Skip to main content

Encapsulation to Protect Different Bioactives to Be Used as Nutraceuticals and Food Ingredients

  • Living reference work entry
  • First Online:
Bioactive Molecules in Food

Abstract

Consumers' awareness of the relationship between diet and health is increasing the demand for nutraceuticals and functional food products. They usually involve the incorporation of bioactive compounds extracted from plant tissues, or, in some cases, beneficial microorganism species known as probiotics. Incorporation of these compounds as functional ingredients has to overcome various challenges related to their stability during food processing or gastrointestinal tract, in order to guarantee that they exert health benefits after intake. An attractive strategy is the use of encapsulation technologies. Appropriate selection of encapsulation methods or core and carrier materials may influence most of the desired properties of the final food product. This chapter summarizes the main aspects to consider prior to developing nutraceutical or functional food products using encapsulated bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Khalid N et al (2017) Formulation and characterization of monodisperse O/W emulsions encapsulating astaxanthin extracts using microchannel emulsification: insights of formulation and stability evaluation. Colloids Surf B Biointerfaces 157:355–365

    Article  CAS  Google Scholar 

  2. Ballesteros LF et al (2017) Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem 237:623–631

    Article  CAS  Google Scholar 

  3. Cheng A-W et al (2017) Effects of storage time and temperature on polyphenolic content and qualitative characteristics of freeze-dried and spray-dried bayberry powder. LWT Food Sci Technol 78:235–240

    Article  CAS  Google Scholar 

  4. Alexander M et al (2012) Incorporation of phytosterols in soy phospholipids nanoliposomes: encapsulation efficiency and stability. LWT Food Sci Technol 47(2):427–436

    Article  CAS  Google Scholar 

  5. Eckert C et al (2017) Microencapsulation of lactobacillus plantarum ATCC 8014 through spray drying and using dairy whey as wall materials. LWT Food Sci Technol 82:176–183

    Article  CAS  Google Scholar 

  6. Elez Garofulić I et al (2017) Retention of polyphenols in encapsulated sour cherry juice in dependence of drying temperature and wall material. LWT Food Sci Technol 83:110–117

    Article  Google Scholar 

  7. Vinceković M et al (2017) Innovative technologies for encapsulation of Mediterranean plants extracts. Trends Food Sci Technol 69(Part A):1–12

    Article  Google Scholar 

  8. Dias DR et al (2017) Encapsulation as a tool for bioprocessing of functional foods. Curr Opin Food Sci 13(Supplement C):31–37

    Article  Google Scholar 

  9. Ezhilarasi P et al (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6(3):628–647

    Article  CAS  Google Scholar 

  10. Quintanilla-Carvajal MX et al (2010) Nanoencapsulation: a new trend in food engineering processing. Food Eng Rev 2(1):39–50

    Article  Google Scholar 

  11. Agudelo C et al (2017) Phytochemical content and antioxidant activity of grapefruit (Star Ruby): a comparison between fresh freeze-dried fruits and different powder formulations. LWT Food Sci Technol 80:106–112

    Article  CAS  Google Scholar 

  12. Gharsallaoui A et al (2007) Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 40(9):1107–1121

    Article  CAS  Google Scholar 

  13. Jafari SM, Ghalegi Ghalenoei M, Dehnad D (2017) Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technol 311:59–65

    Article  CAS  Google Scholar 

  14. Luna-Guevara JJ et al (2017) Microencapsulation of walnut, peanut and pecan oils by spray drying. Food Struct 12:26–32

    Article  Google Scholar 

  15. Peabody J et al (2017) Characterization of a spray-dried candidate HPV L2-VLP vaccine stored for multiple years at room temperature. Papillomavirus Research 3:116–120

    Google Scholar 

  16. Leung SSY et al (2017) Effects of storage conditions on the stability of spray dried, inhalable bacteriophage powders. Int J Pharm 521(1–2):141–149

    Article  CAS  Google Scholar 

  17. Lao F, Giusti MM (2017) The effect of pigment matrix, temperature and amount of carrier on the yield and final color properties of spray dried purple corn (Zea mays L.) cob anthocyanin powders. Food Chem 227:376–382

    Article  CAS  Google Scholar 

  18. Bazaria B, Kumar P (2016) Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). J Saudi Soc Agric Sci

    Google Scholar 

  19. Mohammed NK et al (2017) Process conditions of spray drying microencapsulation of Nigella sativa oil. Powder Technol 315:1–14

    Article  CAS  Google Scholar 

  20. Park H-J, Lee Y, Eun J-B (2016) Physicochemical characteristics of kimchi powder manufactured by hot air drying and freeze drying. Biocatal Agric Biotechnol 5:193–198

    Google Scholar 

  21. Evageliou V, Saliari D (2017) Limonene encapsulation in freeze dried gellan systems. Food Chem 223:72–75

    Article  CAS  Google Scholar 

  22. Prosapio V, Norton I (2017) Influence of osmotic dehydration pre-treatment on oven drying and freeze drying performance. LWT Food Sci Technol 80:401–408

    Article  CAS  Google Scholar 

  23. Cao X et al (2018) Effects of ultrasonic pretreatments on quality, energy consumption and sterilization of barley grass in freeze drying. Ultrason Sonochem 40:333–340

    Article  CAS  Google Scholar 

  24. Ydjedd S et al (2017) Effect of in vitro gastrointestinal digestion on encapsulated and nonencapsulated phenolic compounds of carob (Ceratonia siliqua L.) pulp extracts and their antioxidant capacity. J Agric Food Chem 65(4):827–835

    Article  CAS  Google Scholar 

  25. Peng Y et al (2018) Nanoemulsion delivery system of tea polyphenols enhanced the bioavailability of catechins in rats. Food Chem 242(Supplement C):527–532

    Article  CAS  Google Scholar 

  26. Krogsgård Nielsen C et al (2016) Enhancing the antibacterial efficacy of isoeugenol by emulsion encapsulation. Int J Food Microbiol 229:7–14

    Article  Google Scholar 

  27. Fan Q et al (2017) Partition and stability of resveratrol in whey protein isolate oil-in-water emulsion: impact of protein and calcium concentrations. Int Dairy J 73(Supplement C):128–135

    Article  CAS  Google Scholar 

  28. Katsouli M, Polychniatou V, Tzia C (2018) Optimization of water in olive oil nano-emulsions composition with bioactive compounds by response surface methodology. LWT 89(Supplement C):740–748

    Article  CAS  Google Scholar 

  29. Pérez-Mosqueda LM et al (2015) Formulation and optimization by experimental design of eco-friendly emulsions based on d-limonene. Colloids Surf B Biointerfaces 128(Supplement C):127–131

    Article  Google Scholar 

  30. Lepeltier E, Bourgaux C, Couvreur P (2014) Nanoprecipitation and the “Ouzo effect”: application to drug delivery devices. Adv Drug Del Rev 71(Supplement C):86–97

    Article  CAS  Google Scholar 

  31. Bilati U, Allémann E, Doelker E (2005) Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 24(1):67–75

    Article  CAS  Google Scholar 

  32. Khayata N et al (2012) Preparation of vitamin E loaded nanocapsules by the nanoprecipitation method: from laboratory scale to large scale using a membrane contactor. Int J Pharm 423(2):419–427

    Article  CAS  Google Scholar 

  33. Noronha CM et al (2013) Optimization of α-tocopherol loaded nanocapsules by the nanoprecipitation method. Ind Crop Prod 50(Supplement C):896–903

    Article  CAS  Google Scholar 

  34. Tzeng C-W et al (2011) Enhancement of dissolution and antioxidant activity of Kaempferol using a nanoparticle engineering process. J Agric Food Chem 59(9):5073–5080

    Article  CAS  Google Scholar 

  35. Silva JTDP et al (2017) Analytical validation of an ultraviolet–visible procedure for determining lutein concentration and application to lutein-loaded nanoparticles. Food Chem 230(Supplement C):336–342

    Article  CAS  Google Scholar 

  36. Dinesh Kumar V, Verma PRP, Singh SK (2015) Development and evaluation of biodegradable polymeric nanoparticles for the effective delivery of quercetin using a quality by design approach. LWT Food Sci Technol 61(2):330–338

    Article  CAS  Google Scholar 

  37. Liu W et al (2017) Kinetic stability and membrane structure of liposomes during in vitro infant intestinal digestion: effect of cholesterol and lactoferrin. Food Chem 230(Supplement C):6–13

    Article  CAS  Google Scholar 

  38. Liu W et al (2012) Structure and integrity of liposomes prepared from milk- or soybean-derived phospholipids during in vitro digestion. Food Res Int 48(2):499–506

    Article  CAS  Google Scholar 

  39. Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154(2):123–140

    Article  CAS  Google Scholar 

  40. Basiri L, Rajabzadeh G, Bostan A (2017) Physicochemical properties and release behavior of Span 60/Tween 60 niosomes as vehicle for α-Tocopherol delivery. LWT Food Sci Technol 84:471–478

    Article  CAS  Google Scholar 

  41. Ritwiset A, Krongsuk S, Johns JR (2016) Molecular structure and dynamical properties of niosome bilayers with and without cholesterol incorporation: a molecular dynamics simulation study. Appl Surf Sci 380(Supplement C):23–31

    Article  CAS  Google Scholar 

  42. Liang R et al (2016) Niosomes consisting of Tween-60 and cholesterol improve the chemical stability and antioxidant activity of (−)-epigallocatechin gallate under intestinal tract conditions. J Agric Food Chem 64(48):9180–9188

    Article  CAS  Google Scholar 

  43. Xu Y-Q et al (2016) Niosome encapsulation of curcumin: characterization and cytotoxic effect on ovarian cancer cells. J Nanomater 2016:9

    Google Scholar 

  44. Sharma P et al (2016) Novel encapsulation of lycopene in niosomes and assessment of its anti-cancer activity. J Bioequiv Bioavailab 8(5):224–232

    Google Scholar 

  45. Gavory C et al (2011) Polysaccharide-covered nanoparticles prepared by nanoprecipitation. Carbohydr Polym 84(1):133–140

    Article  CAS  Google Scholar 

  46. Bakowska-Barczak AM, Kolodziejczyk PP (2011) Black currant polyphenols: their storage stability and microencapsulation. Ind Crop Prod 34(2):1301–1309

    Article  CAS  Google Scholar 

  47. Sansone F et al (2011) Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. J Food Eng 105(3):468–476

    Article  CAS  Google Scholar 

  48. Bagheri L et al (2013) Nanoencapsulation of date palm pit extract in whey protein particles generated via desolvation method. Food Res Int 51(2):866–871

    Article  CAS  Google Scholar 

  49. Quiroz-Reyes CN et al (2014) Development and characterization of gelatin nanoparticles loaded with a cocoa-derived polyphenolic extract. Fruits 69(6):481–489

    Article  Google Scholar 

  50. Liu F et al (2017) A comparative study of covalent and non-covalent interactions between zein and polyphenols in ethanol-water solution. Food Hydrocoll 63(Supplement C):625–634

    Article  CAS  Google Scholar 

  51. Caddeo C et al (2016) Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer. Int J Pharm 513(1):153–163

    Article  CAS  Google Scholar 

  52. Pandita D et al (2014) Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res Int 62(Supplement C):1165–1174

    Article  CAS  Google Scholar 

  53. Sanchez V et al (2013) Freeze-drying encapsulation of red wine polyphenols in an amorphous matrix of maltodextrin. Food Bioprocess Technol 6(5):1350–1354

    Article  CAS  Google Scholar 

  54. Song QX et al (2014) Enhanced uptake and transport of (+)-catechin and (−)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells. Int J Nanomedicine 9(1):2157–2165

    Article  Google Scholar 

  55. Wang G et al (2015) Role of SIRT1-mediated mitochondrial and Akt pathways in glioblastoma cell death induced by Cotinus coggygria flavonoid nanoliposomes. Int J Nanomedicine 10(1):5005–5023

    CAS  Google Scholar 

  56. Saikia S, Mahnot NK, Mahanta CL (2015) Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food Chem 171:144–152

    Article  CAS  Google Scholar 

  57. Motilva MJ et al (2016) Human bioavailability and metabolism of phenolic compounds from red wine enriched with free or nano-encapsulated phenolic extract. J Funct Foods 25:80–93

    Article  CAS  Google Scholar 

  58. Estevinho BN et al (2016) Soluble vitamins (vitamin B12 and vitamin C) microencapsulated with different biopolymers by a spray drying process. Powder Technol 289:71–78

    Article  CAS  Google Scholar 

  59. Avinash G, Purnima A (2017) Microencapsulation by spray drying of vitamin a palmitate from oil to powder and its application in topical delivery system. J Encapsul Adsorpt Sci 7(1):10–39

    Article  Google Scholar 

  60. Gamboa OD, Goncalves LG, Grosso CF (2011) Microencapsulation of tocopherols in lipid matrix by spray chilling method. 11th international congress on engineering and food (ICEF11) 1:1732–1739

    Google Scholar 

  61. Wagner ME et al (2016) Stability of niosomes with encapsulated vitamin D-3 and ferrous sulfate generated using a novel supercritical carbon dioxide method. J Liposome Res 26(4):261–268

    Article  CAS  Google Scholar 

  62. Ruiz-Rico M et al (2017) Protection of folic acid through encapsulation in mesoporous silica particles included in fruit juices. Food Chem 218:471–478

    Article  CAS  Google Scholar 

  63. Anandharamakrishnan C (2014) Nanoencapsulation of food bioactive compounds. In: Techniques for nanoencapsulation of food ingredients. Springer New York, New York, pp 1–6

    Chapter  Google Scholar 

  64. Jafari SM (2017) An overview of nanoencapsulation techniques and their classification. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Elsevier, p 1–34

    Google Scholar 

  65. Singh H, Ye A, Thompson A (2009) Nanoencapsulation systems based on milk proteins and phospholipids. ACS Publications, Washington, DC

    Google Scholar 

  66. Kim H et al (2016) Comparison of anti-inflammatory mechanisms of mango (Mangifera Indica L.) and pomegranate (Punica Granatum L.) in a preclinical model of colitis. Mol Nutr Food Res 60(9):1912–1923

    Article  CAS  Google Scholar 

  67. Gawlik M et al (2017) Manganese neurotoxicity and protective effects of resveratrol and quercetin in preclinical research. Pharmacol Rep 69(2):322–330

    Article  CAS  Google Scholar 

  68. Zamora-Ros R et al (2013) High concentrations of a urinary biomarker of polyphenol intake are associated with decreased mortality in older adults. J Nutr 143(9):1445–1450

    Article  CAS  Google Scholar 

  69. Zamora-Ros R et al (2016) Urinary excretions of 34 dietary polyphenols and their associations with lifestyle factors in the EPIC cohort study. Sci Rep 6:26905

    Article  CAS  Google Scholar 

  70. Fang Z, Bhandari B (2010) Encapsulation of polyphenols – a review. Trends Food Sci Technol 21(10):510–523

    Article  CAS  Google Scholar 

  71. Wang X, Wang Y-W, Huang Q (2009) Enhancing stability and oral bioavailability of polyphenols using nanoemulsions. ACS Publications, Washington, DC

    Google Scholar 

  72. Chung C et al (2015) Enhanced stability of anthocyanin-based color in model beverage systems through whey protein isolate complexation. Food Res Int 76:761–768

    Article  CAS  Google Scholar 

  73. Ko A et al (2017) Stabilization of black soybean anthocyanin by chitosan nanoencapsulation and copigmentation. J Food Biochem 41(2):e12316

    Article  Google Scholar 

  74. Han HJ et al (2015) Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity. Colloids Surf B Biointerfaces 130:93–100

    Article  CAS  Google Scholar 

  75. Jeon YO, Lee J-S, Lee HG (2016) Improving solubility, stability, and cellular uptake of resveratrol by nanoencapsulation with chitosan and γ-poly (glutamic acid). Colloids Surf B Biointerfaces 147:224–233

    Article  CAS  Google Scholar 

  76. Pan K et al (2014) pH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity. Soft Matter 10(35):6820–6830

    Article  CAS  Google Scholar 

  77. Zou L et al (2016) Food-grade nanoparticles for encapsulation, protection and delivery of curcumin: comparison of lipid, protein, and phospholipid nanoparticles under simulated gastrointestinal conditions. RSC Adv 6(4):3126–3136

    Article  CAS  Google Scholar 

  78. Sadeghi S, Madadlou A, Yarmand M (2014) Microemulsification – cold gelation of whey proteins for nanoencapsulation of date palm pit extract. Food Hydrocoll 35(Supplement C):590–596

    Article  CAS  Google Scholar 

  79. Belščak-Cvitanović A et al (2016) Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food Hydrocoll 57(Supplement C):139–152

    Article  Google Scholar 

  80. Rokka S, Rantamäki P (2010) Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur Food Res Technol 231(1):1–12

    Article  CAS  Google Scholar 

  81. Scully P et al (2013) Bifidobacterium infantis suppression of Peyer’s patch MIP-1α and MIP-1β secretion during salmonella infection correlates with increased local CD4+ CD25+ T cell numbers. Cell Immunol 281(2):134–140

    Article  CAS  Google Scholar 

  82. Dong QY et al (2013) Alginate-based and protein-based materials for probiotics encapsulation: a review. Int J Food Sci Tech 48(7):1339–1351

    Article  CAS  Google Scholar 

  83. de Vos P et al (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20(4):292–302

    Article  Google Scholar 

  84. Sarkar S (2010) Approaches for enhancing the viability of probiotics: a review. Br Food J 112(4):329–349

    Article  Google Scholar 

  85. Gbassi GK, Vandamme T (2012) Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics 4(1):149–163

    Article  CAS  Google Scholar 

  86. Heidebach T, Först P, Kulozik U (2012) Microencapsulation of probiotic cells for food applications. Crit Rev Food Sci Nutr 52(4):291–311

    Article  CAS  Google Scholar 

  87. Brinques GB, Ayub MAZ (2011) Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. J Food Eng 103(2):123–128

    Article  CAS  Google Scholar 

  88. González-Sánchez F et al (2010) Viability of microencapsulated Bifidobacterium animalis ssp. lactis BB12 in kefir during refrigerated storage. Int J Dairy Technol 63(3):431–436

    Article  Google Scholar 

  89. Homayouni A et al (2008) Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chem 111(1):50–55

    Article  CAS  Google Scholar 

  90. Possemiers S et al (2010) Bacteria and chocolate: a successful combination for probiotic delivery. Int J Food Microbiol 141(1):97–103

    Article  CAS  Google Scholar 

  91. Borges S et al (2012) Effects of encapsulation on the viability of probiotic strains exposed to lethal conditions. Int J Food Sci Tech 47(2):416–421

    Article  CAS  Google Scholar 

  92. Sandoval-Castilla O et al (2010) Textural properties of alginate–pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Res Int 43(1):111–117

    Article  CAS  Google Scholar 

  93. Todorov SD, LeBlanc JG, Franco BD (2012) Evaluation of the probiotic potential and effect of encapsulation on survival for Lactobacillus plantarum ST16Pa isolated from papaya. World J Microbiol Biotechnol 28(3):973–984

    Article  CAS  Google Scholar 

  94. Thantsha MS et al (2009) Supercritical carbon dioxide interpolymer complexes improve survival of B. longum Bb-46 in simulated gastrointestinal fluids. Int J Food Microbiol 129(1):88–92

    Article  CAS  Google Scholar 

  95. Sabikhi L et al (2010) Resistance of microencapsulated Lactobacillus acidophilus LA1 to processing treatments and simulated gut conditions. Food Bioprocess Technol 3(4):586–593

    Article  Google Scholar 

  96. Papagianni M, Anastasiadou S (2009) Encapsulation of Pediococcus acidilactici cells in corn and olive oil microcapsules emulsified by peptides and stabilized with xanthan in oil-in-water emulsions: studies on cell viability under gastro-intestinal simulating conditions. Enzym Microb Technol 45(6):514–522

    Article  CAS  Google Scholar 

  97. Kailasapathy K (2009) Encapsulation technologies for functional foods and nutraceutical product development. CAB Rev: Perspect Agric Vet Sci Nutr Nat Resour 4(033):1–19

    Article  Google Scholar 

  98. Nag A, Han K-S, Singh H (2011) Microencapsulation of probiotic bacteria using pH-induced gelation of sodium caseinate and gellan gum. Int Dairy J 21(4):247–253

    Article  CAS  Google Scholar 

  99. Sousa S et al (2012) Encapsulation of probiotic strains in plain or cysteine-supplemented alginate improves viability at storage below freezing temperatures. Eng Life Sci 12(4):457–465

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are particularly grateful to the National Council on Science and Technology (CONACYT) for partial financial support through project 563: “Un Enfoque Multidisciplinario de la Farmacocinética de Polifenoles de Mango Ataulfo: Interacciones Moleculares, Estudios Preclínicos y Clínicos,” CB-2012-01/179574 (basic science), CB-2015-01/254063 (basic science). Authors are grateful to academic authorities at CIAD, and to AlFaNutra research net.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo A. González Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ruiz Canizales, J. et al. (2018). Encapsulation to Protect Different Bioactives to Be Used as Nutraceuticals and Food Ingredients. In: Mérillon, JM., Ramawat, K. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54528-8_84-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54528-8_84-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54528-8

  • Online ISBN: 978-3-319-54528-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics