Advertisement

Abiotic Transformation of Unsaturated Lipids and Hydrocarbons in Senescent Phytoplanktonic Cells

  • Jean-François Rontani
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The present paper reviews the effects of photooxidation and autoxidation (free radical oxidation) processes on the main unsaturated lipid components (branched and linear alkenes, chlorophyll phytyl side-chain, alkenones, unsaturated fatty acids, and Δ5-sterols) of phytoplankton. A particular attention is given to the mechanisms of these degradation processes and to the potential role of tracers of the products formed. With these specific lipid tracers of abiotic degradation in hand, a more precise estimation of the behavior of particulate organic matter during sedimentation is expected.

Notes

Acknowledgments

Financial support over many years from the Centre National de la Recherche Scientifique (CNRS) and the Aix-Marseille University is gratefully acknowledged.

References

  1. Amiraux R, Jeanthon C, Vaultier F, Rontani J-F (2016) Paradoxical effects of temperature and solar irradiance on the photodegradation state of killed phytoplankton. J Phycol 52:475–485CrossRefGoogle Scholar
  2. Belt ST, Massé G, Rowland SJ, Poulin M, Michel C, LeBlanc B (2007) A novel chemical fossil of palaeo sea ice: IP25. Org Geochem 38:16–27CrossRefGoogle Scholar
  3. Bidle KD, Falkowski PG (2004) Cell death in planktonic photosynthetic microorganisms. Nat Rev Microbiol 2:643–655CrossRefGoogle Scholar
  4. Christodoulou S, Marty J-C, Miquel J-C, Volkman JK, Rontani J-F (2009) Use of lipids and their degradation products as biomarkers for carbon cycling in the northwestern Mediterranean Sea. Mar Chem 113:25–40CrossRefGoogle Scholar
  5. Christodoulou S, Joux F, Marty J-C, Sempéré R, Rontani J-F (2010) Comparative study of UV and visible light induced degradation of lipids in non-axenic senescent cells of Emiliania huxleyi. Mar Chem 119:139–152CrossRefGoogle Scholar
  6. Conte MH, Volkman JK, Eglinton G (1994) Lipid biomarkers of the Haptophyta. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. Systematics Association special volume, vol 51. Clarendon Press, Oxford, pp 351–377Google Scholar
  7. Cuny P, Rontani J-F (1999) On the widespread occurrence of 3-methylidene-7,11,15-trimethylhexadecan-1,2-diol in the marine environment: a specific isoprenoid marker of chlorophyll photodegradation. Mar Chem 65:155–165CrossRefGoogle Scholar
  8. Cuny P, Romano J-C, Beker B, Rontani J-F (1999) Comparison of the photo-degradation rates of chlorophyll chlorin ring and phytol side chain in phytodetritus: is the phytyldiol versus phytol ratio (CPPI) a new biogeochemical index? J Exp Mar Biol Ecol 237:271–290CrossRefGoogle Scholar
  9. Cuny P, Marty J-C, Chiaverini J, Vescovali I, Raphel D, Rontani J-F (2002) One-year seasonal survey of the chlorophyll photodegradation process in the Northwestern Mediterranean Sea. Deep-Sea Res II 49:1987–2005CrossRefGoogle Scholar
  10. De Leeuw JW, van der Meer JW, Rijpstra WIC, Schenck PA (1980) On the occurrence and structural identification of long chain ketones and hydrocarbons in sediments. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon Press, Oxford, pp 211–217Google Scholar
  11. Ehrenberg B, Anderson J, Foote CS (1998) Kinetics and yield of singlet oxygen photosensitized by hypericin in organic and biological media. Photochem Photobiol 68:135–140CrossRefGoogle Scholar
  12. Eltgroth ML, Watwood RL, Wolfe GV (2005) Production and cellular localization of neutral long-chain lipids in the haptophyte algae Isochrysis galbana and Emiliania huxleyi. J Phycol 41:1000–1009CrossRefGoogle Scholar
  13. Evans C, Malin G, Mills GP (2006) Viral infection of Emiliania huxleyi (Prymnesiophyceae) leads to elevated production of reactive oxygen species. J Phycol 42:1040–1047CrossRefGoogle Scholar
  14. Foote CS (1976) Photosensitized oxidation and singlet oxygen: consequences in biological systems. In: Pryor WA (ed) Free radicals in biology. Academic, New York, pp 85–133CrossRefGoogle Scholar
  15. Foote CS, Valentine JS, Greenberg A, Liebman JF (1995) Active oxygen in chemistry. Chapman & Hall, New YorkGoogle Scholar
  16. Fossey J, Lefort D, Sorba J (1995) Free radicals in organic chemistry. Masson, Paris, pp 1–307Google Scholar
  17. Frankel EN (1998) Lipid oxidation. The Oily Press, DundeeGoogle Scholar
  18. Frankel EN, Neff WE, Bessler TR (1979) Analysis of autoxidized fats by gas chromatography-mass spectrometry: V. Photosensitized oxidation. Lipids 14:961–967CrossRefGoogle Scholar
  19. Freeman KH, Wakeham SG (1992) Variations in the distributions and isotopic compositions of alkenones in Black Sea particles and sediments. Org Geochem 19:277–285CrossRefGoogle Scholar
  20. Frimer AA (1979) The reaction of singlet oxygen with olefins: the question of mechanism. Chem Rev 79:359–387CrossRefGoogle Scholar
  21. Frimer AA (1983) Singlet oxygen in peroxide chemistry. In: Patai S (ed), The chemistry of functional groups, peroxides. Wiley, Chichester, pp 202–229Google Scholar
  22. Girotti AW (1990) Photodynamic lipid peroxidation in biological systems. Photochem Photobiol 51:497–509CrossRefGoogle Scholar
  23. Girotti AW (1998) Lipid hydroperoxide generation, turnover and effector action in biological systems. J Lipid Res 39:1529–1542PubMedGoogle Scholar
  24. Gong C, Hollander DJ (1999) Evidence for differential degradation of alkenones under contrasting bottom water oxygen conditions: implication for paleotemperature reconstruction. Geochim Cosmochim Acta 63:405–411CrossRefGoogle Scholar
  25. Grimalt JO, Rullkötter J, Sicre M-A, Summons R, Farrington J, Harvey HR, Goňi M, Sawada K (2000) Modifications of the C37 alkenone and alkenoate composition in the water column and sediment: possible implications for sea surface temperature estimates in paleoceanography. Geochem Geophys Geosyst 1.  https://doi.org/10.1029/2000G000053
  26. Halliwell B (1987) Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem Phys Lipids 44:327–340CrossRefGoogle Scholar
  27. Harvey HR (2000) Alteration processes of alkenones and related lipids in water columns and sediments. Geochem Geophys Geosyst 1.  https://doi.org/10.1029/2000GC000054
  28. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. II Role of electron transfer. Arch Biochem Biophys 125:850–857CrossRefGoogle Scholar
  29. Hoefs MJL, Versteegh GJM, Rijpstra WIC, de Leeuw JS, Sinninghe Damste JS (1998) Postdepositional oxic degradation of alkenones: implications for the measurement of palaeo sea surface temperatures. Paleoceanography 13:42–49CrossRefGoogle Scholar
  30. Hurst JR, Wilson SL, Schuster GB (1985) The ene reaction of singlet oxygen: kinetic and product evidence in support of a perepoxide intermediate. Tetrahedron 41:2191–2197CrossRefGoogle Scholar
  31. Huyser ES, Johnson KL (1968) Concerning the nature of the polar effect in hydrogen atom abstractions from alcohols, ethers and esters. J Organomet Chem 33:3972–3974CrossRefGoogle Scholar
  32. Jaraula CMB, Brassell SC, Morgan-Kiss R, Doran PT, Kenig F (2010) Origin and distribution of tri- to pentaunsaturated alkenones in Lake Fryxell, East Antarctica. Org Geochem 41:386–397Google Scholar
  33. Jeffrey SW, Hallegraeff GM (1987) Chlorophyllase distribution in ten classes of phytoplankton: a problem for chlorophyll analysis. Mar Ecol Prog Ser 35:293–304CrossRefGoogle Scholar
  34. Knox JP, Dodge AD (1985) Singlet oxygen and plants. Phytochemistry 24:889–896CrossRefGoogle Scholar
  35. Korytowski W, Bachowski GJ, Girotti AW (1992) Photoperoxidation of cholesterol in homogeneous solution, isolated membranes, and cells: comparison of the 5α- and 6β-hydroperoxides as indicators of singlet oxygen intermediacy. Photochem Photobiol 56:1–8CrossRefGoogle Scholar
  36. Kulig MJ, Smith LL (1973) Sterol metabolism. XXV. Cholesterol oxidation by singlet molecular oxygen. J Organomet Chem 38:3639–3642CrossRefGoogle Scholar
  37. Marchand D, Rontani J-F (2001) Characterization of photooxidation and autoxidation products of phytoplanktonic monounsaturated fatty acids in marine particulate matter and recent sediments. Org Geochem 32:287–304CrossRefGoogle Scholar
  38. Marchand D, Marty J-C, Miquel J-C, Rontani J-F (2005) Lipids and their oxidation products as biomarkers for carbon cycling in the northwestern Mediterranean Sea: results from a sediment trap study. Mar Chem 95:129–147CrossRefGoogle Scholar
  39. Marlowe IT, Green JC, Neal AC, Brassell SC, Eglinton G, Course PA (1984) Long chain (n-C37–C39) alkenones in the Prymnesiophyceae. Distribution of alkenones and other lipids and their taxonomic significance. British Phycol J 19:203–216CrossRefGoogle Scholar
  40. Massé G (2003) Highly branched isoprenoid alkenes from diatoms: a biosynthetic and life cycle study. PhD thesis, University of PlymouthGoogle Scholar
  41. Merzlyak MN, Hendry GAF (1994) Free radical metabolism, pigment degradation and lipid peroxidation in leaves during senescence. Proc Roy Soc Edinb 102B:459–471Google Scholar
  42. Morrissey PA, Kiely M (2006) Oxysterols: formation and biological function. In. Fox PF, McSweeney PLH (eds) Advanced dairy chemistry, 3rd edn. Lipids, vol 2. Springer, New York, pp 641–674Google Scholar
  43. Mouzdahir A, Grossi V, Bakkas S, Rontani J-F (2001) Photodegradation of long-chain alkenes in senescent cells of Emiliania huxleyi and Nannochloropsis salina. Phytochemistry 56:677–684CrossRefGoogle Scholar
  44. Neff WE, Frankel EN, Fujimoto K (1988) Autoxidative dimerization of methyl linolenate and its monohydroperoxides, hydroperoxy epidioxides and dihydroperoxides. J Am Oil Chem Soc 65:616–623CrossRefGoogle Scholar
  45. Nelson JR (1993) Rates and possible mechanism of light-dependent degradation of pigments in detritus derived from phytoplankton. J Mar Res 51:155–179CrossRefGoogle Scholar
  46. Porter NA, Caldwell SE, Mills KA (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30:277–290CrossRefGoogle Scholar
  47. Prahl FG, Wakeham SG (1987) Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330:367–369CrossRefGoogle Scholar
  48. Prahl FG, Muehlhausen L, Zahnle DL (1988) Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim Cosmochim Acta 52:2303–2310CrossRefGoogle Scholar
  49. Prahl FG, Rontani J-F, Volkman JK, Sparrow MA, Royer IM (2006) Unusual C35 and C36 alkenones in a paleoceanographic benchmark strain of Emiliania huxleyi. Geochim Cosmochim Acta 70:2856–2867CrossRefGoogle Scholar
  50. Rontani J-F (2005) Importance of visible light-induced photodegradation processes in the north western Mediterranean Sea. In: Saliot A (ed) The handbook of environmental chemistry, water pollution, vol 5. Springer, Heidelberg, pp 297–317Google Scholar
  51. Rontani J-F (2012) Photo- and free radical-mediated oxidation of lipid components during the senescence of phototrophic organisms. In: Nagata T (ed) Senescence. Intech, Rijeka, pp 3–31Google Scholar
  52. Rontani J-F, Aubert C (1994) Effect of oxy-free radicals upon the phytyl chain during chlorophyll-a photodegradation. J Photochem Photobiol A A79:167–172CrossRefGoogle Scholar
  53. Rontani J-F, Aubert C (2005) Characterization of isomeric allylic diols resulting from chlorophyll phytyl side-chain photo- and autoxidation by electron ionization gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 19:637–646CrossRefGoogle Scholar
  54. Rontani J-F, Marchand D (2000) Δ5-Stenol photoproducts of phytoplanktonic origin: a potential source of hydroperoxides in marine sediments? Org Geochem 31:169–180CrossRefGoogle Scholar
  55. Rontani J-F, Grossi V, Faure R, Aubert C (1994) “Bound” 3-methylidene-7,11,15-trimethylhexadecan-1,2-diol: a new isoprenoid marker for the photodegradation of chlorophyll-a in seawater. Org Geochem 21:135–142CrossRefGoogle Scholar
  56. Rontani J-F, Raphel D, Cuny P (1996) Early diagenesis of the intact and photooxidized chlorophyll phytyl chain in a recent temperate sediment. Org Geochem 24:825–832CrossRefGoogle Scholar
  57. Rontani J-F, Cuny P, Grossi V, Beker B (1997) Stability of long-chain alkenones in senescing cells of Emiliania huxleyi: effect of photochemical and aerobic microbial degradation on the alkenone unsaturation ratio (\( {U}_{37}^{K^{\prime }} \)). Org Geochem 26:503–509CrossRefGoogle Scholar
  58. Rontani J-F, Cuny P, Grossi V (1998) Identification of a pool of lipid photoproducts in senescent phytoplanktonic cells. Org Geochem 29:1215–1225CrossRefGoogle Scholar
  59. Rontani J-F, Rabourdin A, Marchand D, Aubert C (2003) Photochemical oxidation and autoxidation of chlorophyll phytyl side chain in senescent phytoplanktonic cells: potential sources of several acyclic isoprenoid compounds in the marine environment. Lipids 38:241–253CrossRefGoogle Scholar
  60. Rontani J-F, Beker B, Volkman JK (2004) Regiospecific enzymatic oxygenation of alkenones in the benthic haptophyte Chrysotila lamellosa Anand HAP 17. Phytochemistry 65:3269–3278CrossRefGoogle Scholar
  61. Rontani J-F, Marty J-C, Miquel J-C, Volkman JK (2006) Free radical oxidation (autoxidation) of alkenones and other microalgal lipids in seawater. Org Geochem 37:354–368CrossRefGoogle Scholar
  62. Rontani J-F, Jameson I, Christodoulou S, Volkman JK (2007) Free radical oxidation (autoxidation) of alkenones and other lipids in cells of Emiliania huxleyi. Phytochemistry 68:913–924CrossRefGoogle Scholar
  63. Rontani J-F, Zabeti N, Wakeham SG (2009) The fate of marine lipids: biotic vs. abiotic degradation of particulate sterols and alkenones in the Northwestern Mediterranean Sea. Mar Chem 113:9–18CrossRefGoogle Scholar
  64. Rontani J-F, Belt ST, Vaultier F, Brown TA (2011) Visible light-induced photo-oxidation of highly branched isoprenoid (HBI) alkenes: a significant dependence on the number and nature of the double bonds. Org Geochem 42:812–822CrossRefGoogle Scholar
  65. Rontani J-F, Charriere B, Forest A, Heussner S, Vaultier F, Petit M, Delsaut N, Fortier L, Sempéré R (2012a) Intense photooxidative degradation of planktonic and bacterial lipids in sinking particles collected with sediment traps across the Canadian Beaufort Shelf (Arctic Ocean). Biogeosciences 9:4787–4802CrossRefGoogle Scholar
  66. Rontani J-F, Charriere B, Petit M, Vaultier F, Heipieper H, Link H, Chailloux G, Sempéré R (2012b) Degradation state of organic matter in surface sediments from the Southern Beaufort Sea: a lipid approach. Biogeosciences 9:3513–3530CrossRefGoogle Scholar
  67. Rontani J-F, Volkman JK, Prahl FG, Wakeham SG (2013) Biotic and abiotic degradation of alkenones and implications for paleoproxy applications: a review. Org Geochem 59:93–113CrossRefGoogle Scholar
  68. Rontani J-F, Belt ST, Brown TA, Vaultier F, Mundy CJ (2014) Sequential photo- and autoxidation of diatom lipids in Arctic sea ice. Org Geochem 77:59–71CrossRefGoogle Scholar
  69. Rontani J-F, Belt ST, Amiraux R (2018) Biotic and abiotic degradation of the sea ice diatom biomarker IP25 and selected algal sterols in near-surface Arctic sediments. Org Geochem 118:73–88CrossRefGoogle Scholar
  70. Schaich KM (2005) Lipid oxidation: theoretical aspects. In: Shahidi F (ed) Bailey’s industrial oil and fat products, 6th edn. Wiley, Hoboken, pp 269–355Google Scholar
  71. Smith LL (1981) The autoxidation of cholesterol. Plenum Press, New YorkCrossRefGoogle Scholar
  72. Suwa K, Kimura T, Schaap AP (1977) Reactivity of singlet molecular oxygen with cholesterol in a phospholipidic membrane matrix: a model for oxidative damage of membranes. Biochem Biophys Res Commun 75:785–792CrossRefGoogle Scholar
  73. Versteegh GJM, Riegman R, De Leeuw JW, Jansen JHF (2001) \( {U}_{37}^{K^{\prime }} \) values for Isochrysis galbana as a function of culture temperature, light intensity and nutrient concentrations. Org Geochem 32:785–794CrossRefGoogle Scholar
  74. Volkman JK, Eglinton G, Corner EDS, Forsberg TEV (1980) Long chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi. Phytochemistry 19:2619–2622CrossRefGoogle Scholar
  75. Volkman JK, Barrett SM, Blackburn SI, Sikes EL (1995) Alkenones in Gephyrocapsa oceanica – implications for studies of paleoclimate. Geochim Cosmochim Acta 59:513–520CrossRefGoogle Scholar
  76. Wood BJB (1974). Fatty acids and saponifiable lipids. In: Steward WD (ed) Algal Physiology and Biochemistry. University of California Press, Berkeley, pp 236–265Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Aix Marseille Université, Mediterranean Institute of Oceanography (MIO)Université de Toulon, CNRS/INSU/IRDMarseilleFrance

Personalised recommendations