Encapsulation to Protect Different Bioactives to Be Used as Nutraceuticals and Food Ingredients

  • Jacqueline Ruiz Canizales
  • Gustavo R. Velderrain Rodríguez
  • J. Abraham Domínguez Avila
  • Alejandra M. Preciado Saldaña
  • Emilio Alvarez Parrilla
  • Mónica A. Villegas Ochoa
  • Gustavo A. González AguilarEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Consumers' awareness of the relationship between diet and health is increasing the demand for nutraceuticals and functional food products. They usually involve the incorporation of bioactive compounds extracted from plant tissues, or, in some cases, beneficial microorganism species known as probiotics. Incorporation of these compounds as functional ingredients has to overcome various challenges related to their stability during food processing or gastrointestinal tract, in order to guarantee that they exert health benefits after intake. An attractive strategy is the use of encapsulation technologies. Appropriate selection of encapsulation methods or core and carrier materials may influence most of the desired properties of the final food product. This chapter summarizes the main aspects to consider prior to developing nutraceutical or functional food products using encapsulated bioactive compounds.


Stability Encapsulation Biological activity Bioactive compound Probiotic 



The authors are particularly grateful to the National Council on Science and Technology (CONACYT) for partial financial support through project 563: “Un Enfoque Multidisciplinario de la Farmacocinética de Polifenoles de Mango Ataulfo: Interacciones Moleculares, Estudios Preclínicos y Clínicos,” CB-2012-01/179574 (basic science), CB-2015-01/254063 (basic science). Authors are grateful to academic authorities at CIAD, and to AlFaNutra research net.


  1. 1.
    Khalid N et al (2017) Formulation and characterization of monodisperse O/W emulsions encapsulating astaxanthin extracts using microchannel emulsification: insights of formulation and stability evaluation. Colloids Surf B Biointerfaces 157:355–365CrossRefGoogle Scholar
  2. 2.
    Ballesteros LF et al (2017) Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem 237:623–631CrossRefGoogle Scholar
  3. 3.
    Cheng A-W et al (2017) Effects of storage time and temperature on polyphenolic content and qualitative characteristics of freeze-dried and spray-dried bayberry powder. LWT Food Sci Technol 78:235–240CrossRefGoogle Scholar
  4. 4.
    Alexander M et al (2012) Incorporation of phytosterols in soy phospholipids nanoliposomes: encapsulation efficiency and stability. LWT Food Sci Technol 47(2):427–436CrossRefGoogle Scholar
  5. 5.
    Eckert C et al (2017) Microencapsulation of lactobacillus plantarum ATCC 8014 through spray drying and using dairy whey as wall materials. LWT Food Sci Technol 82:176–183CrossRefGoogle Scholar
  6. 6.
    Elez Garofulić I et al (2017) Retention of polyphenols in encapsulated sour cherry juice in dependence of drying temperature and wall material. LWT Food Sci Technol 83:110–117CrossRefGoogle Scholar
  7. 7.
    Vinceković M et al (2017) Innovative technologies for encapsulation of Mediterranean plants extracts. Trends Food Sci Technol 69(Part A):1–12CrossRefGoogle Scholar
  8. 8.
    Dias DR et al (2017) Encapsulation as a tool for bioprocessing of functional foods. Curr Opin Food Sci 13(Supplement C):31–37CrossRefGoogle Scholar
  9. 9.
    Ezhilarasi P et al (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6(3):628–647CrossRefGoogle Scholar
  10. 10.
    Quintanilla-Carvajal MX et al (2010) Nanoencapsulation: a new trend in food engineering processing. Food Eng Rev 2(1):39–50CrossRefGoogle Scholar
  11. 11.
    Agudelo C et al (2017) Phytochemical content and antioxidant activity of grapefruit (Star Ruby): a comparison between fresh freeze-dried fruits and different powder formulations. LWT Food Sci Technol 80:106–112CrossRefGoogle Scholar
  12. 12.
    Gharsallaoui A et al (2007) Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 40(9):1107–1121CrossRefGoogle Scholar
  13. 13.
    Jafari SM, Ghalegi Ghalenoei M, Dehnad D (2017) Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technol 311:59–65CrossRefGoogle Scholar
  14. 14.
    Luna-Guevara JJ et al (2017) Microencapsulation of walnut, peanut and pecan oils by spray drying. Food Struct 12:26–32CrossRefGoogle Scholar
  15. 15.
    Peabody J et al (2017) Characterization of a spray-dried candidate HPV L2-VLP vaccine stored for multiple years at room temperature. Papillomavirus Research 3:116–120Google Scholar
  16. 16.
    Leung SSY et al (2017) Effects of storage conditions on the stability of spray dried, inhalable bacteriophage powders. Int J Pharm 521(1–2):141–149CrossRefGoogle Scholar
  17. 17.
    Lao F, Giusti MM (2017) The effect of pigment matrix, temperature and amount of carrier on the yield and final color properties of spray dried purple corn (Zea mays L.) cob anthocyanin powders. Food Chem 227:376–382CrossRefGoogle Scholar
  18. 18.
    Bazaria B, Kumar P (2016) Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). J Saudi Soc Agric SciGoogle Scholar
  19. 19.
    Mohammed NK et al (2017) Process conditions of spray drying microencapsulation of Nigella sativa oil. Powder Technol 315:1–14CrossRefGoogle Scholar
  20. 20.
    Park H-J, Lee Y, Eun J-B (2016) Physicochemical characteristics of kimchi powder manufactured by hot air drying and freeze drying. Biocatal Agric Biotechnol 5:193–198Google Scholar
  21. 21.
    Evageliou V, Saliari D (2017) Limonene encapsulation in freeze dried gellan systems. Food Chem 223:72–75CrossRefGoogle Scholar
  22. 22.
    Prosapio V, Norton I (2017) Influence of osmotic dehydration pre-treatment on oven drying and freeze drying performance. LWT Food Sci Technol 80:401–408CrossRefGoogle Scholar
  23. 23.
    Cao X et al (2018) Effects of ultrasonic pretreatments on quality, energy consumption and sterilization of barley grass in freeze drying. Ultrason Sonochem 40:333–340CrossRefGoogle Scholar
  24. 24.
    Ydjedd S et al (2017) Effect of in vitro gastrointestinal digestion on encapsulated and nonencapsulated phenolic compounds of carob (Ceratonia siliqua L.) pulp extracts and their antioxidant capacity. J Agric Food Chem 65(4):827–835CrossRefGoogle Scholar
  25. 25.
    Peng Y et al (2018) Nanoemulsion delivery system of tea polyphenols enhanced the bioavailability of catechins in rats. Food Chem 242(Supplement C):527–532CrossRefGoogle Scholar
  26. 26.
    Krogsgård Nielsen C et al (2016) Enhancing the antibacterial efficacy of isoeugenol by emulsion encapsulation. Int J Food Microbiol 229:7–14CrossRefGoogle Scholar
  27. 27.
    Fan Q et al (2017) Partition and stability of resveratrol in whey protein isolate oil-in-water emulsion: impact of protein and calcium concentrations. Int Dairy J 73(Supplement C):128–135CrossRefGoogle Scholar
  28. 28.
    Katsouli M, Polychniatou V, Tzia C (2018) Optimization of water in olive oil nano-emulsions composition with bioactive compounds by response surface methodology. LWT 89(Supplement C):740–748CrossRefGoogle Scholar
  29. 29.
    Pérez-Mosqueda LM et al (2015) Formulation and optimization by experimental design of eco-friendly emulsions based on d-limonene. Colloids Surf B Biointerfaces 128(Supplement C):127–131CrossRefGoogle Scholar
  30. 30.
    Lepeltier E, Bourgaux C, Couvreur P (2014) Nanoprecipitation and the “Ouzo effect”: application to drug delivery devices. Adv Drug Del Rev 71(Supplement C):86–97CrossRefGoogle Scholar
  31. 31.
    Bilati U, Allémann E, Doelker E (2005) Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 24(1):67–75CrossRefGoogle Scholar
  32. 32.
    Khayata N et al (2012) Preparation of vitamin E loaded nanocapsules by the nanoprecipitation method: from laboratory scale to large scale using a membrane contactor. Int J Pharm 423(2):419–427CrossRefGoogle Scholar
  33. 33.
    Noronha CM et al (2013) Optimization of α-tocopherol loaded nanocapsules by the nanoprecipitation method. Ind Crop Prod 50(Supplement C):896–903CrossRefGoogle Scholar
  34. 34.
    Tzeng C-W et al (2011) Enhancement of dissolution and antioxidant activity of Kaempferol using a nanoparticle engineering process. J Agric Food Chem 59(9):5073–5080CrossRefGoogle Scholar
  35. 35.
    Silva JTDP et al (2017) Analytical validation of an ultraviolet–visible procedure for determining lutein concentration and application to lutein-loaded nanoparticles. Food Chem 230(Supplement C):336–342CrossRefGoogle Scholar
  36. 36.
    Dinesh Kumar V, Verma PRP, Singh SK (2015) Development and evaluation of biodegradable polymeric nanoparticles for the effective delivery of quercetin using a quality by design approach. LWT Food Sci Technol 61(2):330–338CrossRefGoogle Scholar
  37. 37.
    Liu W et al (2017) Kinetic stability and membrane structure of liposomes during in vitro infant intestinal digestion: effect of cholesterol and lactoferrin. Food Chem 230(Supplement C):6–13CrossRefGoogle Scholar
  38. 38.
    Liu W et al (2012) Structure and integrity of liposomes prepared from milk- or soybean-derived phospholipids during in vitro digestion. Food Res Int 48(2):499–506CrossRefGoogle Scholar
  39. 39.
    Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154(2):123–140CrossRefGoogle Scholar
  40. 40.
    Basiri L, Rajabzadeh G, Bostan A (2017) Physicochemical properties and release behavior of Span 60/Tween 60 niosomes as vehicle for α-Tocopherol delivery. LWT Food Sci Technol 84:471–478CrossRefGoogle Scholar
  41. 41.
    Ritwiset A, Krongsuk S, Johns JR (2016) Molecular structure and dynamical properties of niosome bilayers with and without cholesterol incorporation: a molecular dynamics simulation study. Appl Surf Sci 380(Supplement C):23–31CrossRefGoogle Scholar
  42. 42.
    Liang R et al (2016) Niosomes consisting of Tween-60 and cholesterol improve the chemical stability and antioxidant activity of (−)-epigallocatechin gallate under intestinal tract conditions. J Agric Food Chem 64(48):9180–9188CrossRefGoogle Scholar
  43. 43.
    Xu Y-Q et al (2016) Niosome encapsulation of curcumin: characterization and cytotoxic effect on ovarian cancer cells. J Nanomater 2016:9Google Scholar
  44. 44.
    Sharma P et al (2016) Novel encapsulation of lycopene in niosomes and assessment of its anti-cancer activity. J Bioequiv Bioavailab 8(5):224–232Google Scholar
  45. 45.
    Gavory C et al (2011) Polysaccharide-covered nanoparticles prepared by nanoprecipitation. Carbohydr Polym 84(1):133–140CrossRefGoogle Scholar
  46. 46.
    Bakowska-Barczak AM, Kolodziejczyk PP (2011) Black currant polyphenols: their storage stability and microencapsulation. Ind Crop Prod 34(2):1301–1309CrossRefGoogle Scholar
  47. 47.
    Sansone F et al (2011) Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. J Food Eng 105(3):468–476CrossRefGoogle Scholar
  48. 48.
    Bagheri L et al (2013) Nanoencapsulation of date palm pit extract in whey protein particles generated via desolvation method. Food Res Int 51(2):866–871CrossRefGoogle Scholar
  49. 49.
    Quiroz-Reyes CN et al (2014) Development and characterization of gelatin nanoparticles loaded with a cocoa-derived polyphenolic extract. Fruits 69(6):481–489CrossRefGoogle Scholar
  50. 50.
    Liu F et al (2017) A comparative study of covalent and non-covalent interactions between zein and polyphenols in ethanol-water solution. Food Hydrocoll 63(Supplement C):625–634CrossRefGoogle Scholar
  51. 51.
    Caddeo C et al (2016) Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer. Int J Pharm 513(1):153–163CrossRefGoogle Scholar
  52. 52.
    Pandita D et al (2014) Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res Int 62(Supplement C):1165–1174CrossRefGoogle Scholar
  53. 53.
    Sanchez V et al (2013) Freeze-drying encapsulation of red wine polyphenols in an amorphous matrix of maltodextrin. Food Bioprocess Technol 6(5):1350–1354CrossRefGoogle Scholar
  54. 54.
    Song QX et al (2014) Enhanced uptake and transport of (+)-catechin and (−)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells. Int J Nanomedicine 9(1):2157–2165CrossRefGoogle Scholar
  55. 55.
    Wang G et al (2015) Role of SIRT1-mediated mitochondrial and Akt pathways in glioblastoma cell death induced by Cotinus coggygria flavonoid nanoliposomes. Int J Nanomedicine 10(1):5005–5023Google Scholar
  56. 56.
    Saikia S, Mahnot NK, Mahanta CL (2015) Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food Chem 171:144–152CrossRefGoogle Scholar
  57. 57.
    Motilva MJ et al (2016) Human bioavailability and metabolism of phenolic compounds from red wine enriched with free or nano-encapsulated phenolic extract. J Funct Foods 25:80–93CrossRefGoogle Scholar
  58. 58.
    Estevinho BN et al (2016) Soluble vitamins (vitamin B12 and vitamin C) microencapsulated with different biopolymers by a spray drying process. Powder Technol 289:71–78CrossRefGoogle Scholar
  59. 59.
    Avinash G, Purnima A (2017) Microencapsulation by spray drying of vitamin a palmitate from oil to powder and its application in topical delivery system. J Encapsul Adsorpt Sci 7(1):10–39CrossRefGoogle Scholar
  60. 60.
    Gamboa OD, Goncalves LG, Grosso CF (2011) Microencapsulation of tocopherols in lipid matrix by spray chilling method. 11th international congress on engineering and food (ICEF11) 1:1732–1739Google Scholar
  61. 61.
    Wagner ME et al (2016) Stability of niosomes with encapsulated vitamin D-3 and ferrous sulfate generated using a novel supercritical carbon dioxide method. J Liposome Res 26(4):261–268CrossRefGoogle Scholar
  62. 62.
    Ruiz-Rico M et al (2017) Protection of folic acid through encapsulation in mesoporous silica particles included in fruit juices. Food Chem 218:471–478CrossRefGoogle Scholar
  63. 63.
    Anandharamakrishnan C (2014) Nanoencapsulation of food bioactive compounds. In: Techniques for nanoencapsulation of food ingredients. Springer New York, New York, pp 1–6CrossRefGoogle Scholar
  64. 64.
    Jafari SM (2017) An overview of nanoencapsulation techniques and their classification. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Elsevier, p 1–34Google Scholar
  65. 65.
    Singh H, Ye A, Thompson A (2009) Nanoencapsulation systems based on milk proteins and phospholipids. ACS Publications, Washington, DCGoogle Scholar
  66. 66.
    Kim H et al (2016) Comparison of anti-inflammatory mechanisms of mango (Mangifera Indica L.) and pomegranate (Punica Granatum L.) in a preclinical model of colitis. Mol Nutr Food Res 60(9):1912–1923CrossRefGoogle Scholar
  67. 67.
    Gawlik M et al (2017) Manganese neurotoxicity and protective effects of resveratrol and quercetin in preclinical research. Pharmacol Rep 69(2):322–330CrossRefGoogle Scholar
  68. 68.
    Zamora-Ros R et al (2013) High concentrations of a urinary biomarker of polyphenol intake are associated with decreased mortality in older adults. J Nutr 143(9):1445–1450CrossRefGoogle Scholar
  69. 69.
    Zamora-Ros R et al (2016) Urinary excretions of 34 dietary polyphenols and their associations with lifestyle factors in the EPIC cohort study. Sci Rep 6:26905CrossRefGoogle Scholar
  70. 70.
    Fang Z, Bhandari B (2010) Encapsulation of polyphenols – a review. Trends Food Sci Technol 21(10):510–523CrossRefGoogle Scholar
  71. 71.
    Wang X, Wang Y-W, Huang Q (2009) Enhancing stability and oral bioavailability of polyphenols using nanoemulsions. ACS Publications, Washington, DCGoogle Scholar
  72. 72.
    Chung C et al (2015) Enhanced stability of anthocyanin-based color in model beverage systems through whey protein isolate complexation. Food Res Int 76:761–768CrossRefGoogle Scholar
  73. 73.
    Ko A et al (2017) Stabilization of black soybean anthocyanin by chitosan nanoencapsulation and copigmentation. J Food Biochem 41(2):e12316CrossRefGoogle Scholar
  74. 74.
    Han HJ et al (2015) Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity. Colloids Surf B Biointerfaces 130:93–100CrossRefGoogle Scholar
  75. 75.
    Jeon YO, Lee J-S, Lee HG (2016) Improving solubility, stability, and cellular uptake of resveratrol by nanoencapsulation with chitosan and γ-poly (glutamic acid). Colloids Surf B Biointerfaces 147:224–233CrossRefGoogle Scholar
  76. 76.
    Pan K et al (2014) pH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity. Soft Matter 10(35):6820–6830CrossRefGoogle Scholar
  77. 77.
    Zou L et al (2016) Food-grade nanoparticles for encapsulation, protection and delivery of curcumin: comparison of lipid, protein, and phospholipid nanoparticles under simulated gastrointestinal conditions. RSC Adv 6(4):3126–3136CrossRefGoogle Scholar
  78. 78.
    Sadeghi S, Madadlou A, Yarmand M (2014) Microemulsification – cold gelation of whey proteins for nanoencapsulation of date palm pit extract. Food Hydrocoll 35(Supplement C):590–596CrossRefGoogle Scholar
  79. 79.
    Belščak-Cvitanović A et al (2016) Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food Hydrocoll 57(Supplement C):139–152CrossRefGoogle Scholar
  80. 80.
    Rokka S, Rantamäki P (2010) Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur Food Res Technol 231(1):1–12CrossRefGoogle Scholar
  81. 81.
    Scully P et al (2013) Bifidobacterium infantis suppression of Peyer’s patch MIP-1α and MIP-1β secretion during salmonella infection correlates with increased local CD4+ CD25+ T cell numbers. Cell Immunol 281(2):134–140CrossRefGoogle Scholar
  82. 82.
    Dong QY et al (2013) Alginate-based and protein-based materials for probiotics encapsulation: a review. Int J Food Sci Tech 48(7):1339–1351CrossRefGoogle Scholar
  83. 83.
    de Vos P et al (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20(4):292–302CrossRefGoogle Scholar
  84. 84.
    Sarkar S (2010) Approaches for enhancing the viability of probiotics: a review. Br Food J 112(4):329–349CrossRefGoogle Scholar
  85. 85.
    Gbassi GK, Vandamme T (2012) Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics 4(1):149–163CrossRefGoogle Scholar
  86. 86.
    Heidebach T, Först P, Kulozik U (2012) Microencapsulation of probiotic cells for food applications. Crit Rev Food Sci Nutr 52(4):291–311CrossRefGoogle Scholar
  87. 87.
    Brinques GB, Ayub MAZ (2011) Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. J Food Eng 103(2):123–128CrossRefGoogle Scholar
  88. 88.
    González-Sánchez F et al (2010) Viability of microencapsulated Bifidobacterium animalis ssp. lactis BB12 in kefir during refrigerated storage. Int J Dairy Technol 63(3):431–436CrossRefGoogle Scholar
  89. 89.
    Homayouni A et al (2008) Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chem 111(1):50–55CrossRefGoogle Scholar
  90. 90.
    Possemiers S et al (2010) Bacteria and chocolate: a successful combination for probiotic delivery. Int J Food Microbiol 141(1):97–103CrossRefGoogle Scholar
  91. 91.
    Borges S et al (2012) Effects of encapsulation on the viability of probiotic strains exposed to lethal conditions. Int J Food Sci Tech 47(2):416–421CrossRefGoogle Scholar
  92. 92.
    Sandoval-Castilla O et al (2010) Textural properties of alginate–pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Res Int 43(1):111–117CrossRefGoogle Scholar
  93. 93.
    Todorov SD, LeBlanc JG, Franco BD (2012) Evaluation of the probiotic potential and effect of encapsulation on survival for Lactobacillus plantarum ST16Pa isolated from papaya. World J Microbiol Biotechnol 28(3):973–984CrossRefGoogle Scholar
  94. 94.
    Thantsha MS et al (2009) Supercritical carbon dioxide interpolymer complexes improve survival of B. longum Bb-46 in simulated gastrointestinal fluids. Int J Food Microbiol 129(1):88–92CrossRefGoogle Scholar
  95. 95.
    Sabikhi L et al (2010) Resistance of microencapsulated Lactobacillus acidophilus LA1 to processing treatments and simulated gut conditions. Food Bioprocess Technol 3(4):586–593CrossRefGoogle Scholar
  96. 96.
    Papagianni M, Anastasiadou S (2009) Encapsulation of Pediococcus acidilactici cells in corn and olive oil microcapsules emulsified by peptides and stabilized with xanthan in oil-in-water emulsions: studies on cell viability under gastro-intestinal simulating conditions. Enzym Microb Technol 45(6):514–522CrossRefGoogle Scholar
  97. 97.
    Kailasapathy K (2009) Encapsulation technologies for functional foods and nutraceutical product development. CAB Rev: Perspect Agric Vet Sci Nutr Nat Resour 4(033):1–19CrossRefGoogle Scholar
  98. 98.
    Nag A, Han K-S, Singh H (2011) Microencapsulation of probiotic bacteria using pH-induced gelation of sodium caseinate and gellan gum. Int Dairy J 21(4):247–253CrossRefGoogle Scholar
  99. 99.
    Sousa S et al (2012) Encapsulation of probiotic strains in plain or cysteine-supplemented alginate improves viability at storage below freezing temperatures. Eng Life Sci 12(4):457–465CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jacqueline Ruiz Canizales
    • 1
  • Gustavo R. Velderrain Rodríguez
    • 1
  • J. Abraham Domínguez Avila
    • 1
  • Alejandra M. Preciado Saldaña
    • 1
  • Emilio Alvarez Parrilla
    • 2
  • Mónica A. Villegas Ochoa
    • 1
  • Gustavo A. González Aguilar
    • 1
    Email author
  1. 1.Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a La Victoria km 0.6, HermosilloSonoraMexico
  2. 2.Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez. Anillo Envolvente del PRONAF y Estocolmo s/n. Cd. JuárezChihuahuaMexico

Personalised recommendations