  Google Scholar 

  • Brazelton et al (2010) Archaea and bacteria with surprising micro-diversity show shifts in dominance over 1,000-year time scales in hydrothermal chimneys. Proc Natl Acad Sci 107(4):1612–1617

    Article  PubMed  Google Scholar 

  • Buerk D, Klaucke I, Sahling H, Weinrebe W (2010) Morpho-acoustic variability of cold seeps on the continental slope offshore Nicaragua: result of fluid flow interaction with sedimentary processes. Mar Geol 275:53–65

    Article  Google Scholar 

  • Campbell KA (2006) Hydrocarbon seep and hydrothermal vent palaeo-environments: past developments and future research directions. Palaeogeogr Palaeoclimatol Palaeoecol 232:362–407

    Article  Google Scholar 

  • Capozzi R, Negri A, Reitner J, Taviani M (eds) (2015) Carbonate conduits linked to hydrocarbon-enriched fluid escape. Mar Pet Geol 66(3):497–652

    Google Scholar 

  • Crémière A, Bayon G, Ponzevera E, Pierre C (2013) Paleo-environmental controls on cold seep carbonate authigenesis in the sea of Marmara. Earth Planet Sci Lett 376:200–211

    Article  CAS  Google Scholar 

  • Crémière A et al (2016) Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian ice sheet. Nat Commun 7:11509. https://doi.org/10.1038/ncomms11509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dählmann A, de Lange G (2003) Fluid-sediment interactions at eassten Mediterranean mud volcanoes: a stable isotope study from ODP leg 160. Earth Planet Sci Lett 212:377–391

    Article  CAS  Google Scholar 

  • De Batist M, Khlystov O (eds) (2012) Proceedings of the 10th international conference on gas in marine sediments. Listvyanka. Geo-Mar Lett SI 32(5/6)

    Google Scholar 

  • Derkachev AN et al (2015) Manifestation of carbonate–barite mineralization around methane seeps in the sea of Okhotsk (western slope of Kuril Basin). Oceanology 55(3):390–399

    Article  Google Scholar 

  • Dijkstra N, Slomp CP, Behrends T (2016) Vivianite is a key sink for phosphorus in sediments of the landsort deep, an intermittently anoxic deep basin in the Baltic Sea. Chem Geol 438:58–72

    Article  CAS  Google Scholar 

  • Dupré S et al (2015) Tectonic and sedimentary controls on widespread gas emissions in the sea of Marmara: results from systematic, shipborne multibeam echo sounder water column imaging. J Geophys Res Solid Earth. https://doi.org/10.1002/2014JB011617

  • Egger M et al (2015) Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ Sci Technol 49:277–283

    Article  CAS  PubMed  Google Scholar 

  • Feng D, Chen D (2015) Authigenic carbonates from an active cold seep of the northern South China Sea: new insights into fluid sources and past seepage activity. Deep-Sea Res II 122:74–83

    Article  CAS  Google Scholar 

  • Feng D et al (2010) U-Th dating of cold-seep carbonates: an initial comparison. Deep Sea Res II 57:2055–2060

    Article  CAS  Google Scholar 

  • Feng D et al (2016) A carbonate-based proxy for sulfate-driven anaerobic oxidation of methane. Geology 44:999–1002

    Article  CAS  Google Scholar 

  • Fouchet et al (2009) Structure and diversity of cold seep ecosystems. Oceanography 22:92–109

    Article  Google Scholar 

  • Freundt A et al (2014) Volatile (H2O, CO2, Cl, S) budget of the central American subduction zone. Int J Earth Sci 103:2101–2127

    Article  CAS  Google Scholar 

  • Gallardo AH, Marui A (2006) Submarine groundwater discharge: an outlook of recent advances and current knowledge. Geo-Mar Lett 26:102–113

    Article  CAS  Google Scholar 

  • Greinert J, Bialas J, Lewis K, Suess E (eds) (2010) Methane seeps at the Hikurangi margin, New Zealand. Mar Geol 272. https://doi.org/10.1016/j.margeo.2010.02.018

  • Han X et al (2008) Jiulong methane reef: microbial mediation of seep carbonates in the South China Sea. Mar Geol 249:243–256

    Article  Google Scholar 

  • Han X et al (2014) Methane release events and environmental conditions at the upper continental slope of the South China Sea: constraints from seep carbonates. Int J Earth Sci 103:1873–1887

    Article  CAS  Google Scholar 

  • Heeschen KU et al (2011) Quantifying in-situ gas hydrates at active seep sites in the eastern Black Sea using pressure coring technique. Biogeosciences 8:3555–3565

    Article  CAS  Google Scholar 

  • Hensen C et al (2015) Strike-slip faults mediate the rise of crustal-derived fluids and mud volcanism in the deep sea. Geology 43:339–342

    Article  CAS  Google Scholar 

  • Himmler T et al (2016) Seep-carbonate lamination controlled by cyclic particle flux. Nature Sci Rpt 6:37439. https://doi.org/10.1038/srep37439

    Article  CAS  Google Scholar 

  • Hüpers A, Kopf AJ (2012) Effect of smectite dehydration on pore water geochemistry in the shallow subduction zone: an experimental approach. Geochem Geophys Geosyst 13. https://doi.org/10.1029/2012GC004212. ISSN: 1525-2027

  • James RH et al (2016) Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: a review. Limnol Oceanogr 61:S283–S299

    Article  CAS  Google Scholar 

  • Judd AG, Hovland M (2007) Submarine fluid flow, the impact on geology, biology, and the marine environment. Cambridge University Press, Cambridge UK, pp 475

    Google Scholar 

  • Kastner M et al (2014) Fluid origins, thermal regimes, and fluid and solute fluxes in the fore-arc of subduction zones. In: Stein R et al (eds) Developments in Marine Geology, vol 7. Elsevier, Amsterdam, pp 671–733

    Google Scholar 

  • Kelemen PB (2011) Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage. Annu Rev Earth Planet Sci 39:545–576

    Article  CAS  Google Scholar 

  • Kelley DS et al (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307:1428–1434

    Article  CAS  PubMed  Google Scholar 

  • Klaucke I et al (2012) Sidescan sonar imagery of widespread fossil and active cold seeps along the central Chilean continental margin. Geo-Mar Lett 32:489–499

    Article  Google Scholar 

  • Koch S et al (2015) Gas-controlled seafloor doming. Geology 43(7):571–574

    Article  Google Scholar 

  • Krause S et al (2012) Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: new insight into an old enigma. Geology 40(7):587–590

    Article  CAS  Google Scholar 

  • Kutterolf S et al (2008) Lifetime and cyclicity of fluid venting at forearc mound structures determined by tephrostratigraphy and radiometric dating of authigenic carbonates. Geology 36:707–710

    Article  CAS  Google Scholar 

  • Leefmann T (2008) Miniaturized biosignature analysis reveals implications for the formation of cold seep carbonates at hydrate ridge (off Oregon USA). Biogeosciences 5:731–738

    Article  CAS  Google Scholar 

  • Liebetrau V et al (2014) Authigenic carbonate archives of mound and slide related fluid venting at the central American Forearc: geochemical and mineralogical insights. Int J Earth Sci 103:1845–1872

    Article  CAS  Google Scholar 

  • Lu Y et al (2015) Cold seep status archived in authigenic carbonates: mineralogical and isotopic evidence from northern South China Sea. Deep Sea Res II 122:95–105

    Article  CAS  Google Scholar 

  • Matsumoto R, Borowski WS (2000) Gas hydrate estimates from newly determined oxygen isotopic fractionation αGH-IW and δ18O anomalies of the interstitial waters: leg 164, Blake Ridge. In: Paull CK, Matsumoto R, Wallace PJ, Dillon WP (eds) Proceedings of the Ocean Drilling Program, vol 164 Scientific Results, Texas A&M University, College Station TX, pp 59–66

    Google Scholar 

  • Meschede M (2003) The Costa Rica convergent margin: a textbook example for the process of subduction erosion. N Jb Geol Paläont Abh 230:409–428

    Article  Google Scholar 

  • Monnin C et al (2014) Fluid chemistry of the low temperature hyper-alkaline hydrothermal system of Prony Bay (New Caledonia). Biogeosciences 11:5687–5706. https://doi.org/10.5194/bg-11-5687-2014

    Article  Google Scholar 

  • Moore GF et al (2007) Three-dimensional splay fault geometry and implications for tsunami generation. Science 318:1128–1131

    Article  CAS  PubMed  Google Scholar 

  • Mottl MJ et al (2004) Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate. Geochim Cosmochim Acta 68:4915–4933

    Article  CAS  Google Scholar 

  • Naudts L et al (2006) Geological and morphological setting of 2778 methane seeps in the Dnepr paleo-delta, northwestern Black Sea. Mar Geol 227:177–199

    Article  Google Scholar 

  • Olu-Le et al (2004) Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep Sea Res I 51:1915–1936

    Article  CAS  Google Scholar 

  • Palandri JL, Reed MD (2004) Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation. Geochim Cosmochim Acta 68(5):1115–1133

    Article  CAS  Google Scholar 

  • Pape T et al (2008) Marine methane biogeochemistry of the Black Sea: a review. In: Dilek Y, Furnes H, Muehlenbachs K (eds) Links between geological processes, microbial activities and evolution of life, vol 4. Springer, Berlin. Heidelberg New York, pp 281–311. ISBN: 978-1-4020-8305-1 (Print) 978-1-4020-8306-8 (Online)

    Google Scholar 

  • Peckmann J, Geodert JL (eds) (2005) Geobiology of ancient and modern methane-seeps. Palaeogeogr Palaeoclimat Palaeoecol 227 (special issue)

    Google Scholar 

  • Phrampus BJ, Hornbach MJ (2012) Recent changes to the Gulf stream causing widespread gas hydrate destabilization. Nature 290:527–530

    Article  CAS  Google Scholar 

  • Pierre C, Mascle J, Imbert P (eds) (2014) Contributions from the 11th international conferencs on gas in marine sediments. Nice 2011, Geo-Mar Lett 34 (2/3)

    Google Scholar 

  • Postec A et al (2015) Microbial diversity in a submarine carbonate edifice from the serpentinizing hydrothermal system of the Prony Bay (New Caledonia) over a 6-year period. Front Microbiol 6:857–876. https://doi.org/10.3389/fmicb.2015.00857

    Article  PubMed  PubMed Central  Google Scholar 

  • Prouty NG et al (2016) Insights into methane dynamics from analysis of authigenic carbonates and chemosynthetic mussels at newly-discovered Atlantic Margin seeps. Earth Planet Sci Lett 449:332–344

    Article  CAS  Google Scholar 

  • Ranero CR, von Huene R (2000) Subduction erosion along the middle America convergent margin. Nature 404:748–752

    Article  CAS  PubMed  Google Scholar 

  • Ranero CR et al (2008) Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis. Geochem Geophys Geosyst 9(3). https://doi.org/10.1029/2007GC001679

    Article  Google Scholar 

  • Rehder G et al. (2009) Controls on methane bubble dissolution inside and outside the hydrate stability field from open ocean field experiments and numerical modeling. Mar Chem. https://doi.org/10.1016/j.marchem.2009.03.004

  • Riedinger N et al (2014) An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology. https://doi.org/10.1111/gbi.12077

  • Roberts HR (ed) (2010) Gulf of Mexico cold seeps. Deep Sea Res II 57(21/23):1835–2060

    Google Scholar 

  • Rodellas V et al (2017) Using the radium quartet to quantify submarine groundwater discharge and pore water exchange. Geochim Cosmochim Acta 196:58–73

    Article  CAS  Google Scholar 

  • Römer M et al (2014) First evidence of widespread active methane seepage in the Southern Ocean, off the sub-Antarctic island of South Georgia. Earth Planet Sci Lett 403:166–177

    Article  CAS  Google Scholar 

  • Rossel PE et al (2011) Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: evidence from intact polar membrane lipids. Geochim Cosmochim Acta 75:164–184

    Article  CAS  Google Scholar 

  • Rüpke LH, Phipps-Morgan J, Hort M, Connolly JAD (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223:17–34

    Article  CAS  Google Scholar 

  • Saffer DM, Kopf AJ (2016) Boron desorption and fractionation in subduction zone Fore Arcs: implications for the sources and transport of deep fluids. Geochem Geophys Geosyst 17:4992–5008

    Article  CAS  Google Scholar 

  • Sahling H et al (2016) Massive asphalt deposits, oil seepage, and gas venting support abundant chemosynthetic communities at the Campeche Knolls, southern Gulf of Mexico. Biogeosciences 13:4491–4512

    Article  CAS  Google Scholar 

  • Sassen R et al (2004) Free hydrocarbon gas, gas hydrate and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial process. Chem Geol 205:195–217

    Article  CAS  Google Scholar 

  • Schneider von Deimling J et al (2011) Quantification of seep-related methane gas emissions at Tommeliten, North Sea. Cont Shelf Res 31:867–878

    Article  Google Scholar 

  • Schoell DW, von Huene R (2007) Crustal recycling at modern subduction zones applied to the past -issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction. Geol Soc America Mem 200:9–32

    Article  Google Scholar 

  • Shakhova N et al (2015) The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Phil Trans R Soc A 373:2014.0451. https://doi.org/10.1098/rsta.2014.0451

    Article  Google Scholar 

  • Shakirov RB et al (2005) Classification of anomalous methane fields in the Sea of Okhotsk. Polar Meteorol Glaciol 90:50–56

    Google Scholar 

  • Shank TM et al (2011) Exploration of the Anaximander mud volcanoes. In: Bell KLC, Fuller A (eds) New frontiers in ocean exploration. Oceanography 24:22–23

    Google Scholar 

  • Sivan O et al (2014) Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps. Proc Natl Acad Sci 111:4139–4147

    Article  CAS  Google Scholar 

  • Skarke A (2014) Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nature Geosci 7:657–661

    Article  CAS  Google Scholar 

  • van der Straaten F et al (2012) Tracing the effects of high-pressure metasomatic fluids and seawater alteration in blueschist-facies overprinted eclogites: implications for subduction channel processes. Chem Geol 292/293:69–87

    Article  CAS  Google Scholar 

  • Suess E (2010) Marine cold seeps. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, vol 1(Part 3). Springer, pp 187–203. https://doi.org/10.1007/978-3-540-77587-4_12

    Chapter  Google Scholar 

  • Suess E (2014) Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions. Intl J Earth Sci 103:1889–1916

    Article  CAS  Google Scholar 

  • Teichert BMA et al (2003) U-Th systematics and ages of authigenic carbonates from hydrate ridge, Cascadia margin: recorders of fluid flow variations. Geochim Cosmochim Acta 67:3845–3857

    Article  CAS  Google Scholar 

  • Teichert BMA, Bohrmann G, Suess E (2005) Chemoherms on hydrate ridge – unique microbially-mediated carbonate build-ups growing into the water column. Palaeogeogr Palaeoclimatol Palaeoecol 227:67–85

    Article  Google Scholar 

  • Tong HP et al (2013) Authigenic carbonates from seeps on the northern continental slope of the South China Sea: new insights into fluid sources and geochronology. Mar Petrol Geol 43:260–271

    Article  CAS  Google Scholar 

  • Tong HP et al (2016) Diagenetic alteration affecting δ18O, δ13C and 87Sr/86Sr signatures of carbonates: a case study on cretaceous seep deposits from Yarlung-Zangbo Suture Zone, Tibet, China. Chem Geol 444:71–82

    Article  CAS  Google Scholar 

  • Vanreusel A et al (2009) Biodiversity of cold seep ecosystems along the European margins. Oceanography 22:110–127

    Article  Google Scholar 

  • Wallmann K et al. (2018) Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming. Nat. Commu 9:83. https://doi.org/10.1038/s41467-017-02550-9

  • Watanabe Y et al (2008) U-Th dating of carbonate nodules from methane seeps off Joetsu, eastern margin of Japan Sea. Earth Planet Sci Lett 272:89–96

    Article  CAS  Google Scholar 

  • Weber TC et al (2014) Acoustic estimates of methane gas flux from the seabed in a 6000 km2 region in the Northern Gulf of Mexico. Geochem Geophys Geosyst 15:1911–1925. https://doi.org/10.1002/2014GC005271

    Article  CAS  Google Scholar 

  • Westbrook GK, Reston TJ (2002) The accretionary complex of the Mediterranean ridge: tectonics, fluid flow and the formation of brine lakes – an introduction. Mar Geol 186:1–8

    Article  Google Scholar 

  • Westbrook GK et al (1995) Three brine lakes discovered in the seafloor of the eastern Mediterranean. EOS Trans Am Geophys Union 76:313–318

    Google Scholar 

Download references

Acknowledgments

This contribution is an expanded and updated version of earlier publications (Suess 2010, 2014) by Springer Science+Business Media New York, 2003. I thank editors and publication staff for permission to use these previously published materials from which all illustrations are updated and/or redrawn to accommodate major advances in marine cold seep research. One last time, many thanks to Zona Bolton-Suess who helped – not just with the intricacies of the English language – but provided encouragement, genuine interest, and sustained support in my scientific pursuits. I acknowledge the College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, for the courtesy appointment extended to me and the associated use of facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Suess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Suess, E. (2018). Marine Cold Seeps: Background and Recent Advances. In: Wilkes, H. (eds) Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-54529-5_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54529-5_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54529-5

  • Online ISBN: 978-3-319-54529-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics