Skip to main content

Neuroprotective and Antiaging Essential Oils and Lipids in Plants

  • Living reference work entry
  • First Online:
Book cover Bioactive Molecules in Food

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Age-related neurological disorders, such as Alzheimer’s and Parkinson’s disease, have a huge medical and economical impact in both the industrialized and nonindustrialized countries. Neurodegenerative diseases alone affect 74 million people worldwide and among them, 6.8 million die every year. Essential oils (EOs) and plant lipids (PLs) are used since long time in traditional medicine for their ability to manage a wide range of diseases. There are numerous reports on the neuroprotective and antiaging potentials and mechanism of PLs and EOs. Several clinically important EOs and their components from Mentha piperita, Eucalyptus globulus, Nigella sativa, Jasminum sambac, Rosmarinus officinalis, and plant-derived lipids like stearidonic acid (SDA) from Echium oil, stigmasterol, β-sitosterol, from Datura innoxa, palmitic acid, linoleic acid from Celastrus paniculatus, and many more plants are reported for their neuroprotective and antiaging effects. This chapter aims to emphasize on the current finding on EOs and PLs tested against aging-associated neurodegenerative disorders like Alzheimer disease (AD) and possible molecular mechanism of their neuroprotective effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Harman D (1981) The aging process. Proc Natl Acad Sci U S A 78(11):7124–7128

    Article  CAS  Google Scholar 

  2. Klass MR (1983) A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 22(3):279–286

    Article  CAS  Google Scholar 

  3. Piper MD, Partridge L (2016) Protocols to study aging in Drosophila. Methods Mol Biol 1478:291–302

    Article  CAS  Google Scholar 

  4. Moskalev AA, Smit-McBride Z et al (2012) Gadd45 proteins: relevance to aging, longevity and age-related pathologies. Ageing Res Rev 11(1):51–66

    Article  CAS  Google Scholar 

  5. Talens RP, Christensen K et al (2012) Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell 11(4):694–703

    Article  CAS  Google Scholar 

  6. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991

    Article  CAS  Google Scholar 

  7. Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy – inflammation – cell death axis in organismal aging. Science 333(6046):1109–1112

    Article  CAS  Google Scholar 

  8. Edris AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res 21(4):308–323

    Article  CAS  Google Scholar 

  9. Guenther E (1950) The essention oils. D. Van Nostrand Company, London

    Google Scholar 

  10. Smith-Palmer A, Stewart J, Fyfe L (2001) The potential application of plant essential oils as natural food preservatives in soft cheese. Food Microbiol 18(4):463–470

    Article  CAS  Google Scholar 

  11. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol 94(3):223–253

    Article  CAS  Google Scholar 

  12. Keville K, Green M (2012) Aromatherapy: a complete guide to the healing art. Crossing Press, Berkeley

    Google Scholar 

  13. Alabdulkarim B, Bakeet ZA, Arzoo S (2012) Role of some functional lipids in preventing diseases and promoting health. J King Saud Uni – Sci 24(4):319–329

    Article  Google Scholar 

  14. Innis SM (2008) Dietary omega 3 fatty acids and the developing brain. Brain Res 1237:35–43

    Article  CAS  Google Scholar 

  15. Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464(7288):529

    Article  CAS  Google Scholar 

  16. González-Burgos E, Carretero ME, Gómez-Serranillos MP (2011) Sideritis spp.: uses, chemical composition and pharmacological activities – a review. J Ethnopharmacol 135(2):209–225

    Article  Google Scholar 

  17. Angioni A, Barra A, Coroneo V, Dessi S, Cabras P (2006) Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers. J Agric Food Chem 54(12):4364–4370

    Article  CAS  Google Scholar 

  18. Ramadan MF, Zayed R, El-Shamy H (2007) Screening of bioactive lipids and radical scavenging potential of some solanaceae plants. Food Chem 103(3):885–890

    Article  CAS  Google Scholar 

  19. Hassanien MF, Kinni SG, Moersel JT (2010) Bioactive lipids, fatty acids and radical scavenging activity of Indian Celastrus paniculatus oil. J Appl Bot Food Qual 83(2):157–162

    CAS  Google Scholar 

  20. Eckert GP, Franke C, Nöldner M, Rau O, Wurglics M, Schubert-Zsilavecz M, Müller WE (2010) Plant derived omega-3-fatty acids protect mitochondrial function in the brain. Pharmacol Res 61(3):234–241

    Article  CAS  Google Scholar 

  21. Longvah T, Deosthale YG (1991) Chemical and nutritional studies on Hanshi (Perilla frutescens), a traditional oilseed from Northeast India. J Am Oil Chem Soc 68(10):781–784

    Article  CAS  Google Scholar 

  22. Talboom JS, Velazquez R, Oddo S (2015) The mammalian target of rapamycin at the crossroad between cognitive aging and Alzheimer’s disease. NPJ Aging Mech Dis 1:15008. https://doi.org/10.1038/1:npjamd2015.8

    Article  Google Scholar 

  23. van Ham TJ, Breitling R, Swertz MA, Nollen EA (2009) Neurodegenerative diseases: lessons from genome-wide screens in small model organisms. EMBO Mol Med 1(8–9):360–370

    Google Scholar 

  24. Passe TJ, Rajagopalan P, Tupler LA, Byrum CE, Macfall JR, Krishnan KR (1997) Age and sex effects on brain morphology. Prog Neuropsychopharmacol Biol Psychiatry 21(8):1231–1237

    Article  CAS  Google Scholar 

  25. Nussbaum RL, Ellis CE (2003) Alzheimer’s disease and Parkinson’s disease. N Engl J Med 348(14):1356–2364

    Article  CAS  Google Scholar 

  26. Reitz C (2012) Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis 2012:369808. https://doi.org/10.1155/2012/369808

    Google Scholar 

  27. Ayaz M, Junaid M, Ullah F, Sadiq A, Khan MA, Ahmad W, Shah MR, Imran M, Ahmad S (2015) Comparative chemical profiling, cholinesterase inhibitions and anti-radicals properties of essential oils from Polygonum hydropiper L: a preliminary anti-Alzheimer’s study. Lipids Health Dis 14(1):141

    Article  Google Scholar 

  28. Ahmad S, Ullah F, Sadiq A, Ayaz M, Imran M, Ali I, Zeb A, Ullah F, Shah MR (2016) Chemical composition, antioxidant and anticholinesterase potentials of essential oil of Rumex hastatus D. Don collected from the North West of Pakistan. BMC Complement Altern Med 16(1):29

    Article  Google Scholar 

  29. Okello EJ, Dimaki C, Howes MJ, Houghton PJ, Perry EK (2008) In vitro inhibition of human acetyl-and butyryl-cholinesterase by Narcissus poeticus L.(Amaryllidaceae) flower absolute. Int J Essent Oil Ther 2(3):105–110

    CAS  Google Scholar 

  30. Loizzo MR, Menichini F, Conforti F, Tundis R, Bonesi M, Saab AM, Statti GA, de Cindio B, Houghton PJ, Menichini F, Frega NG (2009) Chemical analysis, antioxidant, antiinflammatory and anticholinesterase activities of Origanum ehrenbergii Boiss and Origanum syriacum L. essential oils. Food Chem 117(1):174–180

    Article  CAS  Google Scholar 

  31. Souza A, Silva MC, Cardoso-Lopes EM, Cordeiro I, Sobral ME, Young MC, Moreno PR (2009) Differential acetyl cholinesterase inhibition by volatile oils from two specimens of Marlierea racemosa (Myrtaceae) collected from different areas of the Atlantic Rain Forest. Nat Prod Commun 8:1143–1146

    Google Scholar 

  32. Loizzo MR, Jemia MB, Senatore F, Bruno M, Menichini F, Tundis R (2013) Chemistry and functional properties in prevention of neurodegenerative disorders of five Cistus species essential oils. Food Chem Toxicol 59:586–594

    Article  CAS  Google Scholar 

  33. Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221(2):555–563

    Article  CAS  Google Scholar 

  34. Anand R, Gill KD, Mahdi AA (2014) Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology 76:27–50

    Article  CAS  Google Scholar 

  35. Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9(7):702–716

    Article  CAS  Google Scholar 

  36. Shimizu K, Gyokusen M, Kitamura S, Kawabe T, Kozaki T, Ishibashi K, Izumi R, Mizunoya W, Ohnuki K, Kondo R (2008) Essential oil of lavender inhibited the decreased attention during a long-term task in humans. Biosci Biotechnol Biochem 72(7):1944–1947

    Article  CAS  Google Scholar 

  37. Shimizu Y, Imayoshi Y, Kato M, Maeda K, Iwabuchi H, Shimomura K (2009) Volatiles from leaves of field-grown plants and shoot cultures of Gynura bicolor DC. Flavour Fragr J 24(5):251–258

    Article  CAS  Google Scholar 

  38. Faixova Z, Faix S (2008) Biological effects of rosemary (Rosmarinus officinalis L) essential oil (a review). Folia Vet 52(3–4):135–139

    CAS  Google Scholar 

  39. Hongratanaworakit T (2009) Simultaneous aromatherapy massage with rosemary oil on humans. Sci Pharm 77(2):375–388

    Article  CAS  Google Scholar 

  40. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8(2):101

    Article  CAS  Google Scholar 

  41. De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6(2):99–107

    Article  Google Scholar 

  42. Lee C, Park GH, Kim CY, Jang JH (2011) [6]-gingerol attenuates β-amyloid-induced oxidative cell death via fortifying cellular antioxidant defense system. Food Chem Toxicol 49(6):1261–1269

    Article  CAS  Google Scholar 

  43. Hong YK, Park SH, Lee S, Hwang S, Lee MJ, Kim D, Lee JH, Han SY, Kim ST, Kim YK, Jeon S (2011) Neuroprotective effect of SuHeXiang Wan in Drosophila models of Alzheimer’s disease. J Ethnopharmacol 134(3):1028–1032

    Article  Google Scholar 

  44. Azizi Z, Ebrahimi S, Saadatfar E, Kamalinejad M, Majlessi N (2012) Cognitive-enhancing activity of thymol and carvacrol in two rat models of dementia. Behav Pharmacol 23(3):241–249

    Article  CAS  Google Scholar 

  45. Cioanca O, Hritcu L, Mihasan M, Trifan A, Hancianu M (2014) Inhalation of coriander volatile oil increased anxiolytic–antidepressant-like behaviors and decreased oxidative status in beta-amyloid (1–42) rat model of Alzheimer’s disease. Physiol Behav 131:68–74

    Article  CAS  Google Scholar 

  46. Majlessi N, Choopani S, Kamalinejad M, Azizi Z (2012) Amelioration of amyloid β-induced cognitive deficits by Zataria multiflora Boiss. essential oil in a rat model of Alzheimer’s disease. CNS Neurosci Ther 18(4):295–301

    Article  Google Scholar 

  47. Ayaz M, Sadiq A, Junaid M, Ullah F, Subhan F, Ahmed J (2017) Neuroprotective and anti-aging potentials of essential oils from aromatic and medicinal plants. Front Aging Neurosci 9:168

    Article  Google Scholar 

  48. Ahmad S, Ullah F, Ayaz M, Sadiq A, Imran M (2015) Antioxidant and anticholinesterase investigations of Rumex hastatus D. Don: potential effectiveness in oxidative stress and neurological disorders. Biol Res 48(1):20

    Article  Google Scholar 

  49. Kamal Z, Ullah F, Ayaz M, Sadiq A, Ahmad S, Zeb A, Hussain A, Imran M (2015) Anticholinesterse and antioxidant investigations of crude extracts, subsequent fractions, saponins and flavonoids of Atriplex laciniata L.: potential effectiveness in Alzheimer’s and other neurological disorders. Biol Res 48(1):21

    Article  Google Scholar 

  50. Sadiq A, Mahmood F, Ullah F, Ayaz M, Ahmad S, Haq FU, Khan G, Jan MS (2015) Synthesis, anticholinesterase and antioxidant potentials of ketoesters derivatives of succinimides: a possible role in the management of Alzheimer’s. Chem Cent J 9(1):1–9

    Article  CAS  Google Scholar 

  51. Shah SM, Ayaz M, Khan AU, Ullah F, Farhan, Shah AU, Iqbal H, Hussain S (2015) 1, 1-diphenyl, 2-picrylhydrazyl free radical scavenging, bactericidal, fungicidal and leishmanicidal properties of Teucrium stocksianum. Toxicol Ind Health 31(11):1037–1043

    Article  CAS  Google Scholar 

  52. Ullah F, Ayaz M, Sadiq A, Hussain A, Ahmad S, Imran M, Zeb A (2016) Phenolic, flavonoid contents, anticholinesterase and antioxidant evaluation of Iris germanica var; florentina. Nat Prod Res 30(12):1440–1444

    Article  CAS  Google Scholar 

  53. Engel J, Pedley TA, Aicardi J (2008) Epilepsy: a comprehensive textbook. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  54. Hancianu M, Cioanca O, Mihasan M, Hritcu L (2013) Neuroprotective effects of inhaled lavender oil on scopolamine-induced dementia via anti-oxidative activities in rats. Phytomedicine 20(5):446–452

    Article  CAS  Google Scholar 

  55. Tomaino A, Cimino F, Zimbalatti V, Venuti V, Sulfaro V, De Pasquale A, Saija A (2005) Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. Food Chem 89(4):549–554

    Article  CAS  Google Scholar 

  56. El-Ghorab A, Shaaban HA, El-Massry KF, Shibamoto T (2008) Chemical composition of volatile extract and biological activities of volatile and less-volatile extracts of juniper berry (Juniperus drupacea L.) fruit. J Agric Food Chem 56(13):5021–5025

    Article  CAS  Google Scholar 

  57. Wei A, Shibamoto T (2010) Antioxidant/lipoxygenase inhibitory activities and chemical compositions of selected essential oils. J Agric Food Chem 58(12):7218–7225

    Article  CAS  Google Scholar 

  58. Botsoglou NA, Florou-Paneri P, Christaki E, Giannenas I, Spais AB (2004) Performance of rabbits and oxidative stability of muscle tissues as affected by dietary supplementation with oregano essential oil. Arch Anim Nutr 58(3):209–218

    Article  CAS  Google Scholar 

  59. Candan F, Unlu M, Tepe B, Daferera D, Polissiou M, Sökmen A, Akpulat HA (2003) Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). J Ethnopharmacol 87(2):215–220

    Article  CAS  Google Scholar 

  60. Tepe B, Donmez E, Unlu M, Candan F, Daferera D, Vardar-Unlu G, Polissiou M, Sokmen A (2004) Antimicrobial and antioxidative activities of the essential oils and methanol extracts of Salvia cryptantha (Montbret et Aucher ex Benth.) and Salvia multicaulis (Vahl). Food Chem 84(4):519–525

    Article  CAS  Google Scholar 

  61. El-massry KF, El-Ghorab AH (2006) Effect of essential oils and non-volatile extracts of some aromatic plants on Cu++-induced oxidative modification of human low-density lipoprotein (LDL). J Essent Oil Bear Plants 9(3):292–299

    Article  CAS  Google Scholar 

  62. Mimica-Dukic N, Bozin B, Sokovic M, Simin N (2004) Antimicrobial and antioxidant activities of Melissa officinalis L.(Lamiaceae) essential oil. J Agric Food Chem 52(9):2485–2459

    Article  CAS  Google Scholar 

  63. Söderberg M, Edlund C, Kristensson K, Dallner G (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26(6):421

    Article  Google Scholar 

  64. Gemma C, Vila J, Bachstetter A, Bickford PC (2007) Oxidative stress and the aging brain: from theory to prevention. In: Riddle DR, editor. Brain Aging: Models, Methods, and Mechanisms. Boca Raton (FL): CRC Press/Taylor & Francis

    Google Scholar 

  65. Adibhatla RM, Hatcher JF (2008) Altered lipid metabolism in brain injury and disorders. Subcell Biochem 49:241–268

    Article  Google Scholar 

  66. Chiurchiù V, Orlacchio A, Maccarrone M (2016) Is modulation of oxidative stress an answer? The state of the art of redox therapeutic actions in neurodegenerative diseases. Oxidative Med Cell Longev 2016:7909380

    Article  Google Scholar 

  67. Ramirez-Ramirez V, Macias-Islas MA, Ortiz GG, Pacheco-Moises F, Torres-Sanchez ED, Sorto-Gomez TE, Cruz-Ramos JA, Orozco-Aviña G, Celis De La Rosa AJ (2013) Efficacy of fish oil on serum of TNFα, IL-1β, and IL-6 oxidative stress markers in multiple sclerosis treated with interferon beta-1b. Oxid Med Cell Longev 2013:709493

    Article  CAS  Google Scholar 

  68. Lauritzen LA, Hansen HS, Jørgensen MH, Michaelsen KF (2001) The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res 40(1):1–94

    Article  CAS  Google Scholar 

  69. Schaefer EJ, Bongard V, Beiser AS, Lamon-Fava S, Robins SJ, Au R, Tucker KL, Kyle DJ, Wilson PW, Wolf PA (2006) Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol 63(11):1545–1550

    Article  Google Scholar 

  70. Yurko-Mauro K, Alexander DD, Van Elswyk ME (2015) Docosahexaenoic acid and adult memory: a systematic review and meta-analysis. PLoS One 10(3):e0120391

    Article  Google Scholar 

  71. Kotani S, Sakaguchi E, Warashina S, Matsukawa N, Ishikura Y, Kiso Y, Sakakibara M, Yoshimoto T, Guo J, Yamashima T (2006) Dietary supplementation of arachidonic and docosahexaenoic acids improves cognitive dysfunction. Neurosci Res 56(2):159–164

    Article  CAS  Google Scholar 

  72. Chiu CC, Su KP, Cheng TC, Liu HC, Chang CJ, Dewey ME, Stewart R, Huang SY (2008) The effects of omega-3 fatty acids monotherapy in Alzheimer’s disease and mild cognitive impairment: a preliminary randomized double-blind placebo-controlled study. Prog Neuropsychopharmacol Biol Psychiatry 32(6):1538–1544

    Article  CAS  Google Scholar 

  73. Koletzko B, Larqué E, Demmelmair H (2007) Placental transfer of long-chain polyunsaturated fatty acids (LC-PUFA). J Perinat Med 35(S1):S5–11

    Article  CAS  Google Scholar 

  74. Bazan NG, Molina MF, Gordon WC (2011) Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu Rev Nutr 31:321–351

    Article  CAS  Google Scholar 

  75. Martin RE, Bazan NG (1992) Changing fatty acid content of growth cone lipids prior to synaptogenesis. J Neurochem 59(1):318–325

    Article  CAS  Google Scholar 

  76. Larqué E, Krauss-Etschmann S, Campoy C, Hartl D, Linde J, Klingler M, Demmelmair H, Caño A, Gil A, Bondy B, Koletzko B (2006) Docosahexaenoic acid supply in pregnancy affects placental expression of fatty acid transport proteins. Am J Clin Nutr 84(4):853–861

    Article  Google Scholar 

  77. De Vriese SR, Matthys C, De Henauw S, De Backer G, Dhont M, Christophe AB (2002) Maternal and umbilical fatty acid status in relation to maternal diet. Prostaglandins Leukot Essent Fatty Acids 67(6):389–396

    Article  Google Scholar 

  78. Dunstan JA, Mori TA, Barden A, Beilin LJ (2004) Effects of n-3 polyunsaturated fatty acid supplementation in pregnancy on maternal and fetal erythrocyte fatty acid composition. Eur J Clin Nutr 58(3):429

    Article  CAS  Google Scholar 

  79. de Urquiza AM, Liu S, Sjöberg M, Zetterström RH, Griffiths W, Sjövall J, Perlmann T (2000) Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290(5499):2140–2144

    Article  Google Scholar 

  80. Dyall SC (2015) Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci 7:52

    Article  Google Scholar 

  81. Plourde M, Fortier M, Vandal M, Tremblay-Mercier J, Freemantle E, Begin M, Pifferi F, Cunnane SC (2007) Unresolved issues in the link between docosahexaenoic acid and Alzheimer’s disease. Prostaglandins Leukot Essent Fatty Acids 77(5):301–308

    Article  CAS  Google Scholar 

  82. Conquer JA, Tierney MC, Zecevic J, Bettger WJ, Fisher RH (2000) Fatty acid analysis of blood plasma of patients with Alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids 35(12):1305–1312

    Article  CAS  Google Scholar 

  83. Greiner RS, Moriguchi T, Hutton A, Slotnick BM, Salem N (1999) Rats with low levels of brain docosahexaenoic acid show impaired performance in olfactory-based and spatial learning tasks. Lipids 34(1):S239–S243

    Article  CAS  Google Scholar 

  84. Bazan NG (2009) Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res 50:S400–S405

    Article  Google Scholar 

  85. Cole GM, Frautschy SA (2010) DHA may prevent age-related dementia. J Nutr 140(4):869–874

    Article  CAS  Google Scholar 

  86. Hashimoto M, Tanabe Y, Fujii Y, Hagiwara R, Yamasaki H, Shido O (2002) Mechanism of improvement of spatial cognition with dietary docosahexaenoic acid. Nihon yakurigaku zasshi. Folia Pharmacol Jpn 120(1):54P–56P

    Google Scholar 

  87. Akbar M, Calderon F, Wen Z, Kim HY (2005) Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc Natl Acad Sci U S A 102(31):10858–10863

    Article  CAS  Google Scholar 

  88. Wu A, Ying Z, Gomez-Pinilla F (2008) Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience 155(3):751–759

    Article  CAS  Google Scholar 

  89. Calon F, Lim GP, Morihara T, Yang F, Ubeda O, Salem N, Frautschy SA, Cole GM (2005) Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer’s disease. Eur J Neurosci 22(3):617–626

    Article  Google Scholar 

  90. Elgersma Y, Sweatt JD, Giese KP (2004) Mouse genetic approaches to investigating calcium/calmodulin-dependent protein kinase II function in plasticity and cognition. J Neurosci 24(39):8410–8415

    Article  CAS  Google Scholar 

  91. Grimm MO, Kuchenbecker J, Grösgen S, Burg VK, Hundsdörfer B, Rothhaar TL, Friess P, De Wilde MC, Broersen LM, Penke B, Péter M (2011) Docosahexaenoic acid reduces amyloid β production via multiple pleiotropic mechanisms. J Biol Chem 286(16):14028–14039

    Article  CAS  Google Scholar 

  92. Nishikawa M, Kimura S, Akaike N (1994) Facilitatory effect of docosahexaenoic acid on N-methyl-D-aspartate response in pyramidal neurones of rat cerebral cortex. J Physiol 475(1):83–93

    Article  CAS  Google Scholar 

  93. Poling JS, Karanian JW, Salem N, Vicini S (1995) Time-and voltage-dependent block of delayed rectifier potassium channels by docosahexaenoic acid. Mol Pharmacol 47(2):381–390

    CAS  Google Scholar 

  94. Horrocks LA, Farooqui AA (2004) Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fatty Acids 70(4):361–372

    Article  CAS  Google Scholar 

  95. Jump DB (2002) Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr Opin Lipidol 13(2):155–164

    Article  CAS  Google Scholar 

  96. Lim GP, Calon F, Morihara T, Yang F, Teter B, Ubeda O, Salem N, Frautschy SA, Cole GM (2005) A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci 25(12):3032–3040

    Article  CAS  Google Scholar 

  97. Fernandes JS, Mori MA, Ekuni R, Oliveira RM, Milani H (2008) Long-term treatment with fish oil prevents memory impairments but not hippocampal damage in rats subjected to transient, global cerebral ischemia. Nutr Res 28(11):798–808

    Article  CAS  Google Scholar 

  98. Pomponi M, Pomponi M (2008) DHA deficiency and Alzheimer’s disease. Clin Nutr 27(1):170

    Article  Google Scholar 

  99. Su HM (2010) Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J Nutr Biochem 21(5):364–373

    Article  CAS  Google Scholar 

  100. Pasinetti GM, Wang J, Ho L, Zhao W, Dubner L (2015) Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim Biophys Acta 1852(6):1202–1208

    Article  CAS  Google Scholar 

  101. Patel KR, Scott E, Brown VA, Gescher AJ, Steward WP, Brown K (2011) Clinical trials of resveratrol. Ann N Y Acad Sci 1215(1):161–169

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gladly acknowledge the bioinformatics infrastructure facility, Alagappa University, funded by the Department of Biotechnology, Ministry of Science and Technology, Government of India (No. BT/BI/25/015/2012). Mamali Das acknowledges DST–PURSE for offering Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasi Pandima Devi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Das, M., Pandima Devi, K. (2018). Neuroprotective and Antiaging Essential Oils and Lipids in Plants. In: Mérillon, JM., Ramawat, K. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54528-8_89-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54528-8_89-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54528-8

  • Online ISBN: 978-3-319-54528-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics