Skip to main content

Abiotic Transformation of Unsaturated Lipids and Hydrocarbons in Senescent Phytoplanktonic Cells

  • Living reference work entry
  • First Online:
Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 263 Accesses

Abstract

The present paper reviews the effects of photooxidation and autoxidation (free radical oxidation) processes on the main unsaturated lipid components (branched and linear alkenes, chlorophyll phytyl side-chain, alkenones, unsaturated fatty acids, and Δ5-sterols) of phytoplankton. A particular attention is given to the mechanisms of these degradation processes and to the potential role of tracers of the products formed. With these specific lipid tracers of abiotic degradation in hand, a more precise estimation of the behavior of particulate organic matter during sedimentation is expected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amiraux R, Jeanthon C, Vaultier F, Rontani J-F (2016) Paradoxical effects of temperature and solar irradiance on the photodegradation state of killed phytoplankton. J Phycol 52:475–485

    Article  CAS  Google Scholar 

  • Belt ST, Massé G, Rowland SJ, Poulin M, Michel C, LeBlanc B (2007) A novel chemical fossil of palaeo sea ice: IP25. Org Geochem 38:16–27

    Article  CAS  Google Scholar 

  • Bidle KD, Falkowski PG (2004) Cell death in planktonic photosynthetic microorganisms. Nat Rev Microbiol 2:643–655

    Article  CAS  Google Scholar 

  • Christodoulou S, Marty J-C, Miquel J-C, Volkman JK, Rontani J-F (2009) Use of lipids and their degradation products as biomarkers for carbon cycling in the northwestern Mediterranean Sea. Mar Chem 113:25–40

    Article  CAS  Google Scholar 

  • Christodoulou S, Joux F, Marty J-C, Sempéré R, Rontani J-F (2010) Comparative study of UV and visible light induced degradation of lipids in non-axenic senescent cells of Emiliania huxleyi. Mar Chem 119:139–152

    Article  CAS  Google Scholar 

  • Conte MH, Volkman JK, Eglinton G (1994) Lipid biomarkers of the Haptophyta. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. Systematics Association special volume, vol 51. Clarendon Press, Oxford, pp 351–377

    Google Scholar 

  • Cuny P, Rontani J-F (1999) On the widespread occurrence of 3-methylidene-7,11,15-trimethylhexadecan-1,2-diol in the marine environment: a specific isoprenoid marker of chlorophyll photodegradation. Mar Chem 65:155–165

    Article  CAS  Google Scholar 

  • Cuny P, Romano J-C, Beker B, Rontani J-F (1999) Comparison of the photo-degradation rates of chlorophyll chlorin ring and phytol side chain in phytodetritus: is the phytyldiol versus phytol ratio (CPPI) a new biogeochemical index? J Exp Mar Biol Ecol 237:271–290

    Article  CAS  Google Scholar 

  • Cuny P, Marty J-C, Chiaverini J, Vescovali I, Raphel D, Rontani J-F (2002) One-year seasonal survey of the chlorophyll photodegradation process in the Northwestern Mediterranean Sea. Deep-Sea Res II 49:1987–2005

    Article  CAS  Google Scholar 

  • De Leeuw JW, van der Meer JW, Rijpstra WIC, Schenck PA (1980) On the occurrence and structural identification of long chain ketones and hydrocarbons in sediments. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon Press, Oxford, pp 211–217

    Google Scholar 

  • Ehrenberg B, Anderson J, Foote CS (1998) Kinetics and yield of singlet oxygen photosensitized by hypericin in organic and biological media. Photochem Photobiol 68:135–140

    Article  CAS  Google Scholar 

  • Eltgroth ML, Watwood RL, Wolfe GV (2005) Production and cellular localization of neutral long-chain lipids in the haptophyte algae Isochrysis galbana and Emiliania huxleyi. J Phycol 41:1000–1009

    Article  CAS  Google Scholar 

  • Evans C, Malin G, Mills GP (2006) Viral infection of Emiliania huxleyi (Prymnesiophyceae) leads to elevated production of reactive oxygen species. J Phycol 42:1040–1047

    Article  CAS  Google Scholar 

  • Foote CS (1976) Photosensitized oxidation and singlet oxygen: consequences in biological systems. In: Pryor WA (ed) Free radicals in biology. Academic, New York, pp 85–133

    Chapter  Google Scholar 

  • Foote CS, Valentine JS, Greenberg A, Liebman JF (1995) Active oxygen in chemistry. Chapman & Hall, New York

    Google Scholar 

  • Fossey J, Lefort D, Sorba J (1995) Free radicals in organic chemistry. Masson, Paris, pp 1–307

    Google Scholar 

  • Frankel EN (1998) Lipid oxidation. The Oily Press, Dundee

    Google Scholar 

  • Frankel EN, Neff WE, Bessler TR (1979) Analysis of autoxidized fats by gas chromatography-mass spectrometry: V. Photosensitized oxidation. Lipids 14:961–967

    Article  CAS  Google Scholar 

  • Freeman KH, Wakeham SG (1992) Variations in the distributions and isotopic compositions of alkenones in Black Sea particles and sediments. Org Geochem 19:277–285

    Article  CAS  Google Scholar 

  • Frimer AA (1979) The reaction of singlet oxygen with olefins: the question of mechanism. Chem Rev 79:359–387

    Article  CAS  Google Scholar 

  • Frimer AA (1983) Singlet oxygen in peroxide chemistry. In: Patai S (ed), The chemistry of functional groups, peroxides. Wiley, Chichester, pp 202–229

    Google Scholar 

  • Girotti AW (1990) Photodynamic lipid peroxidation in biological systems. Photochem Photobiol 51:497–509

    Article  CAS  Google Scholar 

  • Girotti AW (1998) Lipid hydroperoxide generation, turnover and effector action in biological systems. J Lipid Res 39:1529–1542

    CAS  PubMed  Google Scholar 

  • Gong C, Hollander DJ (1999) Evidence for differential degradation of alkenones under contrasting bottom water oxygen conditions: implication for paleotemperature reconstruction. Geochim Cosmochim Acta 63:405–411

    Article  CAS  Google Scholar 

  • Grimalt JO, Rullkötter J, Sicre M-A, Summons R, Farrington J, Harvey HR, Goňi M, Sawada K (2000) Modifications of the C37 alkenone and alkenoate composition in the water column and sediment: possible implications for sea surface temperature estimates in paleoceanography. Geochem Geophys Geosyst 1. https://doi.org/10.1029/2000G000053

  • Halliwell B (1987) Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem Phys Lipids 44:327–340

    Article  CAS  Google Scholar 

  • Harvey HR (2000) Alteration processes of alkenones and related lipids in water columns and sediments. Geochem Geophys Geosyst 1. https://doi.org/10.1029/2000GC000054

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. II Role of electron transfer. Arch Biochem Biophys 125:850–857

    Article  CAS  Google Scholar 

  • Hoefs MJL, Versteegh GJM, Rijpstra WIC, de Leeuw JS, Sinninghe Damste JS (1998) Postdepositional oxic degradation of alkenones: implications for the measurement of palaeo sea surface temperatures. Paleoceanography 13:42–49

    Article  Google Scholar 

  • Hurst JR, Wilson SL, Schuster GB (1985) The ene reaction of singlet oxygen: kinetic and product evidence in support of a perepoxide intermediate. Tetrahedron 41:2191–2197

    Article  CAS  Google Scholar 

  • Huyser ES, Johnson KL (1968) Concerning the nature of the polar effect in hydrogen atom abstractions from alcohols, ethers and esters. J Organomet Chem 33:3972–3974

    Article  CAS  Google Scholar 

  • Jaraula CMB, Brassell SC, Morgan-Kiss R, Doran PT, Kenig F (2010) Origin and distribution of tri- to pentaunsaturated alkenones in Lake Fryxell, East Antarctica. Org Geochem 41:386–397

    Google Scholar 

  • Jeffrey SW, Hallegraeff GM (1987) Chlorophyllase distribution in ten classes of phytoplankton: a problem for chlorophyll analysis. Mar Ecol Prog Ser 35:293–304

    Article  CAS  Google Scholar 

  • Knox JP, Dodge AD (1985) Singlet oxygen and plants. Phytochemistry 24:889–896

    Article  CAS  Google Scholar 

  • Korytowski W, Bachowski GJ, Girotti AW (1992) Photoperoxidation of cholesterol in homogeneous solution, isolated membranes, and cells: comparison of the 5α- and 6β-hydroperoxides as indicators of singlet oxygen intermediacy. Photochem Photobiol 56:1–8

    Article  CAS  Google Scholar 

  • Kulig MJ, Smith LL (1973) Sterol metabolism. XXV. Cholesterol oxidation by singlet molecular oxygen. J Organomet Chem 38:3639–3642

    Article  CAS  Google Scholar 

  • Marchand D, Rontani J-F (2001) Characterization of photooxidation and autoxidation products of phytoplanktonic monounsaturated fatty acids in marine particulate matter and recent sediments. Org Geochem 32:287–304

    Article  CAS  Google Scholar 

  • Marchand D, Marty J-C, Miquel J-C, Rontani J-F (2005) Lipids and their oxidation products as biomarkers for carbon cycling in the northwestern Mediterranean Sea: results from a sediment trap study. Mar Chem 95:129–147

    Article  CAS  Google Scholar 

  • Marlowe IT, Green JC, Neal AC, Brassell SC, Eglinton G, Course PA (1984) Long chain (n-C37–C39) alkenones in the Prymnesiophyceae. Distribution of alkenones and other lipids and their taxonomic significance. British Phycol J 19:203–216

    Article  Google Scholar 

  • Massé G (2003) Highly branched isoprenoid alkenes from diatoms: a biosynthetic and life cycle study. PhD thesis, University of Plymouth

    Google Scholar 

  • Merzlyak MN, Hendry GAF (1994) Free radical metabolism, pigment degradation and lipid peroxidation in leaves during senescence. Proc Roy Soc Edinb 102B:459–471

    Google Scholar 

  • Morrissey PA, Kiely M (2006) Oxysterols: formation and biological function. In. Fox PF, McSweeney PLH (eds) Advanced dairy chemistry, 3rd edn. Lipids, vol 2. Springer, New York, pp 641–674

    Google Scholar 

  • Mouzdahir A, Grossi V, Bakkas S, Rontani J-F (2001) Photodegradation of long-chain alkenes in senescent cells of Emiliania huxleyi and Nannochloropsis salina. Phytochemistry 56:677–684

    Article  CAS  Google Scholar 

  • Neff WE, Frankel EN, Fujimoto K (1988) Autoxidative dimerization of methyl linolenate and its monohydroperoxides, hydroperoxy epidioxides and dihydroperoxides. J Am Oil Chem Soc 65:616–623

    Article  CAS  Google Scholar 

  • Nelson JR (1993) Rates and possible mechanism of light-dependent degradation of pigments in detritus derived from phytoplankton. J Mar Res 51:155–179

    Article  CAS  Google Scholar 

  • Porter NA, Caldwell SE, Mills KA (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30:277–290

    Article  CAS  Google Scholar 

  • Prahl FG, Wakeham SG (1987) Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330:367–369

    Article  CAS  Google Scholar 

  • Prahl FG, Muehlhausen L, Zahnle DL (1988) Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim Cosmochim Acta 52:2303–2310

    Article  CAS  Google Scholar 

  • Prahl FG, Rontani J-F, Volkman JK, Sparrow MA, Royer IM (2006) Unusual C35 and C36 alkenones in a paleoceanographic benchmark strain of Emiliania huxleyi. Geochim Cosmochim Acta 70:2856–2867

    Article  CAS  Google Scholar 

  • Rontani J-F (2005) Importance of visible light-induced photodegradation processes in the north western Mediterranean Sea. In: Saliot A (ed) The handbook of environmental chemistry, water pollution, vol 5. Springer, Heidelberg, pp 297–317

    Google Scholar 

  • Rontani J-F (2012) Photo- and free radical-mediated oxidation of lipid components during the senescence of phototrophic organisms. In: Nagata T (ed) Senescence. Intech, Rijeka, pp 3–31

    Google Scholar 

  • Rontani J-F, Aubert C (1994) Effect of oxy-free radicals upon the phytyl chain during chlorophyll-a photodegradation. J Photochem Photobiol A A79:167–172

    Article  Google Scholar 

  • Rontani J-F, Aubert C (2005) Characterization of isomeric allylic diols resulting from chlorophyll phytyl side-chain photo- and autoxidation by electron ionization gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 19:637–646

    Article  CAS  Google Scholar 

  • Rontani J-F, Marchand D (2000) Δ5-Stenol photoproducts of phytoplanktonic origin: a potential source of hydroperoxides in marine sediments? Org Geochem 31:169–180

    Article  CAS  Google Scholar 

  • Rontani J-F, Grossi V, Faure R, Aubert C (1994) “Bound” 3-methylidene-7,11,15-trimethylhexadecan-1,2-diol: a new isoprenoid marker for the photodegradation of chlorophyll-a in seawater. Org Geochem 21:135–142

    Article  CAS  Google Scholar 

  • Rontani J-F, Raphel D, Cuny P (1996) Early diagenesis of the intact and photooxidized chlorophyll phytyl chain in a recent temperate sediment. Org Geochem 24:825–832

    Article  CAS  Google Scholar 

  • Rontani J-F, Cuny P, Grossi V, Beker B (1997) Stability of long-chain alkenones in senescing cells of Emiliania huxleyi: effect of photochemical and aerobic microbial degradation on the alkenone unsaturation ratio (\( {U}_{37}^{K^{\prime }} \)). Org Geochem 26:503–509

    Article  CAS  Google Scholar 

  • Rontani J-F, Cuny P, Grossi V (1998) Identification of a pool of lipid photoproducts in senescent phytoplanktonic cells. Org Geochem 29:1215–1225

    Article  CAS  Google Scholar 

  • Rontani J-F, Rabourdin A, Marchand D, Aubert C (2003) Photochemical oxidation and autoxidation of chlorophyll phytyl side chain in senescent phytoplanktonic cells: potential sources of several acyclic isoprenoid compounds in the marine environment. Lipids 38:241–253

    Article  CAS  Google Scholar 

  • Rontani J-F, Beker B, Volkman JK (2004) Regiospecific enzymatic oxygenation of alkenones in the benthic haptophyte Chrysotila lamellosa Anand HAP 17. Phytochemistry 65:3269–3278

    Article  CAS  Google Scholar 

  • Rontani J-F, Marty J-C, Miquel J-C, Volkman JK (2006) Free radical oxidation (autoxidation) of alkenones and other microalgal lipids in seawater. Org Geochem 37:354–368

    Article  CAS  Google Scholar 

  • Rontani J-F, Jameson I, Christodoulou S, Volkman JK (2007) Free radical oxidation (autoxidation) of alkenones and other lipids in cells of Emiliania huxleyi. Phytochemistry 68:913–924

    Article  CAS  Google Scholar 

  • Rontani J-F, Zabeti N, Wakeham SG (2009) The fate of marine lipids: biotic vs. abiotic degradation of particulate sterols and alkenones in the Northwestern Mediterranean Sea. Mar Chem 113:9–18

    Article  CAS  Google Scholar 

  • Rontani J-F, Belt ST, Vaultier F, Brown TA (2011) Visible light-induced photo-oxidation of highly branched isoprenoid (HBI) alkenes: a significant dependence on the number and nature of the double bonds. Org Geochem 42:812–822

    Article  CAS  Google Scholar 

  • Rontani J-F, Charriere B, Forest A, Heussner S, Vaultier F, Petit M, Delsaut N, Fortier L, Sempéré R (2012a) Intense photooxidative degradation of planktonic and bacterial lipids in sinking particles collected with sediment traps across the Canadian Beaufort Shelf (Arctic Ocean). Biogeosciences 9:4787–4802

    Article  CAS  Google Scholar 

  • Rontani J-F, Charriere B, Petit M, Vaultier F, Heipieper H, Link H, Chailloux G, Sempéré R (2012b) Degradation state of organic matter in surface sediments from the Southern Beaufort Sea: a lipid approach. Biogeosciences 9:3513–3530

    Article  CAS  Google Scholar 

  • Rontani J-F, Volkman JK, Prahl FG, Wakeham SG (2013) Biotic and abiotic degradation of alkenones and implications for paleoproxy applications: a review. Org Geochem 59:93–113

    Article  Google Scholar 

  • Rontani J-F, Belt ST, Brown TA, Vaultier F, Mundy CJ (2014) Sequential photo- and autoxidation of diatom lipids in Arctic sea ice. Org Geochem 77:59–71

    Article  CAS  Google Scholar 

  • Rontani J-F, Belt ST, Amiraux R (2018) Biotic and abiotic degradation of the sea ice diatom biomarker IP25 and selected algal sterols in near-surface Arctic sediments. Org Geochem 118:73–88

    Article  CAS  Google Scholar 

  • Schaich KM (2005) Lipid oxidation: theoretical aspects. In: Shahidi F (ed) Bailey’s industrial oil and fat products, 6th edn. Wiley, Hoboken, pp 269–355

    Google Scholar 

  • Smith LL (1981) The autoxidation of cholesterol. Plenum Press, New York

    Book  Google Scholar 

  • Suwa K, Kimura T, Schaap AP (1977) Reactivity of singlet molecular oxygen with cholesterol in a phospholipidic membrane matrix: a model for oxidative damage of membranes. Biochem Biophys Res Commun 75:785–792

    Article  CAS  Google Scholar 

  • Versteegh GJM, Riegman R, De Leeuw JW, Jansen JHF (2001) \( {U}_{37}^{K^{\prime }} \) values for Isochrysis galbana as a function of culture temperature, light intensity and nutrient concentrations. Org Geochem 32:785–794

    Article  CAS  Google Scholar 

  • Volkman JK, Eglinton G, Corner EDS, Forsberg TEV (1980) Long chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi. Phytochemistry 19:2619–2622

    Article  Google Scholar 

  • Volkman JK, Barrett SM, Blackburn SI, Sikes EL (1995) Alkenones in Gephyrocapsa oceanica – implications for studies of paleoclimate. Geochim Cosmochim Acta 59:513–520

    Article  CAS  Google Scholar 

  • Wood BJB (1974). Fatty acids and saponifiable lipids. In: Steward WD (ed) Algal Physiology and Biochemistry. University of California Press, Berkeley, pp 236–265

    Google Scholar 

Download references

Acknowledgments

Financial support over many years from the Centre National de la Recherche Scientifique (CNRS) and the Aix-Marseille University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Rontani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rontani, JF. (2018). Abiotic Transformation of Unsaturated Lipids and Hydrocarbons in Senescent Phytoplanktonic Cells. In: Wilkes, H. (eds) Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-54529-5_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54529-5_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54529-5

  • Online ISBN: 978-3-319-54529-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics