Skip to main content

Phospholipids as Life Markers in Geological Habitats

  • Living reference work entry
  • First Online:
Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate

Abstract

Microbial life plays a significant role not only in the biological surface but also in the geological subsurface carbon cycle as indicated by the widespread findings of microbial communities (deep biosphere) in the deep underground. Thereby, microorganisms occupy a wide range of different habitats determined by moderate to extreme environmental conditions. Suitable analytical tools are required to assess the presence, spatial distribution, abundance, and composition of microbial life in the many different natural environments on Earth, to understand the response and survival strategies of microorganisms to various environmental living conditions, and to unravel the role of microbial communities on the global biogeochemical cycles in natural habitats. From a biogeochemical perspective, such a tool is provided by microbial biomolecules such as phospholipids (PL) representing a significant part of microbial cell membranes. With their polar head groups and long hydrophobic side chains, they form the basic module of the membrane structure. PLs and especially phospholipid esters not only indicate the occurrence of microbial biomass but also the presence of living microorganisms, since they are only stable in viable microorganisms over longer periods of time. Therefore, PLs are also named microbial life markers. PLs can be used to quantify microbial life, to illustrate its spatial distribution, to provide taxonomic information at least on a broad level, and to assess microbial adaptation and carbon transformation processes. In this chapter we will present basic information on the utilization of phospholipids as life markers, will report on analytical methods to measure these biomolecules and elucidate their structures, and will provide examples for the application of these biomarkers in a geoscientific context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alawi M, Schneider B, Kallmeyer J (2014) A procedure for separate recovery of extra- and intracellular DNA from a single marine sediment sample. J Microbiol Methods 104:36–42

    Article  CAS  PubMed  Google Scholar 

  • Al-Dagal M, Fung DY, Bennett RW (2009) Aeromicrobiology-a review. Crit Rev Food Sci Nutr 29:330–340

    Google Scholar 

  • Bååth E, Anderson TH (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963

    Article  CAS  Google Scholar 

  • Bajerski F, Wagner D, Mangelsdorf K (2017) Cell membrane fatty acid composition of Chryseobacterium frigidisoli PB4T, isolated from Antarctic glacier forefield soils, in response to changing temperature and pH conditions. Front Microbiol 8:677

    Article  PubMed  PubMed Central  Google Scholar 

  • Bale N, Sorokin D, Hopmans EC, Koenen M, Rijpstra WIC, Villanueva L, Wienk H, Sinninghe Damsté JS (2019) New insights into the polar lipid composition of extremely halo(alkali)philic euryarchaea from hypersaline lakes. Front Microbiol 10:377

    Article  PubMed  PubMed Central  Google Scholar 

  • Balkwill DL, Leach FR, Wilson JT, McNabb JF, White DC (1988) Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface aquifer sediments. Microb Ecol 16:73–84

    Article  CAS  PubMed  Google Scholar 

  • Barin M, Aliasgharzad N, Olsson PA, Rasouli-Sadaghiani M (2015) Salinity-induced differences in soil microbial communities around the hypersaline Lake Urmia. Soil Res 53:494–504

    Article  CAS  Google Scholar 

  • Baveye P, Vandevivere P, Hoyle BL, DeLeo PC, de Lozada DS (1998) Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials. Crit Rev Environ Sci Technol 28:123–191

    Article  CAS  Google Scholar 

  • Beulig F, Heuer VB, Akob DM, Viehweger B, Elvert M, Herrmann M, Hinrichs K-U, Küsel K (2015) Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette. The ISME Journal 9:746–759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sorensen KB, Anderson R, Fredricks HF, Elvert M, Kelly TJ, Schrag DP, Sogin ML, Brenchley JE, Teske A, House CH, Hinrichs K-U (2006) Heterotrophic archaea dominate sedimentary subsurface ecosystem off Peru. Proc Natl Acad Sci 103:3846–3851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bischoff J, Mangelsdorf K, Gattinger A, Schloter M, Kurchatova AN, Herzschuh U, Wagner D (2013) Response of methanogenic archaea to Late Pleistocene and Holocene climate changes in the Siberian Arctic. Glob Biogeochem Cycles 27:305–317

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Blumenberg M, Seifert R, Reitner J, Pape T, Michaelis W (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci 101:11111–11116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Boggs JM (1986) Effect of lipid structural modifications on their intermolecular hydrogen bonding interactions and membrane functions. Can J Biochem Cell Biol 64:50–57

    Article  CAS  Google Scholar 

  • Boschker HTS, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40:85–95

    Article  CAS  PubMed  Google Scholar 

  • Butler JL, Williams MA, Bottomley PJ, Myrold DD (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 69:6793–6800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie WW (1999) The LipidWeb. www.lipidhome.co.uk

  • Ciobanu MC, Burgaud G, Dufresne A, Breuker A, Redou V, Ben Maamar S, Gaboyer F, Vandenabeele-Trambouze O, Lipp JS, Schippers A, Vandenkoornhuyse P, Barbier G, Jebbar M, Godfroy A, Alain K (2014) Microorganisms persist at record depths in the subseafloor of the Canterbury Basin. ISME J 8:1370–1380

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Hondt SL, Inagaki F, Ferdelman TG, Jorgensen BB, Kato K, Kemp P, Sobecky P, Sogin ML, Takai K (2007) Exploring subseafloor life with the Integrated Ocean Drilling Program. Sci Drill 5:26–37

    Article  Google Scholar 

  • Dawson KS, Freeman KH, Macalady JL (2012) Molecular characterization of core lipids from halophilic archaea grown under different salinity conditions. Org Geochem 48:1–8

    Article  CAS  Google Scholar 

  • de Mendoza D (2014) Temperature sensing by membranes. Annu Rev Microbiol 68:101–116

    Article  PubMed  CAS  Google Scholar 

  • DeLong EF, Yayanos AA (1985) Adaptation of membrane lipids of deep-sea bacterium to changes in hydrostatic pressure. Science 228:1101–1103

    Article  CAS  PubMed  Google Scholar 

  • Destaillats F, Angers P (2002) On-step methodology for the synthesis of FA picolinyl esters from intact lipids. J Am Oil Chem Soc 79:253–256

    Article  CAS  Google Scholar 

  • Dunkelblum E, Tan SH, Silk PJ (1985) Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry. J Chem Ecol 11:265–277

    Article  CAS  PubMed  Google Scholar 

  • Elvert M, Boetius A, Knittel K, Jorgensen BB (2003) Characterisation of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiol J 20:403–419

    Article  CAS  Google Scholar 

  • Fang J, Barcelona MJ (1998) Structural determination and quantitative analysis of bacterial phospholipids using liquid chromatography/electrospray ionization/mass spectrometry. J Microbiol Methods 33:23–35

    Article  CAS  Google Scholar 

  • Fang J, Barcelona MJ, Semrau JD (2000) Characterization of methanotrophic bacteria on the basis of intact phospholipid profiles. FEMS Microbiol Lett 189:67–72

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Barcelona MJ, Abrajano T, Nogi Y, Kato C (2002) Isotopic composition of fatty acids of extremely piezophilic bacteria from the Mariana Trench at 11,000 m. Mar Chem 80:1–9

    Article  CAS  Google Scholar 

  • Frostegard A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fert Soils 22:59–65

    Article  Google Scholar 

  • Frostegård Å, Bååth E, Tunlid A (1993a) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25:723–730

    Article  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1993b) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    PubMed  PubMed Central  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625

    Article  CAS  Google Scholar 

  • Fry JC, Horsfield B, Sykes R, Cragg BA, Heywood C, Kim GT, Mangelsdorf K, Mildenhall DC, Rinna J, Vieth A, Zink K-G, Sass H, Weightman AJ, Parkes RJ (2009) Prokaryotic populations and activities in an interbedded lignite/coal deposit, including a previously deeply buried section (1.6–2.3 km) and ~150 Ma basement rock. Geomicrobiol J 26:163–178

    Article  CAS  Google Scholar 

  • Gambacorta A, Gliozzi A, De Rosa M (1995) Archaeal lipids and their biotechnological applications. World J Microbiol Biotechnol 11:115–131

    Article  CAS  PubMed  Google Scholar 

  • Gattinger A, Günthner A, Schloter M, Munch JC (2003) Characterisation of archaea in soils by polar lipid analysis. Acta Biotechnol 23:21–28

    Article  CAS  Google Scholar 

  • Genderjahn S, Alawi M, Kallmeyer J, Belz L, Wagner D, Mangelsdorf K (2017) Present and past microbial life in continental pan sediments and its response to climate variability in the southern Kalahari. Org Geochem 108:30–42

    Article  CAS  Google Scholar 

  • Genderjahn S, Alawi M, Wagner D, Schüller I, Wanke A, Mangelsdorf K (2018) Microbial community responses to modern environmental and past climatic conditions in Omongwa pan, western Kalahari: a paired 16S rRNA gene profiling and lipid biomarker approach. J Geophys Res Biogeo 123. https://doi.org/10.1002/2017JG004098

    CAS  Google Scholar 

  • Gruner A, Mangelsdorf K, Vieth-Hillebrand A, Horsfield B, van der Kraan GM, Köhler T, Janka C, Morris BEL, Wilkes H (2017) Membrane lipids as indicators for viable bacterial communities inhabiting petroleum systems. Environ Microbiol 74:373–383

    CAS  Google Scholar 

  • Guckert JB, Hood MA, White DC (1986) Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: Increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl Environ Microbiol 52:794–801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guckert JB, Ringelberg D, White DC, Hanson RS, Bratina BJ (1991) Membrane fatty acids as phenotypic markers in the polyphasic taxonomy of methylotrophs within the Proteobacteria. J Gen Microbiol 137:2631–2641

    Article  CAS  PubMed  Google Scholar 

  • Harayama S, Kishira H, Kasai Y, Syutsubo K (1999) Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1:63–70

    CAS  PubMed  Google Scholar 

  • Harvey HR, Fallon R, Patton JS (1986) The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments. Geochem Cosmochim Acta 50:795–804

    Article  CAS  Google Scholar 

  • Harwood JL, Russell NJ (1984) Lipids in plants and microbes. George Allen& Unwin, London, p 162

    Book  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    Article  CAS  PubMed  Google Scholar 

  • Heinzelmann SM, Bale NJ, Hopmans E, Sinninghe Damsté JS, Schouten S, van der Meer MTJ (2014) Critical assessment of glyco- and phospholipid separation by using silica chromatography. Appl Environ Microbiol 80:360–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Article  CAS  PubMed  Google Scholar 

  • Horsfield B, Schenk HJ, Zink K-G, Ondrak R, Dieckmann V, Kallmeyer J, Mangelsdorf K, di Primio R, Wilkes H, Parker J, Fry JC, Cragg B (2006) Living microbial ecosystems within the active zone of catagenesis: implications for feeding the deep biosphere. Earth Planet Sci Lett 246:55–69

    Article  CAS  Google Scholar 

  • Inagaki F, Hinrichs K-U, Kubo Y, Bowles MW, Heuer VB, Hong W-L, Hoshino T, Ijiri A, Imachi H, Ito M, Kaneko M, Lever MA, Lin Y-S, Methe BA, Morita S, Morono Y, Tanikawa W, Bihan M, Bowden SA, Elvert M, Glombitza C, Gross D, Harrington GJ, Hori T, Li K, Limmer D, Liu C-H, Murayama M, Ohkouchi N, Ono S, Park Y-S, Phillips SC, Prieto-Mollar X, Purkey M, Riedinger N, Sanada Y, Sauvage J, Snyder G, Susilawati R, Takano Y, Tasumi E, Terada T, Tomaru H, Trenmbath-Reichert E, Wang DT, Yamada Y (2015) Exploring deep microbial life in coal-bearing sediments down to ~2.5 km below the ocean floor. Science 349:420–424

    Article  CAS  PubMed  Google Scholar 

  • Jahn U, Summons RE, Sturt H, Grosjean E, Huber H (2004) Composition of the lipids of Nanoarchaeum equitans and their origin from its host Ignicoccus sp strain KIN4/I. Arch Microbiol 182:404–413

    Article  CAS  PubMed  Google Scholar 

  • Kallmeyer J (2017) Contamination control for scientific drilling operation. Adv Appl Microbiol 98:61–91

    Article  CAS  PubMed  Google Scholar 

  • Kallmeyer J, Mangelsdorf K, Cragg B, Horsfield B (2006) Techniques for contamination assessment during drilling for terrestrial subsurface sediments. Geomicrobiol J 23:227–239

    Article  CAS  Google Scholar 

  • Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci 109:16213–16216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr RA (1997) Life goes to extremes in the deep earth-and elsewhere. Science 276:703–704

    Article  CAS  PubMed  Google Scholar 

  • Koga Y, Morii H (2005) Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci Biotechnol Biochem 69:2019–2034

    Article  CAS  PubMed  Google Scholar 

  • Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG, Sinninghe Damsté JS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611

    Article  CAS  PubMed  Google Scholar 

  • Lanekoff I, Karlsson R (2010) Analysis of intact ladderane phospholipids, originating from viable anammox bacteria, using RP-LC-MS. Anal Bioanal Chem 397:3543–3551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurent F, Richli U (1991) Location of double bonds in polysaturated fatty acids by gas chromatography-mass spectrometry after 4,4-dimethyloxazoline derivatization. J Chromatogr 541:89–98

    Article  Google Scholar 

  • Lin L-H, Wang P-L, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM, Sherwood Lollar B, Brodie EL, Hazen TC, Andersen GL, DeSantis TZ, Moser DP, Kershaw D, Onstott TC (2006) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:479–482

    Article  CAS  PubMed  Google Scholar 

  • Lipp JS, Hinrichs K-U (2009) Structural diversity and fate of intact polar lipids in marine sediments. Geochim Cosmochim Acta 73:6816–6833

    Article  CAS  Google Scholar 

  • Lipp JS, Morono Y, Inagaki F, Hinrichs K-U (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994

    Article  CAS  PubMed  Google Scholar 

  • Logemann J, Graue J, Koester J, Engelen B, Rullkoetter J, Cypionka H (2011) A laboratory experiment of intact polar lipid degradation in sandy sediments. Biogeosciences 8:2547–2560

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (1999) Brock-biology of microorganisms. Prentice Hall, London

    Google Scholar 

  • Mallet CR, Lu Z, Mazzeo JR (2004) A study of ion suppression effects in electrospray ionization from mobile phase additives and solid phase extracts. Rapid Commun Mass Spectrom 18:49–58

    Article  CAS  PubMed  Google Scholar 

  • Mancuso CA, Franzmann PD, Burton HR, Nichols PD (1990) Microbial community structure and biomass estimates of a methanogenic Antarctic lake ecosystem as determined by phospholipid analyses. Microb Ecol 19:73–95

    Article  CAS  PubMed  Google Scholar 

  • Mangelsdorf K, Haberer RM, Zink K-G, Dieckmann V, Wilkes H, Horsfield B (2005a) Molecular indicators for the occurrence of deep microbial communities at the Mallik 5L-38 gas hydrate research well. In: Dallimore SR, Collett TS (eds) Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada, Bulletin, pp 1–11

    Google Scholar 

  • Mangelsdorf K, Zink K-G, Birrien J-L, Toffin L (2005b) A quantitative assessment of pressure dependent adaptive changes in the membrane lipids of a piezosensitive deep sub-seafloor bacterium. Org Geochem 36:1459–1479

    Article  CAS  Google Scholar 

  • Mangelsdorf K, Finsel E, Liebner S, Wagner D (2009) Temperature adaptation of microbial communities in different horizons of Siberian permafrost-affected soils from the Lena-Delta. Chem Erde 69:169–182

    Article  CAS  Google Scholar 

  • Mangelsdorf K, Zink K-G, Di Primio R, Horsfield B (2011) Microbial lipid markers within and adjacent to Challenger Mound in the Belgica carbonate mound province, Porcupine Basin, offshore Ireland (IODP Expedition 307). Mar Geol 282:91–101

    Article  CAS  Google Scholar 

  • Mangelsdorf K, Bajerski F, Karger C, Wagner D (2017) Identification of a novel fatty acid in the cell membrane of Chryseobacterium frigidisoli PB4T isolated from an East Antarctic glacier forefield. Org Geochem 106:68–75

    Article  CAS  Google Scholar 

  • Männistö MK, Tiirola M, Häggblom MM (2007) Bacterial communities in Arctic fields of Finnish Lapland are stable but highly pH dependent. FEMS Microbiol Ecol 59:452–465

    Article  PubMed  CAS  Google Scholar 

  • Mills CT, Dias RF, Graham D, Mandernack KW (2006) Determination of phospholipid fatty acid structures and stable carbon isotope compositions of deep-sea sediments of the Northwest Pacific, ODP site 1179. Mar Chem 98:198–209

    Article  CAS  Google Scholar 

  • Mueller KD, Husmann H, Nalik HP (1990) A new and rapid method for the assay of bacterial fatty acids using high resolution capillary gas chromatography and trimethylsulfonium hydroxide. Zentralbl Bakteriol 274:174–182

    Article  CAS  Google Scholar 

  • Mukamolova GV, Yanopolskaya ND, Votyakova TV, Popov VI, Kaprelyants AS, Kell DB (1995) Biochemical changes accompanying the long-term starvation of Micrococcus luteus cells in spent growth medium. Arch Microbiol 163:373–379

    Article  CAS  Google Scholar 

  • Nagan N, Zoeller RA (2001) Plasmalogens: biosynthesis and functions. Prog Lipid Res 40:199–229

    Article  CAS  PubMed  Google Scholar 

  • Olsen I, Jantzen E (2001) Sphingolipids in bacteria and fungi. Anaerobe 7:103–112

    Article  CAS  Google Scholar 

  • Orwin KH, Dickie IA, Holdaway R, Wood JR (2018) A comparison of the ability of PLFA and 16S rRNA gene metabarcoding to resolve soil community change and predict ecosystem functions. Soil Biol Biochem 117:27–35

    Article  CAS  Google Scholar 

  • Oshima M, Ariga T (1975) ω-Cyclohexyl fatty acids in acidophilic thermophilic bacteria. J Biol Chem 250:6963–6968

    CAS  PubMed  Google Scholar 

  • Parkes RJ, Taylor J (1983) The relationship between fatty acid distributions and bacterial respiratory types in contemporary marine sediments. Estuar Coast Shelf Sci 16:173–189

    Article  CAS  Google Scholar 

  • Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413

    Article  Google Scholar 

  • Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol J 8:11–28

    Article  Google Scholar 

  • Parkes J, Cragg B, Roussel E, Webster G, Weightman AJ, Sass H (2014) A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere:geosphere interactions. Mar Geol 352:409–425

    Article  CAS  Google Scholar 

  • Pearson A (2008) Who lives in the sea floor. Nature 454:952–953

    Article  CAS  PubMed  Google Scholar 

  • Pedersen K (1997) Microbial life in deep granitic rock. FEMS Microbiol Rev 20:399–414

    Article  CAS  Google Scholar 

  • Pedersen K (2000) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9–16

    Article  CAS  PubMed  Google Scholar 

  • Pelz O, Chatzinotas A, Andersen N, Bernasconi SM, Hesse C, Abraham W-R, Zeyer J (2001) Use of isotopic and molecular techniques to link toluene degradation in denitrifying aquifer microcosms to specific microbial populations. Arch Microbiol 175:270–281

    Article  CAS  PubMed  Google Scholar 

  • Pulfer M, Murphy RC (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22:332–364

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Tang JC, Li DS, Zhang QM (2012) Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Lett Appl Microbiol 55:210–217

    Article  CAS  PubMed  Google Scholar 

  • Rabus R, Widdel F (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163:96–103

    Article  CAS  PubMed  Google Scholar 

  • Rajendran N, Matsuda O, Rajendran R, Urushigawa Y (1997) Comparative description of microbial community structure in surface sediments of eutrophic bays. Mar Pollut Bull 34:26–33

    Article  CAS  Google Scholar 

  • Rath KM, Maheshwari A, Bengtson P, Rouska J (2016) Comparative toxicities of salts on microbial processes in soil. Appl Environ Microbiol 82:2012–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringelberg DB, Sutton S, White DC (1997) Biomass, bioactivity and biodiversity: microbial ecology of the deep subsurface: analysis of ester-linked phospholipids fatty acids. FEMS Microbiol Rev 20:371–377

    Article  CAS  Google Scholar 

  • Rontani J-F (1998) Electron ionization mass spectrometric determination of double bond position in monounsaturated α,β- and β,γ-isomeric isoprenoid acids. Rapid Commun Mass Spectrom 12:961–967

    Article  CAS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Russell NJ (1989) Functions of lipids: structural roles and membrane functions. In: Ratledge C, Wilkinson SG (eds) Microbial lipids 2. Academic Press, London, pp 279–365

    Google Scholar 

  • Russell NJ, Fukunaga N (1990) A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol Rev 75:171–182

    Article  CAS  Google Scholar 

  • Rütters H (2001) Tracing viable bacteria in Wadden Sea sediments using phospholipid analysis. PhD thesis, Department of Chemistry, University of Oldenburg, Oldenburg, p 133

    Google Scholar 

  • Rütters H, Sass H, Cypionka H, Rullkoetter J (2001) Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Arch Microbiol 176:435–442

    Article  PubMed  Google Scholar 

  • Rütters H, Sass H, Cypionka H, Rullkötter J (2002) Phospholipid analysis as a tool to study complex microbial communities in marine sediments. J Microbiol Methods 48:149–160

    Article  PubMed  Google Scholar 

  • Schouten S, Middelburg JJ, Hopmans E, Sinninghe Damsté JS (2010) Fossilization and degradation of intact polar lipids in deep subsurface sediments: a theoretical approach. Geochim Cosmochim Acta 74:3806–3814

    Article  CAS  Google Scholar 

  • Schouten S, Hopmans EC, Sinninghe Damsté JS (2013) The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org Geochem 54:19–61

    Article  CAS  Google Scholar 

  • Schubotz F, Wakeham SG, Lipp JS, Fredricks HF, Hinrichs K-U (2009) Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea. Environ Microbiol 11:2720–2734

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Makuch D, Wagner D, Kounaves SP, Mangelsdorf K, Devine KG, de Vera J-P, Schmitt-Kopplin P, Grossart H-P, Parron V, Kaupenjohann M, Galy A, Schneider B, Airo A, Frösler J, Davila AF, Arens FL, Cáceres L, Solís Cornejo F, Carrizo D, Dartnell L, DiRuggiero J, Flury M, Ganzert L, Gessner MO, Grathwohl P, Guan L, Heinz J, Hess M, Keppler F, Maus D, McKay CP, Meckenstock RU, Montgomery W, Oberlin EA, Probst AJ, Sáenz JS, Sattler T, Schirmack J, Sephton MA, Schloter M, Uhl J, Valenzuela B, Vestergaard G, Wörmer L, Zamorano P (2018) Transitory microbial habitat in the hyperarid Atacama Desert. Proc Natl Acad Sci 115:2670–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028

    CAS  PubMed  Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation – a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci 71:522–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinninghe Damsté JS, Strous M, Rijpstra WIC, Hopmans E, Geenevasen JAJ, van Duln ACT, van Niftrik LA, Jetten MSM (2002) Linearly concatenated cyclobutane lipids form a dense membrane. Nature 419:708–712

    Article  PubMed  CAS  Google Scholar 

  • Stapel JG, Schirrmeister L, Overduin PP, Wetterich S, Strauss J, Horsfield B, Mangelsdorf K (2016) Microbial lipid signatures and substrate potential of organic matter in permafrost deposits: implications for future greenhouse gas production. J Geophys Res Biogeo 121:2652–2666

    Article  CAS  Google Scholar 

  • Stapel JG, Schwamborn G, Schirrmeister L, Horsfield B, Mangelsdorf K (2018) Substrate potential of last interglacial to Holocene permafrost organic matter for future microbial greenhouse gas production. Biogeosciences 15:1969–1985

    Article  CAS  Google Scholar 

  • Sturt HF, Summons RE, Smith K, Elvert M, Hinrichs K-U (2004) Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry – new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom 18:617–628

    Article  CAS  PubMed  Google Scholar 

  • Suutari M, Laakso S (1994) Microbial fatty acids and thermal adaptation. Crit Rev Microbiol 20:285–328

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K-I, Saito K, Kawaguchi A, Okuda S, Komagata K (1981) Occurrence of ω-cyclohexyl fatty acids in Curtobacterium Pusillum strains. J Gen Appl Microbiol 27:261–266

    Article  CAS  Google Scholar 

  • Suzuki K-I, Collins MD, Iijima E, Komagata K (1988) Chemotaxonomic characterization of a radiotolerant bacterium, Arthrobacter radiotolerans: description of Rubrobacter radiotolerans gen. nov., comb. nov. FEMS Microbiol Lett 52:33–39

    Article  CAS  Google Scholar 

  • Toffin L, Zink K, Kato C, Pignet P, Bidault A, Bienvenu N, Birrien JL, Prieur D (2005) Marinilactibacillus piezotolerans sp. nov., a novel marine lactic acid bacterium isolated from deep sub-seafloor sediment of the Nankai Trough. Int J Syst Evol Microbiol 55:345–351

    Article  CAS  PubMed  Google Scholar 

  • Trautwein K, Kühner S, Wöhlbrand L, Halder T, Kuchta K, Steinbüchel A, Rabus R (2008) Solvent stress response of the denitrifying bacterium “Aromatoleum aromaticum” strain EbN1. Appl Environ Microbiol 74:2267–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turich C, Freeman KH (2011) Archaeal lipids record paleosalinity in hypersaline systems. Org Geochem 42:1147–1157

    CAS  Google Scholar 

  • Vestal JR, White DC (1989) Lipid analysis in microbial ecology. Biosci Biotechnol Biochem 39:535–541

    CAS  Google Scholar 

  • Vetter A, Mangelsdorf K, Schettler G, Seibt A, Wolfgramm M, Rauppach K, Vieth-Hillebrand A (2012a) Fluid chemistry and impact of different operating modes on microbial community at Neubrandenburg heat storage. Org Geochem 53:8–15

    Article  CAS  Google Scholar 

  • Vetter A, Mangelsdorf K, Wolfgramm M, Rauppach K, Schettler G, Vieth-Hillebrand A (2012b) Variations in fluid chemistry and membrane phospholipid fatty acid composition of bacterial community in a cold storage groundwater system during clogging events. Appl Geochem 27:1278–1290

    Article  CAS  Google Scholar 

  • Vieth A, Mangelsdorf K, Sykes R, Horsfield B (2008) Water extraction of coals – potential for estimating low molecular weight organic acids as carbon feedstock for deep terrestrial biosphere. Org Geochem 39:985–991

    Article  CAS  Google Scholar 

  • Weber FJ, de Bont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245

    Article  CAS  PubMed  Google Scholar 

  • White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractible liquid phosphate. Oecologia 40:51–62

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276

    Article  CAS  PubMed  Google Scholar 

  • Wilkes H, Boreham C, Harms G, Zengler K, Rabus R (2000) Anaerobic degradation and carbon isotopic fractionation of alkylbenzenes in crude oil by sulphate-reducing bacteria. Org Geochem 31:101–115

    Article  CAS  Google Scholar 

  • Wörmer L, Lipp JS, Schröder JM, Hinrichs K-U (2013) Application of two new LC-ESI-MS methods for improved detection of intact polar lipids (IPLs) in environmental samples. Org Geochem 59:10–21

    Article  CAS  Google Scholar 

  • Yano Y, Nakayama A, Ishihara K, Saito H (1998) Adaptive changes in membrane lipids of barophilic bacteria in response to changes in growth pressure. Appl Environ Microbiol 64:479–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeagle PL (2016) The membranes of cells. Academic Press, San Diego, p 452

    Google Scholar 

  • Yuan B-C, Li Z-Z, Liu H, Gao M, Zhang Y-Y (2007) Microbial biomass and activity in salt affected soils under arid conditions. Appl Soil Ecol 35:319–328

    Article  Google Scholar 

  • Zelles L (1997) Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275–294

    Article  CAS  PubMed  Google Scholar 

  • Zhang QC, Wang GH, Yao HY (2007) Phospholipid fatty acid patterns of microbial communities in paddy soil under different fertilizer treatments. J Environ Sci (China) 19:55–59

    Article  Google Scholar 

  • Zink K-G, Mangelsdorf K (2004) Efficient and rapid method for extraction of intact phospholipids from sediments combined with molecular structure elucidation using LC-ESI-MS-MS analysis. Anal Bioanal Chem 380:798–812

    Article  CAS  PubMed  Google Scholar 

  • Zink K-G, Rabus R (2010) Stress-induced changes of phospholipids in betaproteobacterium Aromatoleum aromaticum strain EbN1 due to alkylbenzene growth substrates. J Mol Microbiol Biotechnol 18:92–101

    Article  CAS  PubMed  Google Scholar 

  • Zink K-G, Wilkes H, Disko U, Elvert M, Horsfield B (2003) Intact phospholipids – microbial “life markers” in marine deep subsurface sediments. Org Geochem 34:755–769

    Article  CAS  Google Scholar 

  • Zink K-G, Mangelsdorf K, Granina L, Horsfield B (2008) Estimation of bacterial biomass in subsurface sediments by quantifying intact membrane phospholipids. Anal Bioanal Chem 390:885–896

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Mangelsdorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mangelsdorf, K., Karger, C., Zink, KG. (2019). Phospholipids as Life Markers in Geological Habitats. In: Wilkes, H. (eds) Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-54529-5_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54529-5_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54529-5

  • Online ISBN: 978-3-319-54529-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics