Advertisement

Bioactive Molecules in Edible and Medicinal Mushrooms for Human Wellness

  • Chia-Wei Phan
  • Elson Yi-Yong Tan
  • Vikineswary Sabaratnam
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Mushrooms are now gaining popularity not only as an ordinary culinary ingredient, but as a healthy and whole functional food. This chapter describes three major categories of bioactive molecules found in edible and medicinal mushrooms. First is the mushroom’s polysaccharide which is widely accepted as a superior immune-modulatory agent. The mushroom β-glucans differ from the bacterial and plant glucans. Mushroom β-glucans consist of linear β-(1→3)-linked backbones with β-(1→6)-linked side chains of varying length and distribution. Several important β-glucans like lentinan, schizophyllan, grifolan, as well as polysaccharide krestin (PSK) and polysaccharopeptide, will be discussed. Next, the triterpenes family, which are highly conserved in Ganoderma species, will be elaborated further in this chapter. Finally, the indole alkaloids, which are important in mushroom as pigmentation inducer and hallucinogens, will be briefly discussed with emphasis on the psilocin and its derivatives. Other pharmacologically important mushroom-derived alkaloids will also be included. Overall, the potential to develop mushrooms as nutraceutical foods for human wellness, and their bioactive molecules for drugs, is huge.

Keywords

Mushroom Polysaccharide Glucans Triterpenes Alkaloid Indole 

Notes

Acknowledgments

We acknowledge the support of this work by the University of Malaya BKP grant (BK011-2017). This work was also supported by the University of Malaya High Impact Research MoE Grants, namely UM.C/625/1/HIR/MoE/SC/02 and UM.C/625/1/HIR/MOHE/ASH/01(H-23001-G000008).

References

  1. 1.
    Chang S, Miles P (1992) Mushroom biology – a new discipline. Mycologist 6:64–65CrossRefGoogle Scholar
  2. 2.
    Miles PG, Chang ST (1997) Mushroom biology: concise basics and current developents. World Scientific, SingaporeCrossRefGoogle Scholar
  3. 3.
    Chang S-T, Buswell JA (2008) Development of the world mushroom industry: applied mushroom biology and international mushroom organizations. Int J Med Mush 10:195–208.  https://doi.org/10.1615/IntJMedMushr.v10.i3.10 CrossRefGoogle Scholar
  4. 4.
    Lindequist U, Niedermeyer THJ, Jülich W-D (2005) The pharmacological potential of mushrooms. Evid Based Complement Alternat Med 2:285–299.  https://doi.org/10.1093/ecam/neh107 CrossRefGoogle Scholar
  5. 5.
    Mat-Amin MZ, Harun A, Abdul-Wahab MAM (2014) Status and potential of mushroom industry in Malaysia. Econ Technol Manag Rev 9b:103–111Google Scholar
  6. 6.
    Chang ST (1996) Mushroom research and development - equality and mutual benefit. In: Royse DJ (ed) Mushroom biology and mushroom products. Pennsylvania State University, University Park, pp 1–10Google Scholar
  7. 7.
    Phan C-W, Sabaratnam V (2012) Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl Microbiol Biotechnol 96:863–873.  https://doi.org/10.1007/s00253-012-4446-9 CrossRefGoogle Scholar
  8. 8.
    Adenipekun C, Lawal R (2012) Uses of mushrooms in bioremediation: a review. Biotechnol Mol Biol Rev 7:62–68.  https://doi.org/10.5897/BMBR12.006 Google Scholar
  9. 9.
    Kulshreshtha S, Mathur N, Bhatnagar P (2014) Mushroom as a product and their role in mycoremediation. AMB Express 4:1–7.  https://doi.org/10.1186/s13568-014-0029-8 CrossRefGoogle Scholar
  10. 10.
    Rathore H, Prasad S, Sharma S (2017) Mushroom nutraceuticals for improved nutrition and better human health: a review. Pharm Nutr 5:35–46.  https://doi.org/10.1016/j.phanu.2017.02.001 Google Scholar
  11. 11.
    Roupas P, Keogh J, Noakes M et al (2012) The role of edible mushrooms in health: evaluation of the evidence. J Funct Foods 4:687–709.  https://doi.org/10.1016/j.jff.2012.05.003 CrossRefGoogle Scholar
  12. 12.
    Zhao R, He Y (2018) Network pharmacology analysis of the anti-cancer pharmacological mechanisms of Ganoderma lucidum extract with experimental support using Hepa1-6-bearing C57 BL/6 mice. J Ethnopharmacol 210:287–295.  https://doi.org/10.1016/j.jep.2017.08.041 CrossRefGoogle Scholar
  13. 13.
    Yu Y, Qian L, Du NAN et al (2017) Ganoderma lucidum polysaccharide enhances radiosensitivity of hepatocellular carcinoma cell line HepG2 through Akt signaling pathway. Exp Ther Med 14:5903–5907.  https://doi.org/10.3892/etm.2017.5340 Google Scholar
  14. 14.
    Qu L, Li S, Zhuo Y et al (2017) Anticancer effect of triterpenes from Ganoderma lucidum in human prostate cancer cells. Oncol Lett 14:7467–7472.  https://doi.org/10.3892/ol.2017.7153 CrossRefGoogle Scholar
  15. 15.
    Zhao X, Zhou D, Liu Y et al (2018) Ganoderma lucidum polysaccharide inhibits prostate cancer cell migration via the protein arginine methyltransferase 6 signaling pathway. Mol Med Rep 17:147–157.  https://doi.org/10.3892/mmr.2017.7904 Google Scholar
  16. 16.
    Hsu P, Lin Y, Yeh E et al (2017) Cordycepin and a preparation from Cordyceps militaris inhibit malignant transformation and proliferation by decreasing EGFR and IL-17RA signaling in a murine oral cancer model. Oncotarget 8:93712–93728Google Scholar
  17. 17.
    Chaicharoenaudomrung N, Jaroonwitchawan T, Noisa P (2018) Toxicology in vitro cordycepin induces apoptotic cell death of human brain cancer through the modulation of autophagy. Toxicol in Vitro 46:113–121.  https://doi.org/10.1016/j.tiv.2017.10.002 CrossRefGoogle Scholar
  18. 18.
    Lee JS, Lee KR, Lee S et al (2017) Polysaccharides isolated from liquid culture broth of Inonotus obliquus inhibit the invasion of human non-small cell lung carcinoma. Cell 51:45–51.  https://doi.org/10.1007/s12257-016-0458-0 Google Scholar
  19. 19.
    Zhao F, Xia G, Chen L et al (2016) Chemical constituents from Inonotus obliquus and their antitumor activities. J Nat Med 70:721–730.  https://doi.org/10.1007/s11418-016-1002-4 CrossRefGoogle Scholar
  20. 20.
    Zhao Y, Wang J, Wu Z et al (2016) Extraction, purification and anti-proliferative activities of polysaccharides from Lentinus edodes. Int J Biol Macromol 93:136–144.  https://doi.org/10.1016/j.ijbiomac.2016.05.100 CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Liu W, Xu C et al (2017) Characterization and antiproliferative effect of novel acid polysaccharides from the spent substrate of shiitake culinary-medicinal mushroom Lentinus edodes (Agaricomycetes) cultivation. Int J Med Mush 19:395–403.  https://doi.org/10.1615/IntJMedMushrooms.v19.i5.20 CrossRefGoogle Scholar
  22. 22.
    Klimaszewska M, Górska S, Dawidowski M et al (2017) Selective cytotoxic activity of Se-Methyl-Seleno-L-Cysteine– and Se-Polysaccharide–containing extracts from shiitake medicinal mushroom, Lentinus edodes (Agaricomycetes). Int J Med Mush 19:709–716.  https://doi.org/10.1615/IntJMedMushrooms.2017021250 CrossRefGoogle Scholar
  23. 23.
    Zhao F, Wang YF, Song L et al (2017) Synergistic apoptotic effect of D-fraction from Grifola frondosa and vitamin C on hepatocellular carcinoma SMMC-7721 cells. Integr Cancer Ther 16:205–214.  https://doi.org/10.1177/1534735416644674 CrossRefGoogle Scholar
  24. 24.
    Alonso EN, Ferronato MJ, Gandini NA et al (2017) Antitumoral effects of D-fraction from Grifola Frondosa (Maitake) mushroom in breast cancer. Nutr Cancer 69:29–43.  https://doi.org/10.1080/01635581.2017.1247891 CrossRefGoogle Scholar
  25. 25.
    Meng M, Cheng D, Han L et al (2017) Isolation, purification, structural analysis and immunostimulatory activity of water-soluble polysaccharides from Grifola frondosa fruiting body. Carbohydr Polym 157:1134–1143.  https://doi.org/10.1016/j.carbpol.2016.10.082 CrossRefGoogle Scholar
  26. 26.
    Ko C-H, Yue GG-L, Gao S et al (2017) Evaluation of the combined use of metronomic zoledronic acid and Coriolus versicolor in intratibial breast cancer mouse model. J Ethnopharmacol 204:77–85.  https://doi.org/10.1016/j.jep.2017.04.007 CrossRefGoogle Scholar
  27. 27.
    Awadasseid A, Hou J, Gamallat Y et al (2017) Purification, characterization, and antitumor activity of a novel glucan from the fruiting bodies of Coriolus versicolor. PLoS One 12:1–15.  https://doi.org/10.1371/journal.pone.0171270 CrossRefGoogle Scholar
  28. 28.
    Zhang L, Li CG, Liang H, Reddy N (2017) Bioactive mushroom polysaccharides: immunoceuticals to anticancer agents. J Nutr Food Sci 2:6Google Scholar
  29. 29.
    Zhu F, Du B, Bian Z, Xu B (2015) β-glucans from edible and medicinal mushrooms: characteristics, physicochemical and biological activities. J Food Compos Anal 41:165–173.  https://doi.org/10.1016/j.jfca.2015.01.019 CrossRefGoogle Scholar
  30. 30.
    Brown GD, Gordon S (2005) Immune recognition of fungal β-glucans. Cell Microbiol 7:471–479.  https://doi.org/10.1111/j.1462-5822.2005.00505.x CrossRefGoogle Scholar
  31. 31.
    Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60:258–274.  https://doi.org/10.1007/s00253-002-1076-7 CrossRefGoogle Scholar
  32. 32.
    Friedman M (2016) Mushroom polysaccharides: chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods 5:80.  https://doi.org/10.3390/foods5040080 CrossRefGoogle Scholar
  33. 33.
    Chihara G, Maeda Y, Hamuro J et al (1969) Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) sing. Nature 222:687–688.  https://doi.org/10.1038/222687a0 CrossRefGoogle Scholar
  34. 34.
    Finimundy TC, Dillon AJP, Henriques JAP, Ely MR (2014) A review on general nutritional compounds and pharmacological properties of the Lentinula edodes mushroom. Food Nutr Sci 5:1095–1105.  https://doi.org/10.4236/fns.2014.512119 CrossRefGoogle Scholar
  35. 35.
    Zhang M, Cui SW, Cheung PCK, Wang Q (2007) Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Technol 18:4–19.  https://doi.org/10.1016/j.tifs.2006.07.013 CrossRefGoogle Scholar
  36. 36.
    Gregory F (1966) Studies on antitumor substances produced by. Basidiomycetes. Mycologia 58:80–90CrossRefGoogle Scholar
  37. 37.
    Xu SL, Choi RCY, Zhu KY et al (2012) Isorhamnetin, a flavonol aglycone from Ginkgo biloba L., induces neuronal differentiation of cultured PC12 cells: potentiating the effect of nerve growth factor. Evid Based Complement Alternat Med 2012:278273.  https://doi.org/10.1155/2012/278273 Google Scholar
  38. 38.
    Zhang M, Zhang L, Cheung PC et al (2003) Fractionation and characterization of a polysaccharide from the sclerotia of Pleurotus tuber- regium by preparative size-exclusion chromatography. J Biochem Biophys Methods 30:281-9.Google Scholar
  39. 39.
    Xiao J-H, Xiao D-M, Chen D-X et al (2012) Polysaccharides from the medicinal mushroom Cordyceps taii show antioxidant and immunoenhancing activities in a D-galactose-induced aging mouse model. Evid Based Complement Alternat Med 2012:273435.  https://doi.org/10.1155/2012/273435 Google Scholar
  40. 40.
    Ren L, Perera C, Hemar Y (2012) Antitumor activity of mushroom polysaccharides: a review. Food Funct 3:1118.  https://doi.org/10.1039/c2fo10279j CrossRefGoogle Scholar
  41. 41.
    Ahn H, Jeon E, Kim JC et al (2017) Lentinan from shiitake selectively attenuates AIM2 and non-canonical inflammasome activation while inducing pro-inflammatory cytokine production. Sci Rep 7:1–12.  https://doi.org/10.1038/s41598-017-01462-4 CrossRefGoogle Scholar
  42. 42.
    Zhang Q, Hu M, Xu L et al (2017) Effect of edible fungal polysaccharides on improving influenza vaccine protection in mice. Food Agric Immunol 28:981–992.  https://doi.org/10.1080/09540105.2017.1323326 CrossRefGoogle Scholar
  43. 43.
    Shinbo T, Fushida S, Tsukada T et al (2015) Protein-bound polysaccharide K suppresses tumor fibrosis in gastric cancer by inhibiting the TGF-β signaling pathway. Oncol Rep 33:553–558.  https://doi.org/10.3892/or.2014.3636 CrossRefGoogle Scholar
  44. 44.
    Sun C, Rosendahl a H, Wang XD et al (2012) Polysaccharide-K (PSK) in cancer – old story, new possibilities? Curr Med Chem 19:757–762CrossRefGoogle Scholar
  45. 45.
    Ma Y, Wu X, Yu J et al (2017) Can polysaccharide K improve therapeutic efficacy and safety in gastrointestinal cancer? A systematic review and network meta- analysis. Oncotarget 8:89108–89118Google Scholar
  46. 46.
    Fritz H, Kennedy DA, Ishii M et al (2015) Polysaccharide K and Coriolus versicolor extracts for lung cancer: a systematic review. Integr Cancer Ther 14:201–211.  https://doi.org/10.1177/1534735415572883 CrossRefGoogle Scholar
  47. 47.
    Feng ZL, Fang TJ, Qian YX, Rong WH (2014) The clinical research for Ganoderan’s effect on preventing and treating cerebral arteriosclerosis through inhibiting NADPH oxidizing enzyme expression. Pak J Pharm Sci 27:1107–1111Google Scholar
  48. 48.
    Zhong W-D, He H-C, Ou R-B et al (2008) Protective effect of ganoderan on renal damage in rats with chronic glomerulonephritis. Clin Invest Med 31:E212–E217CrossRefGoogle Scholar
  49. 49.
    Jesenak M, Urbancek S, Majtan J et al (2016) β -Glucan-based cream (containing pleuran isolated from pleurotus ostreatus ) in supportive treatment of mild-to-moderate atopic dermatitis. J Dermatol Treat 27:351–354.  https://doi.org/10.3109/09546634.2015.1117565 CrossRefGoogle Scholar
  50. 50.
    Kanagasabapathy G, Malek SNA, Kuppusamy UR, Vikineswary S (2011) Chemical composition and antioxidant properties of extracts of fresh fruiting bodies of Pleurotus sajor-caju (Fr.) singer. J Agric Food Chem 59:2618–2626.  https://doi.org/10.1021/jf104133g CrossRefGoogle Scholar
  51. 51.
    Kanagasabapathy G, Chua KH, Malek SNA et al (2014) AMP-activated protein kinase mediates insulin-like and lipo-mobilising effects of β-glucan-rich polysaccharides isolated from Pleurotus sajor-caju (Fr.), singer mushroom, in 3T3-L1 cells. Food Chem 145:198–204.  https://doi.org/10.1016/j.foodchem.2013.08.051 CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Kong H, Fang Y et al (2013) Schizophyllan: a review on its structure, properties, bioactivities and recent developments. Bioact Carbohydr Diet Fibre 1:53–71.  https://doi.org/10.1016/j.bcdf.2013.01.002 CrossRefGoogle Scholar
  53. 53.
    Leathers TD, Nunnally MS, Stanley AM, Rich JO (2016) Utilization of corn fiber for production of schizophyllan. Biomass Bioenergy 95:132–136.  https://doi.org/10.1016/j.biombioe.2016.10.001 CrossRefGoogle Scholar
  54. 54.
    Asgher M, Wahab A, Bilal M, Nasir Iqbal HM (2016) Lignocellulose degradation and production of lignin modifying enzymes by Schizophyllum commune IBL-06 in solid-state fermentation. Biocatal Agric Biotechnol 6:195–201.  https://doi.org/10.1016/j.bcab.2016.04.003 Google Scholar
  55. 55.
    Singdevsachan SK, Auroshree P, Mishra J et al (2016) Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: a review. Bioact Carbohydr Diet Fibre 7:1–14.  https://doi.org/10.1016/j.bcdf.2015.11.001 CrossRefGoogle Scholar
  56. 56.
    Jamshidian H, Shojaosadati SA, Mohammad Mousavi S et al (2017) Implications of recovery procedures on structural and rheological properties of schizophyllan produced from date syrup. Int J Biol Macromol 105:36–44.  https://doi.org/10.1016/j.ijbiomac.2017.06.110 CrossRefGoogle Scholar
  57. 57.
    Sutivisedsak N, Leathers TD, Biresaw G et al (2016) Simplified process for preparation of schizophyllan solutions for biomaterial applications. Prep Biochem Biotechnol 46:313–319.  https://doi.org/10.1080/10826068.2015.1031392 CrossRefGoogle Scholar
  58. 58.
    Ng SH, Mohd Zain MS, Zakaria F et al (2015) Hypoglycemic and antidiabetic effect of Pleurotus sajor-caju aqueous extract in normal and streptozotocin-induced diabetic rats. Biomed Res Int 2015:1–8.  https://doi.org/10.1155/2015/214918 Google Scholar
  59. 59.
    Mao CF, Hsu MC, Hwang WH (2007) Physicochemical characterization of grifolan: thixotropic properties and complex formation with Congo red. Carbohydr Polym 68:502–510.  https://doi.org/10.1016/j.carbpol.2006.11.003 CrossRefGoogle Scholar
  60. 60.
    Suzuki I, Takeyama T, Ohno N et al (1987) Antitumor effect of polysaccharide grifolan NMF-5N on syngeneic tumor in mice. J Pharmacobiodyn 10:72–77CrossRefGoogle Scholar
  61. 61.
    El Enshasy HA, Hatti-Kaul R (2013) Mushroom immunomodulators: unique molecules with unlimited applications. Trends Biotechnol 31:668–677.  https://doi.org/10.1016/j.tibtech.2013.09.003 CrossRefGoogle Scholar
  62. 62.
    Jayachandran M, Xiao J, Xu B (2017) A critical review on health promoting benefits of edible mushrooms through gut microbiota. Int J Mol Sci 18:1934.  https://doi.org/10.3390/ijms18091934 CrossRefGoogle Scholar
  63. 63.
    Zhou Y, Yang X, Yang Q (2006) Recent advances on triterpenes from ganoderma mushroom. Food Rev Int 22:259–273.  https://doi.org/10.1080/87559120600694739 CrossRefGoogle Scholar
  64. 64.
    Sliva D (2003) Ganoderma lucidum (Reishi) in cancer treatment. Integr Cancer Ther 2:358–364.  https://doi.org/10.1177/1534735403259066 CrossRefGoogle Scholar
  65. 65.
    Min BS, Nakamura N, Miyashiro H et al (1998) Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem Pharm Bull (Tokyo) 46:1607–1612CrossRefGoogle Scholar
  66. 66.
    Min BS, Gao JJ, Nakamura N, Hattori M (2000) Triterpenes from the spores of Ganoderma lucidum and their cytotoxicity against meth-A and LLC tumor cells. Chem Pharm Bull (Tokyo) 48:1026–1033CrossRefGoogle Scholar
  67. 67.
    Cheng P-G, Phan C-W, Sabaratnam V et al (2013) Polysaccharides-rich extract of Ganoderma lucidum (M.A. Curtis:Fr.) P. Karst accelerates wound healing in streptozotocin-induced diabetic rats. Evid Based Complement Alternat Med 2013:1–9.  https://doi.org/10.1155/2013/671252 Google Scholar
  68. 68.
    Zapata P, Rojas D, Atehortúa L (2012) Production of biomass, polysaccharides, and ganoderic acid using non-conventional carbon sources under submerged culture of the Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.) P. Karst. (Higher Basidiomycetes). Int J Med Mush 14:197–203CrossRefGoogle Scholar
  69. 69.
    el-Mekkawy S, Meselhy MR, Nakamura N et al (1998) Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry 49:1651–1657CrossRefGoogle Scholar
  70. 70.
    You B-J, Tien N, Lee M-H et al (2017) Induction of apoptosis and ganoderic acid biosynthesis by cAMP signaling in Ganoderma lucidum. Sci Rep 7:318.  https://doi.org/10.1038/s41598-017-00281-x CrossRefGoogle Scholar
  71. 71.
    Zhang X, Ip F, Zhang D et al (2011) Triterpenoids with neurotrophic activity from Ganoderma lucidum. Nat Prod Res 25:1607–1613CrossRefGoogle Scholar
  72. 72.
    Chi B, Wang S, Bi S et al (2017) Effects of ganoderic acid A on lipopolysaccharide-induced proinflammatory cytokine release from primary mouse microglia cultures. Exp Ther Med 15:847–853.  https://doi.org/10.3892/etm.2017.5472 Google Scholar
  73. 73.
    Su HJ, Fann YF, Chung MI et al (2000) New lanostanoids of Ganoderma tsugae. J Nat Prod 63:514–516.  https://doi.org/10.1021/np990367l CrossRefGoogle Scholar
  74. 74.
    González AG, León F, Rivera A et al (2002) New lanostanoids from the fungus Ganoderma concinna. J Nat Prod 65:417–421.  https://doi.org/10.1021/np010143e CrossRefGoogle Scholar
  75. 75.
    Mothana RAA, Awadh Ali NA, Jansen R et al (2003) Antiviral lanostanoid triterpenes from the fungus Ganoderma pfeifferi. Fitoterapia 74:177–180.  https://doi.org/10.1016/S0367-326X(02)00305-2 CrossRefGoogle Scholar
  76. 76.
    El Dine RS, El Halawany AM, Ma CM, Hattori M (2008) Anti-HIV-1 protease activity of lanostane triterpenes from the Vietnamese mushroom Ganoderma colossum. J Nat Prod 71:1022–1026.  https://doi.org/10.1021/np8001139 CrossRefGoogle Scholar
  77. 77.
    Baby S, Johnson AJ, Govindan B (2015) Secondary metabolites from Ganoderma. Phytochemistry 114:66–101.  https://doi.org/10.1016/j.phytochem.2015.03.010 CrossRefGoogle Scholar
  78. 78.
    Weng C-J, Fang P-S, Chen D-H et al (2010) Anti-invasive effect of a rare mushroom, Ganoderma colossum, on human hepatoma cells. J Agric Food Chem 58:7657–7663.  https://doi.org/10.1021/jf101464h CrossRefGoogle Scholar
  79. 79.
    Chen X-Q, Chen L-X, Zhao J et al (2017) Nortriterpenoids from the fruiting bodies of the mushroom Ganoderma resinaceum. Molecules 22:1073.  https://doi.org/10.3390/molecules22071073 CrossRefGoogle Scholar
  80. 80.
    Tohtahon Z, Xue J, Han J et al (2017) Cytotoxic lanostane triterpenoids from the fruiting bodies of Piptoporus betulinus. Phytochemistry 143:98–103.  https://doi.org/10.1016/J.PHYTOCHEM.2017.07.013 CrossRefGoogle Scholar
  81. 81.
    Pleszczyńska M, Lemieszek MK, Siwulski M et al (2017) Fomitopsis betulina (formerly Piptoporus betulinus): the Iceman’s polypore fungus with modern biotechnological potential. World J Microbiol Biotechnol 33:1–12.  https://doi.org/10.1007/s11274-017-2247-0 CrossRefGoogle Scholar
  82. 82.
    Peintner U, Pöder R, Pümpel T (1998) The iceman’s fungi. Mycol Res 102:1153–1162.  https://doi.org/10.1017/S0953756298006546 CrossRefGoogle Scholar
  83. 83.
    Vunduk J, Klaus A, Kozarski M et al (2015) Did the iceman know better? Screening of the medicinal properties of the Birch Polypore medicinal mushroom, Piptoporus betulinus (Higher Basidiomycetes). Int J Med Mush 17:1113–1125.  https://doi.org/10.1615/IntJMedMushrooms.v17.i12.10 CrossRefGoogle Scholar
  84. 84.
    Pleszczyńska M, Wiater A, Siwulski M et al (2016) Cultivation and utility of Piptoporus betulinus fruiting bodies as a source of anticancer agents. World J Microbiol Biotechnol 32:151.  https://doi.org/10.1007/s11274-016-2114-4 CrossRefGoogle Scholar
  85. 85.
    Phosri C, Watling R, Suwannasai N et al (2014) A new representative of star-shaped fungi: Astraeus sirindhorniae sp. nov. from Thailand. PLoS One 9:e71160.  https://doi.org/10.1371/journal.pone.0071160 CrossRefGoogle Scholar
  86. 86.
    Isaka M, Palasarn S, Srikitikulchai P et al (2016) Astraeusins A – L, lanostane triterpenoids from the edible mushroom Astraeus odoratus. Tetrahedron 72:1–2.  https://doi.org/10.1016/j.tet.2016.04.057 CrossRefGoogle Scholar
  87. 87.
    Srisurichan S, Piapukiew J, Puthong S, Pornpakakul S (2017) Lanostane triterpenoids, spiro-astraodoric acid, and astraodoric acids E and F, from the edible mushroom Astraeus odoratus. Phytochem Lett 21:78–83.  https://doi.org/10.1016/j.phytol.2017.05.020 CrossRefGoogle Scholar
  88. 88.
    Gargano ML, van Griensven LJLD, Isikhuemhen OS et al (2017) Medicinal mushrooms: valuable biological resources of high exploitation potential. Plant Biosyst 151:548–565.  https://doi.org/10.1080/11263504.2017.1301590 CrossRefGoogle Scholar
  89. 89.
    Homer JA, Sperry J (2017) Mushroom-derived indole alkaloids. J Nat Prod 80:2178–2187.  https://doi.org/10.1021/acs.jnatprod.7b00390 CrossRefGoogle Scholar
  90. 90.
    Tsujikawa K, Kanamori T, Iwata Y et al (2003) Morphological and chemical analysis of magic mushrooms in Japan. Forensic Sci Int 138:85–90.  https://doi.org/10.1016/j.forsciint.2003.08.009 CrossRefGoogle Scholar
  91. 91.
    Kovacic P, Somanathan R, Abadjian M-C (2015) Natural monophenols as therapeutics, antioxidants and toxins; Electron transfer, radicals and oxidative stress. Nat Prod J 5:142–151.  https://doi.org/10.2174/221031550503151016153837 Google Scholar
  92. 92.
    Wurst M, Kysilka R, Flieger M (2002) Psychoactive tryptamines from basidiomycetes. Folia Microbiol (Praha) 47:3–27CrossRefGoogle Scholar
  93. 93.
    Holloway T, González-Maeso J (2015) Epigenetic mechanisms of serotonin signaling. ACS Chem Neurosci 6:1099–1109.  https://doi.org/10.1021/acschemneuro.5b00033 CrossRefGoogle Scholar
  94. 94.
    Lee H-M, Roth BL (2012) Hallucinogen actions on human brain revealed. Proc Natl Acad Sci 109:1820–1821.  https://doi.org/10.1073/pnas.1121358109 CrossRefGoogle Scholar
  95. 95.
    Lenz C, Wick J, Hoffmeister D (2017) Identification of ω- N-Methyl-4-hydroxytryptamine (norpsilocin) as a Psilocybe natural product. J Nat Prod 80:2835–2838.  https://doi.org/10.1021/acs.jnatprod.7b00407 CrossRefGoogle Scholar
  96. 96.
    Carhart-Harris RL, Bolstridge M, Rucker J et al (2016) Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Lancet Psychiat 3:619–627.  https://doi.org/10.1016/S2215-0366(16)30065-7 CrossRefGoogle Scholar
  97. 97.
    Carhart-Harris RL, Roseman L, Bolstridge M et al (2017) Psilocybin for treatment-resistant depression: FMRI-measured brain mechanisms. Sci Rep 7:1–11.  https://doi.org/10.1038/s41598-017-13282-7 CrossRefGoogle Scholar
  98. 98.
    Wittstein K, Rascher M, Rupcic Z et al (2016) Corallocins A–C, nerve growth and brain-derived neurotrophic factor inducing metabolites from the mushroom Hericium coralloides. J Nat Prod 79:2264–2269.  https://doi.org/10.1021/acs.jnatprod.6b00371 CrossRefGoogle Scholar
  99. 99.
    Geissler T, Brandt W, Porzel A et al (2010) Acetylcholinesterase inhibitors from the toadstool Cortinarius infractus. Bioorg Med Chem 18:2173–2177.  https://doi.org/10.1016/j.bmc.2010.01.074 CrossRefGoogle Scholar
  100. 100.
    Brondz I, Ekeberg D, Høiland K et al (2007) The real nature of the indole alkaloids in Cortinarius infractus: evaluation of artifact formation through solvent extraction method development. J Chromatogr A 1148:1–7.  https://doi.org/10.1016/j.chroma.2007.02.074 CrossRefGoogle Scholar
  101. 101.
    Steglich W, Kopanski L, Wolf M et al (1984) Indolalkaloide aus dem blätterpilz (agaricales). Tetrahedron Lett 25:2341–2344.  https://doi.org/10.1016/S0040-4039(01)80250-1 CrossRefGoogle Scholar
  102. 102.
    Bröckelmann MG, Dasenbrock J, Steffan B et al (2004) An unusual series of thiomethylated canthin-6-ones from the North American mushroom Boletus curtisii. Eur J Org Chem 2004:4856–4863.  https://doi.org/10.1002/ejoc.200400519 CrossRefGoogle Scholar
  103. 103.
    Vieira Torquato HF, Ribeiro-Filho AC, Buri MV et al (2017) Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells. Biochim Biophys Acta, Gen Subj 1861:958–967.  https://doi.org/10.1016/j.bbagen.2017.01.033 CrossRefGoogle Scholar
  104. 104.
    Barros-Filho BA, de Oliveira MCF, Mafezoli J et al (2012) Secondary metabolite production by the basidiomycete, Lentinus strigellus, under different culture conditions. Nat Prod Commun 7:771–773Google Scholar
  105. 105.
    Barros-Filho BA, de Oliveira M d CF, Lemos TLG et al (2009) Lentinus strigellus: a new versatile stereoselective biocatalyst for the bioreduction of prochiral ketones. Tetrahedron Asymmetry 20:1057–1061.  https://doi.org/10.1016/j.tetasy.2009.02.008 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Chia-Wei Phan
    • 1
    • 2
  • Elson Yi-Yong Tan
    • 1
    • 2
  • Vikineswary Sabaratnam
    • 1
    • 3
  1. 1.Mushroom Research CentreUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Pharmacy, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  3. 3.Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations