Edible Mushrooms: Cultivation, Bioactive Molecules, and Health Benefits

  • Sachin GuptaEmail author
  • Baby Summuna
  • Moni GuptaEmail author
  • Sudheer K. Annepu
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Mushrooms are globally appreciated for their nutritional value and medicinal properties. Their cultivation is an effective bioconversion technology of transforming wastes and woods into potentially valuable resources and could also be an important part of sustainable agriculture and forestry. Although India has the advantage of favorable agroclimate, abundance of agrowastes, relatively low-cost labor, and a rich fungal biodiversity, it has witnessed a lukewarm response in growth of mushroom cultivation. Out of the total mushroom produced in India, white button mushroom share is 73% followed by oyster mushroom (16%), paddy straw mushroom (7%), and milky mushroom (3%). The per capita consumption of mushrooms in India is also very meager and is even less than 100 g per year. Besides low fat and high protein and vitamin contents, mushrooms are rich sources of several minerals and trace elements, as well as dietary fibers. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. Of late, mushrooms have emerged as wonderful source of nutraceuticals, antioxidants, anticancer, prebiotic, immunomodulating, anti-inflammatory, cardiovascular, antimicrobial, and antidiabetic. Owing to the synergistic action of present bioactive molecules, majority of mushroom products possess beneficial health effects and can be used on a regular basis without harm. Therefore, they are considered as perspective organisms to develop different healthcare biotech product. Mushrooms could potentially be very important in future food supplies and in new dimensions of sustainable agriculture and forestry. In this chapter, an attempt has been made to provide an insight into the various aspects of cultivation of mushroom cultivation in India, nutritional benefits, therapeutic potential, and bioactive components present in edible mushrooms.


Mushrooms Cultivation Nutrition Bioactive molecules 


  1. 1.
    Chang ST, Miles PG (1982) Introduction to mushroom science. In: Chang ST, Quimio TH (eds) Tropical mushrooms: biological nature and cultivation methods. Chinese University Press, Hong Kong, pp 3–10Google Scholar
  2. 2.
    Chamberlain J, Bush R, Hammett A (1998) Non-timber forest products: the other forest products. For Prod J 48:10–19Google Scholar
  3. 3.
    Falconer J, Koppell CRS (1990) The major significance of ‘minor’ forest products: the local use and value of forests in the West African humid forest zone. FAO Community Forestry Note; Food and Agriculture Organization of the United Nations, RomaGoogle Scholar
  4. 4.
    Gilbert FA, Robinson RF (1957) Food from fungi. Econ Bot 11:126–145CrossRefGoogle Scholar
  5. 5.
    Vinceti B, Termote C, Ickowitz A, Powell B, Kehlenbeck K, Hunter D (2013) The contribution of forests and trees to sustainable diets. Sustainability 5:4797–4824CrossRefGoogle Scholar
  6. 6.
    Chang ST (2006) The world mushroom industry: trends and technological development. Int J Med Mushrooms 8:297–314CrossRefGoogle Scholar
  7. 7.
    Arora D (2008) Notes on economic mushrooms. Econ Bot 62:540–544CrossRefGoogle Scholar
  8. 8.
    Yang X, He J, Li C, Ma J, Yang, Xu J (2008) Matsutake trade in Yunnan Province, China: an overview. Econ Bot 62:269–277CrossRefGoogle Scholar
  9. 9.
    Fanzo J, Cogill B, Mattei F (2012) Metrics of sustainable diets and food systems. In: Technical brief-Madrid roundtable. Bioversity International and Daniel and Nina Carasso Foundation, RomeGoogle Scholar
  10. 10.
    Chang ST, Wasser SP (2017) The cultivation and environmental impact of mushrooms. Printed from the oxford Research Encyclopaedia, Environmental Science (c) Oxford University Press, p 43CrossRefGoogle Scholar
  11. 11.
    Kirk PM, Cannon PF, David JC, Stalpers JA (2008) Ainsworth & Brisby’s dictionary of the fungi, 10th edn. CAB International, WallingfordCrossRefGoogle Scholar
  12. 12.
    Hawksworth DL (2012) Global species numbers of fungi: are tropical studies and molecular approaches contributing to more robust estimate? Biodivers Conserv 21:2425–2433CrossRefGoogle Scholar
  13. 13.
    Wasser SP (2010) Medicinal mushroom science: history, current status, future trends, and unsolved problems. Int J Med Mushrooms 12(1):1–16CrossRefGoogle Scholar
  14. 14.
    Wasser SP (2002) Review of medicinal mushrooms advances: good news from old allies. Herbal Gram 56:28–33Google Scholar
  15. 15.
    Wasser SP, Weis AL (1999) Medicinal properties of substances occurring in higher Basidiomycetes mushrooms: current perspectives. Int J Med Mushrooms 1:31–62CrossRefGoogle Scholar
  16. 16.
    Chang ST, Wasser SP (2017) The cultivation and environmental impact of mushrooms. Agric Environ.
  17. 17.
    Singh M, Kamal S, Sharma VP (2017) Status and trends in world mushroom production-I. Mushroom Res 26(1):1–20Google Scholar
  18. 18.
    Li Y (2012) Present development situation and tendency of edible mushroom industry in China. In: Zhang J, Hexiang W, Mingjie C (eds) Proceedings of 18th congress of the international society of mushroom science. China Agriculture Press, Beijing, pp 1–9Google Scholar
  19. 19.
    Gupta S, Summuna B, Moni G, Mantoo A (2016) Mushroom cultivation: a means of nutritional security in India. Asia Pac J Food Saf Secur 2(1):3–12Google Scholar
  20. 20.
    Sharma VP, Sudheer KA, Gautam Y, Singh M, Kamal S (2017) Status of mushroom production in India. Mushroom Res 26(2):111–120Google Scholar
  21. 21.
    Satish K, Sharma VP, Shirur M, Kamal S (2017) Status of milky mushroom (Calocybe indica) in India – a review. Mushroom Res 26(1):21–39Google Scholar
  22. 22.
    Shirur M, Shivalingegowda NS (2015) Mushroom marketing channels and consumer behaviour: a critical analysis. Mysore J Agric Sci 49(2):390–393Google Scholar
  23. 23.
    Zhanxi, Zhanhua (2000) Training manual of APEMT China-chapter 11, Volvariella volvacea cultivation, pp 100–109Google Scholar
  24. 24.
    Ahlawat OP, Tewari RP (2007) Cultivation technology of paddy straw mushroom (Volvariella volvacea). Technical bulletin. National Research Centre for Mushroom (ICAR), Chamaghat, p 36Google Scholar
  25. 25.
    Manzi P, Aguzzi A, Pizzoferrato L (2001) Nutritional value of mushrooms widely consumed in Italy. Food Chem 73:321–325CrossRefGoogle Scholar
  26. 26.
    Sánchez C (2010) Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl Microbiol Biotechnol 85(5):1321–1337PubMedCrossRefGoogle Scholar
  27. 27.
    Dundar A, Acy H, Yildiz A (2008) Yield performance and nutritional contents of three oyster mushroom species cultivated on wheat stalk. Afr J Biotechnol 7:3497–3501Google Scholar
  28. 28.
    Pavel K (2009) Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem 113(1):9–16CrossRefGoogle Scholar
  29. 29.
    Heleno SA, Barros L, Sousa MJ, Martins A, Ferreira ICFR (2010) Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chem 119:1443–1450CrossRefGoogle Scholar
  30. 30.
    Mattila P, Konko K, Euvola M, Pihlava J, Astola J, Vahteristo L (2001) Contents of vitamins, mineral elements and some phenolic compound in cultivated mushrooms. J Agric Food Chem 42:2449–2453CrossRefGoogle Scholar
  31. 31.
    Barros L, Cruz T, Baptista P, Estevinho LM, Ferreira IC (2008) Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem Toxicol 46:2742–2747PubMedCrossRefGoogle Scholar
  32. 32.
    Pehrsson PR, Haytowitz DB, Holden JM (2003) The USDA’s national food and nutrient analysis program: update 2002. J Food Compos Anal 16:331–341CrossRefGoogle Scholar
  33. 33.
    Sánchez C (2004) Modern aspects of mushroom culture technology. Appl Microbiol Biotechnol 64(6):756–762PubMedCrossRefGoogle Scholar
  34. 34.
    Ferreira ICFR, Barros L, Abreu RMV (2009) Antioxidants in wild mushrooms. Curr Med Chem 16:1543–1560PubMedCrossRefGoogle Scholar
  35. 35.
    Pereira E, Barros L, Martins A, Ferreira ICFR (2012) Towards chemical and nutritional inventory of Portuguese wild edible mushrooms in different habitats. Food Chem 130:394–403CrossRefGoogle Scholar
  36. 36.
    Vaz JA, Heleno SA, Martins A, Almeida GM, Vasconcelos MH, Ferreira ICFR (2010) Wild mushrooms Clitocybe alexandri and Lepista inversa: in vitro antioxidant activity and growth inhibition of human tumour cell lines. Food Chem Toxicol 48:2881–2884PubMedCrossRefGoogle Scholar
  37. 37.
    Ahlawat OP, Manikandan K, Singh M (2016) Proximate composition of different mushroom varieties and effect of UV light exposure on vitamin D content in Agaricus bisporus and Volvariella volvacea. Mushroom Res 25(1):1–8Google Scholar
  38. 38.
    Rathee S, Rathee D, Rathee D (2012) Mushrooms as therapeutic agents. Braz J Pharmacogn 22(2):459–474CrossRefGoogle Scholar
  39. 39.
    Sadler M, Saltmarsh M (1998) Functional foods: the consumer, the products and the evidence. Royal Society of Chemistry, Cambridge, UKGoogle Scholar
  40. 40.
    Longvah T, Deosthale YG (1998) Composition and nutritional studies on edible wild mushroom from Northeast India. Food Chem 63:331–334CrossRefGoogle Scholar
  41. 41.
    Maga JA (1981) Mushroom flavor. J Agric Food Chem 29:1–4CrossRefGoogle Scholar
  42. 42.
    Clifford AJ, Heid MK, Peerson JM, Bills ND (1991) Bioavailability of food folates and evaluation of food matrix effects with a rat bioassay. J Nutr 121:445–453PubMedCrossRefGoogle Scholar
  43. 43.
    Bano Z, Rajarathnam S (1988) Pleurotus mushrooms. Part II. Chemical composition, nutritional value, post-harvest physiology, preservation, and role as human food. Crit Rev Food Sci Nutr 27:87–158PubMedCrossRefGoogle Scholar
  44. 44.
    Mau JL, Chao GR, Wu KT (2001) Antioxidant properties of methanolic extracts from several ear mushrooms. J Agric Food Chem 49:5461–5467PubMedCrossRefGoogle Scholar
  45. 45.
    Ribeiroa B, Pinhoa PG, Andradea PB, Baptistab P, Valentao P (2009) Fatty acid composition of wild edible mushrooms species: a comparative study. Microchem J 93:29–35CrossRefGoogle Scholar
  46. 46.
    Xu T, Beelman RB (2015) The bioactive compounds in medicinal mushrooms have potential protective effects against neurodegenerative diseases. Adv Food Technol Nutr Sci Open J 1(2):62–65. Scholar
  47. 47.
    Yip KP, Fung KP, Chang ST, Tam SC (1987) Purification and mechanism of the hypotensive action of an extract from edible mushroom Pleurotus sajor-caju. Neurosci Lett Suppl 28:559Google Scholar
  48. 48.
    Wang HX, Liu WK, Ng TB et al (1996) The immunomodulatory and antitumor activities of lectins from the mushroom Tricholoma mongolicum. Immunopharmacology 31(2–3): 205–211. Scholar
  49. 49.
    Chang ST, Buswell JA, Chiu SW (1993) Mushroom biology and mushroom products. The Chinese University Press, Hong KongGoogle Scholar
  50. 50.
    Kasuga A, Aoyagi Y, Sugahara T (1993) Antioxidative activities of several mushroom extracts. J Jpn Soc Food Sci Technol 40:56–63CrossRefGoogle Scholar
  51. 51.
    Mau JL, Lin HC, Song SF (2002) Antioxidant properties of several specialty mushrooms. Food Res Int 35:519–526CrossRefGoogle Scholar
  52. 52.
    Sun MT, Xiao JT, Zhang SQ, Liu YJ, Li ST (1984) Therapeutic effect of some foods on hyperlipidermia in man. Acta Nutr Sin 6:127–133Google Scholar
  53. 53.
    Tokita F, Shibukawa N, Yasumoto T, Kaneda T (1972) Isolation and chemical structure of the plasma-cholesterol reducing substance from shiitake mushroom. Mushroom Sci 8:783–788Google Scholar
  54. 54.
    Ryong LH, Tertov VV, Vasiley AW, Tutelyan VA, Orekhov AN (1989) Antiatherogenic and antiatherosclerotic effects of mushroom extracts revealed in human aortic intima cell culture. Drug Dev Res 17:109–117CrossRefGoogle Scholar
  55. 55.
    Cimerman NG (1999) Medicinal value of the genus Pleurotus (Fr.) P. Karst. (Agaricales S. R., basidiomycetes). Int J Med Mushrooms 1:69–80CrossRefGoogle Scholar
  56. 56.
    Cheung PCK (1996) The hypocholesterolemic effect of two edible mushrooms: Auricularia auricula (tree ear) and Tremella fuciformis (white jelly-leaf) in hypercholesterolemic rats. Nutr Res 16:1721–1725CrossRefGoogle Scholar
  57. 57.
    Kabir Y, Kimura S (1989) Dietary mushrooms reduce blood pressure in spontaneously hypertensive rats. J Nutr Sci Vitaminol 35:91–94PubMedCrossRefGoogle Scholar
  58. 58.
    Chen Q (1989) Antilipemic effect of polysaccharides from Auricularia auricular, Tremella fuciformis, and Tremella fuciformis spores. Zhongguo Yaoke Daxue Xuebao 20:344–347Google Scholar
  59. 59.
    Sheng J, Chen Q (1990) Effects of polysaccharides from Auricularia auricula, Tremella fuciformis, and Tremella fuciformis spores on experimental thrombin formation. Zhongguo Yaoke Daxue Xuebae 21:39–42Google Scholar
  60. 60.
    Mizuno T (1995) Bioactive biomolecules of mushrooms: food function and medicinal effect of mushroom fungi. Food Rev Int 11:7–12Google Scholar
  61. 61.
    Alarcon-Aguilara FJ, Roman-Ramos R, Perez-Gutierrez S, Aguilara-Contreras A, Contreras-Weber CC, Flores-Sanez JL (1998) Study of the antihyperglycemic effect of plants used as antidiabetics. J Ethnopharmacol 61:101–110PubMedCrossRefGoogle Scholar
  62. 62.
    Ahmad N, Bansal AK, Kidwai JR (1984) Effect of PHA-B fraction of Agaricus bisporus lectin on insulin release and 45Ca2C uptake by islet of Langerhans in vitro. Acta Diabetol 21:63–70CrossRefGoogle Scholar
  63. 63.
    Gray AM, Flatt PR (1998) Insulin-releasing and insulin-like activity of Agaricus campestris (mushroom). J Endocrinol 157:259–266PubMedCrossRefGoogle Scholar
  64. 64.
    Windholz M (1983) The Merck index, 10th edn. Merck and Co, RahwayGoogle Scholar
  65. 65.
    Thekkuttuparambil AA, Kainoor K (2007) Janardhanan. Indian medicinal mushrooms as a source of antioxidant and antitumor agents. J Clin Biochem Nutr 40:157–162CrossRefGoogle Scholar
  66. 66.
    Lucas EH, Montesano R, Pepper MS, Hafner M, Sablon E (1957) Tumor inhibitors in Boletus edulis and other holobasidiomycetes. Antibiot Chemother 7:1–4Google Scholar
  67. 67.
    Lucas EH, Byerrum M, Clarke DA, Reilly HC, Stevens JA, Stock CC (1958) Production of oncostatic principles in vivo and in vitro by species of the genus Calvatia. Antibiot Annu 6:493–496PubMedGoogle Scholar
  68. 68.
    Reshetnikov SV, Wasser SP, Tan KK (2001) Higher basidiomycetes as a source of antitumor and immunostimulating polysaccharides (review). Int J Med Mushrooms 3:361–394Google Scholar
  69. 69.
    Lindequist U, Teuscher E, Narbe G (1990) Neue Wirkstoffe aus Basidiomyceten. Phytothérapie 11:139–149Google Scholar
  70. 70.
    Eo SK, Kim YS, Lee CK, Han SS (1999) Antiviral activities of various water and methanol soluble substances isolated from Ganoderma lucidum. J Ethnopharmacol 68:129–136PubMedCrossRefGoogle Scholar
  71. 71.
    Takazawa H, Tajima F, Miyashita C (1982) An antifungal compound from “shiitake” (Lentinus edodes). Yakugaku Zasshi 102:489–491PubMedCrossRefGoogle Scholar
  72. 72.
    Mothana RAA, Jansen R, Julich WD, Lindequist U (2000) Ganomycin A and B, new antimicrobial farnesyl hydroquinones from the basidiomycete Ganoderma pfeifferi. J Nat Prod 63:416–418PubMedCrossRefGoogle Scholar
  73. 73.
    Bender S, Dumitrache CN, Backhaus J, Christie G, Cross RF, Lonergan GT (2003) A case for caution in assessing the antibiotic activity of extracts of culinary-medicinal shiitake mushroom [Lentinus edodes (Berk.) singer] (Agaricomycetidae). Int J Med Mushrooms 5:31–35CrossRefGoogle Scholar
  74. 74.
    Badalyan SM (2004) Antiprotozoal activity and mitogenic effect of mycelium of culinary-medicinal shiitake mushroom Lentinus edodes (Berk.) singer (Agaricomycetidae). Int J Med Mushrooms 6:131–138CrossRefGoogle Scholar
  75. 75.
    Brandt CR, Piraino F (2000) Mushroom antivirals. Recent Res Dev Antimicrob Agents Chemother 4:11–26Google Scholar
  76. 76.
    El-Mekkawy S, Meselhy MR, Nakamura N, Tezuka Y, Hattori M, Kakiuchi N (1998) Anti-HIV-1 and antiHIV-1-protease substances from Ganoderma lucidum. Phytochemistry 49(6): 1651–1657. Scholar
  77. 77.
    Sano M, Yoshino K, Matsuzawa T, Ikekawa T (2002) Inhibitory effects of edible higher basidiomycetes mushroom extracts on mouse type IV allergy. Int J Med Mushrooms 4:37–41CrossRefGoogle Scholar
  78. 78.
    Kohda H, Tokumoto W, Sakamoto K, Fujii M, Hirai Y, Yamasaki K (1985) The biologically-active constituents of Ganoderma lucidum (Fr) Karst-histamine release-inhibitory triterpenes. Chem Pharm Bull 33:1367–1373PubMedCrossRefGoogle Scholar
  79. 79.
    Tasaka K, Mio M, Izushi K, Akagi M, Makino T (1988) Anti-allergic constituents in the culture medium of Ganoderma lucidum. (II). The inhibitory effect of cyclooctasulfur on histamine release. Agents Actions 23:157–160PubMedCrossRefGoogle Scholar
  80. 80.
    Kreisel H, Lindequist U, Horak M (1990) Distribution, ecology and immunosuppressive properties of Tricholoma populinum (Basidiomycetes). Zentralbl Mikrobiol 145:393–396PubMedGoogle Scholar
  81. 81.
    Ali NAA, Pilgrim H, Ludke J, Lindequist U (1996) Inhibition of chemiluminescence response of human mononuclear cells and suppression of mitogen induced proliferation of spleen lymphocytes of mice by hispolon and hispidin. Pharmazie 51:667–670PubMedGoogle Scholar
  82. 82.
    Kim SH, Song YS, Kim SK, Kim BC, Lim CJ, Park EH (2004) Anti-inflammatory and related pharmacological activities of the n-BuOH subfraction of mushroom Phellinus linteus. J Ethnopharmacol 93:141–146PubMedCrossRefGoogle Scholar
  83. 83.
    Zhang Y, Mills G, Nair MG (2002) Cyclooxygenase inhibitory and antioxidant compounds from the mycelia of the edible mushroom Grifola frondosa. J Agric Food Chem 50:7581–7585PubMedCrossRefGoogle Scholar
  84. 84.
    Chen RY, Yu DQ (1993) Studies on the triterpenoid constituents of the spores from Ganoderma lucidum Karst. J Chin Pharm Sci 2:91–96Google Scholar
  85. 85.
    Wang MY, Liu Q, Che QM, Lin ZB (2002) Effects of total triterpenoids extract from Ganoderma lucidum (Curt.:Fr.) P.Karst. (Reishi mushroom) on experimental liver injury models induced by carbon tetrachloride or d-galactosamine in mice. Int J Med Mushrooms 4:337–342Google Scholar
  86. 86.
    Chang ST, Miles PG (2004) Mushrooms: cultivation, nutritional value, medicinal effect and environmental impact, 1st edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  87. 87.
    Badalyan SM (2012) Edible ectomycorrhizal mushrooms. In: Zambonelli A, Bonito G (eds) Edible ectomycorrhizal mushrooms. Soil Biology series, vol 34. Springer, Berlin, pp 317–334. ISBN: 978-3-642-33822-9CrossRefGoogle Scholar
  88. 88.
    Guillamón S, García-Lafuente A, Lozano M et al (2010) Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia 81(7):715–723PubMedCrossRefGoogle Scholar
  89. 89.
    Chu KT, Xia LX, Ng TB (2005) Pleurostrin, an antifungal peptide from the oyster mushroom. Peptides 26(11):2098–2103PubMedCrossRefGoogle Scholar
  90. 90.
    Wang JB, Wang HX, Ng TB (2007) A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides 28(3):560–565PubMedCrossRefGoogle Scholar
  91. 91.
    Ngai PHK, Zhao Z, Ng TB (2005) Agrocybin, an antifungal peptide from the edible mushroom Agrocybe cylindracea. Peptides 26(2):191–196PubMedCrossRefGoogle Scholar
  92. 92.
    Zhang Y, Mills GL, Nair MG (2003) Cyclooxygenase inhibitory and antioxidant compounds from the fruiting body of an edible mushroom, Agrocybe aegerita. Phytomedicine 10(5): 386–390PubMedCrossRefGoogle Scholar
  93. 93.
    Wang J, Liu YM, Cao W et al (2012) Anti-inflammation and antioxidant effect of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Metab Brain Dis 27(2):159–165PubMedCrossRefGoogle Scholar
  94. 94.
    Qian GM, Pan GF, Guo JY (2011) Anti-inflammatory and antinociceptive effects of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis. Nat Prod Res 26(24): 2358–2362CrossRefGoogle Scholar
  95. 95.
    Wong JH, Ng TB, Wang H et al (2011) Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris. Phytomedicine 18(5):387–392PubMedCrossRefGoogle Scholar
  96. 96.
    Liu QH, Wang HX, Ng TB (2006) First report of a xylose-specific lectin with potent hemagglutinating, antiproliferative and anti-mitogenic activities from a wild ascomycete mushroom. Biochim Biophys Acta 1760(12):1914–1919. Scholar
  97. 97.
    Zhang GQ, Sun J, Wang HX (2009) A novel lectin with antiproliferative activity from the medicinal mushroom Pholiota adiposa. Acta Biochim Pol 56(3):415–421PubMedGoogle Scholar
  98. 98.
    Lin CH, Sheu GT, Lin YW et al (2010) A new immunomodulatory protein from Ganoderma microsporum inhibits epidermal growth factor mediated migration and invasion in A549 lung cancer cells. Process Biochem 45(9):1537–1542. Scholar
  99. 99.
    Zhang G, Sun J, Wang H et al (2010a) First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom. Phytomedicine 17(10):775–781. Scholar
  100. 100.
    Wong JH, Wang HX, Ng TB (2008) Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus. Appl Microbiol Biotechnol 81(4):669–674PubMedCrossRefGoogle Scholar
  101. 101.
    Wang HX, Ng TB (2006a) Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii. Appl Microbiol Biotechnol 69(5):521–525PubMedCrossRefGoogle Scholar
  102. 102.
    El Fakharany EM, Haroun BM, Ng TB et al (2010) Oyster mushroom laccase inhibits hepatitis C virus entry into peripheral blood cells and hepatoma cells. Protein Pept Lett 17(8): 1031–1039. Scholar
  103. 103.
    Zhang GQ, Wang YF, Zhang XQ (2010b) Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima. Process Biochem 45(5):627–633. Scholar
  104. 104.
    Ko JL, Hsu CT, Lin RH et al (1995) A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence. Eur J Biochem 228:244–249PubMedCrossRefGoogle Scholar
  105. 105.
    Lin WH, Huang CH, Hsu CI et al (1997) Dimerization of the N-terminal amphipathic a-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (Fip-gts) defined by a yeast two-hybrid system and site-directed mutagenesis. J Biol Chem 272:2044–2048Google Scholar
  106. 106.
    Hsu HC, Hsu CI, Lin RH et al (1997) Fip-vvo, a new fungal immunomodulatory protein isolated from Volvariella volvacea. Biochem J 323:557–565PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Du M, Zhao L, Li CR (2007) Purification and characterization of a novel fungi Se-containing protein from Se-enriched Ganoderma lucidum mushroom and its Se-dependent radical scavenging activity. Eur Food Res Technol 224(5):659–665CrossRefGoogle Scholar
  108. 108.
    Chen JN, Wang YT, Wu JS (2009) A glycoprotein extracted from golden oyster mushroom Pleurotus citrinopileatus exhibiting growth inhibitory effect against U937 leukemia cells. J Agric Food Chem 57(15):6706–6711. Scholar
  109. 109.
    Kodama N, Komuta K, Nanba H (2002) Can maitake MD fraction aid cancer patients? Altern Med Rev 7:236–239PubMedGoogle Scholar
  110. 110.
    Cote J, Caillet S, Doyon G (2010) Bioactive compounds in cranberries and their biological properties. Crit Rev Food Sci Nutr 50(7):666–679PubMedCrossRefGoogle Scholar
  111. 111.
    D’Archivio M, Filesi C, Vari R et al (2010) Bioavailability of the polyphenols: status and controversies. Int J Mol Sci 11:1321–1342PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Dziezak JD (1986) Antioxidants-the ultimate answer to oxidation. Food Technol 40(9):94Google Scholar
  113. 113.
    Yagi K (1970) A rapid method for evaluation of oxidation and antioxidants. Agric Biol Chem 34(1):142–145CrossRefGoogle Scholar
  114. 114.
    Palacios I, Lozano M, Moro C (2011) Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem 128(3):674–678. Scholar
  115. 115.
    Dugler B, Gonuz A, Gucin F (2004) Antimicrobial activity of the macrofungus Cantharellus cibarius. JBS 7(9):1535–1539Google Scholar
  116. 116.
    Witkowska MA, Zujko ME, Mironczuk-Chodakowska I (2011) Comparative study of wild edible mushrooms as sources of antioxidants. Int J Med Mushrooms 13(4):335–341PubMedCrossRefGoogle Scholar
  117. 117.
    Nukata M, Hashimoto T, Yamamoto I et al (2002) Neogrifolin derivatives possessing anti-oxidative activity from the mushroom Albatrellus ovinus. Phytochemistry 59(7):731–737PubMedCrossRefGoogle Scholar
  118. 118.
    Mizuno T (1999) Bioactive substances in Hericium erinaceus (Bull.:Fr.) Pers. (Yamabushitake), and its medicinal utilization. Int J Med Mushrooms 1:105–119. Scholar
  119. 119.
    Attarat J, Phermthai T (2015) Bioactive compounds in three edible Lentinus mushrooms. Walailak J Sci Technol 12(6):491–504Google Scholar
  120. 120.
    Chowdhury MMH, Kubra K, Ahmed SR (2015) Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh. Ann Clin Microbiol Antimicrob 14:8. Scholar
  121. 121.
    Dai YC, Zhou LW, Cui BK et al (2010) Current advances in Phellinus sensu lato: medicinal species, functions, metabolites and mechanisms. Appl Microbiol Biotechnol 87(5):1587–1593PubMedCrossRefGoogle Scholar
  122. 122.
    Elsayed EA, Enshasy HE, Wadaan MAM et al (2014) Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediat Inflamm 1:1–15CrossRefGoogle Scholar
  123. 123.
    Badalyan SM (2014) Potential of mushroom bioactive molecules to develop healthcare biotech products. In: Proceedings of the 8th international conference on mushroom biology and mushroom products (ICMBMP8)Google Scholar
  124. 124.
    Wu DM, Duan WQ, Liu Y, Cen Y (2010) Anti-inflammatory effect of the polysaccharides of Golden needle mushroom in burned rats. Int J Biol Macromol 46(1):100–103. Scholar
  125. 125.
    Batbayar S, Lee DH, Kim HW (2012) Immunomodulation of fungal b-glucan in host defense signaling by dectin-1. Biomol Ther 20(5):433–445CrossRefGoogle Scholar
  126. 126.
    Lavi I, Levinson D, Peri I et al (2010) Chemical characterization, antiproliferative and antiadhesive properties of polysaccharides extracted from Pleurotus pulmonarius mycelium and fruiting bodies. Appl Microbiol Biotechnol 85(6):1977–1990PubMedCrossRefGoogle Scholar
  127. 127.
    Firenzuoli F, Gori L, Lombardo G (2007) The medicinal mushroom Agaricus blazei murrill: review of literature and pharmaco-toxicological problems. Evid Based Complement Altern Med 5(1):3–15CrossRefGoogle Scholar
  128. 128.
    Bae AH, Lee SW, Ikeda M et al (2004) Rod-like architecture and helicity of the poly(C)/schizophyllan complex observed by AFM and SEM. Carbohydr Res 339(2):251–258PubMedCrossRefGoogle Scholar
  129. 129.
    Lavi I, Nimri L, Levinson D et al (2012) Glucans from the edible mushroom Pleurotus pulmonarius inhibit colitis-associated colon carcinogenesis in mice. J Gastroenterol 47(5): 504–518PubMedCrossRefGoogle Scholar
  130. 130.
    Gao Y, Zhou S, Chen G et al (2002) A phase I/II study of a Ganoderma lucidum (Curt.:Fr.) P. Karst (LingZhi, Reishi mushroom) extract in patients with chronic hepatitis B. Int J Med Mushrooms 4(4):2321–2327CrossRefGoogle Scholar
  131. 131.
    Tong H, Xia F, Feng K et al (2009) Structural characterization and in vitro antitumor activity of a novel polysaccharide isolated from the fruiting bodies of Pleurotus ostreatus. Bioresour Technol 100:1682–1686. Scholar
  132. 132.
    Chatterjee S, Biswas G, Basu SK (2011) Antineoplastic effect of mushrooms: a review. Aust J Crop Sci 5(7):904–911Google Scholar
  133. 133.
    Kim GY, Kim SH, Hwang SY et al (2003) Oral administration of proteoglycan isolated from Phellinus linteus in the prevention and treatment of collagen-induced arthritis in mice. Biol Pharm Bull 26:823–831PubMedCrossRefGoogle Scholar
  134. 134.
    Morigiwa A, Kitabatake K, Fujimoto Y et al (1986) Angiotensin converting enzyme inhibitory triterpenes from Ganoderma lucidum. Chem Pharm Bull 34:3025–3028PubMedCrossRefGoogle Scholar
  135. 135.
    Ma L, Chen H, Dong P et al (2013) Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem 139(1–4):503–508. Scholar
  136. 136.
    Han J, Chen Y, Bao L (2013) Anti-inflammatory and cytotoxic cyathane diterpenoids from the medicinal fungus Cyathus africanus. Fitoterapia 84:22–31. Scholar
  137. 137.
    Chen CC, Shiao YJ, Lin RD et al (2006) Neuroprotective diterpenes from the fruiting body of Antrodia camphorata. J Nat Prod 69:689–691PubMedCrossRefGoogle Scholar
  138. 138.
    Khan MA et al (2013) Hericium erinaceus: an edible mushroom with medicinal values. J Complement Integr Med 24:10Google Scholar
  139. 139.
    Standish LJ et al (2008) Trametes versicolor mushroom immune therapy in breast cancer. J Soc Integr Oncol 6:122–128PubMedPubMedCentralGoogle Scholar
  140. 140.
    Badalyan SM (2001) The main groups of therapeutic compounds of medicinal mushrooms. Probl Med Mycol 3:16–23Google Scholar
  141. 141.
    De Baets S, Vandamme EJ (2001) Extracellular Tremella polysaccharides: structure, properties and applications. Biotechnol Lett 23:1361–1366CrossRefGoogle Scholar
  142. 142.
    Marshall E, Nair N (2009) Make money by growing mushrooms. Food and Agriculture Organization of the United Nations (FAO), RomaGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Plant Pathology, Faculty of AgricultureSKUAST-JammuJammuIndia
  2. 2.Division of Plant Pathology, Faculty of AgricultureSKUAST-KashmirJammuIndia
  3. 3.Division of Biochemistry, Faculty of Basic SciencesSKUAST-JammuJammuIndia
  4. 4.Divison of Crop ImprovementICAR-Directorate of Mushroom ResearchSolanIndia

Personalised recommendations