Factors Influencing Sweet Taste in Apple

  • Mathilde CharlesEmail author
  • Eugenio ApreaEmail author
  • Flavia GasperiEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Sweet taste is a major determinant of apple fruit as driving a large part of consumer preferences. As a consequence, increase in sweetness is very frequently one of the targets in breeding programs and is a key parameter for evaluating apple quality. Its perception can be modulated by several factors, and it is important to understand the individual impact of each of them and the processes involved in order to interpret it better.

This chapter reviews the studies of the past two decades dealing with apple and specifically its composition and the related sweet perception. It proposes an overview of the different aspects influencing sweet taste perception. First, global and sugar compositions of apple fruit are characterized followed by the definition of the principal relative methods of measurements. Then, a part is dedicated to the input brought by sensory analysis in apple sweet taste perception. Finally, the influences of volatile compounds and then texture on sweet taste perception are exposed.


Sugars Sensory Instrumental Interactions Prediction Apple 



Association of Official Analytical Chemists


Descriptive analysis


Evaporative light scattering


Gas chromatography-mass spectrometry


High-performance liquid chromatography


Liquid chromatography


Mass spectrometry


Pulsed amperometry


Soluble solid content


Temporal dominance of sensations






  1. 1.
    Daillant-Spinnler B, MacFie H, Beyts P, Hedderley D (1996) Relationships between perceived sensory properties and major preference directions of 12 varieties of apples from the southern hemisphere. Food Qual Prefer 7(2):113–126CrossRefGoogle Scholar
  2. 2.
    Jaeger SR, Andani Z, Wakeling IN, MacFie HJ (1998) Consumer preferences for fresh and aged apples: a cross-cultural comparison. Food Qual Prefer 9(5):355–366CrossRefGoogle Scholar
  3. 3.
    Charles M (2013) Contribution aux réflexions méthodologiques relatives à l'étude des préférences des consommateurs et à l'étude des interactions sensorielles: Application au modèle pomme. Alimentation et Nutrition. Université d'Angers, 2013.Google Scholar
  4. 4.
    Vigneau E, Charles M, Chen M (2014) External preference segmentation with additional information on consumers: a case study on apples. Food Qual Prefer 32:83–92CrossRefGoogle Scholar
  5. 5.
    Bonany J, Brugger C, Buehler A, Carbó J, Codarin S, Donati F, Echeverria G, Egger S, Guerra W, Hilaire C (2014) Preference mapping of apple varieties in Europe. Food Qual Prefer 32:317–329CrossRefGoogle Scholar
  6. 6.
    Bonany J, Buehler A, Carbó J, Codarin S, Donati F, Echeverria G, Egger S, Guerra W, Hilaire C, Höller I (2013) Consumer eating quality acceptance of new apple varieties in different European countries. Food Qual Prefer 30(2):250–259CrossRefGoogle Scholar
  7. 7.
    Symoneaux R, Galmarini M, Mehinagic E (2012) Comment analysis of consumer’s likes and dislikes as an alternative tool to preference mapping. A case study on apples. Food Qual Prefer 24(1):59–66CrossRefGoogle Scholar
  8. 8.
    Harker FR, Gunson FA, Jaeger SR (2003) The case for fruit quality: an interpretive review of consumer attitudes, and preferences for apples. Postharvest Biol Technol 28(3):333–347CrossRefGoogle Scholar
  9. 9.
    Logue A, Smith ME (1986) Predictors of food preferences in adult humans. Appetite 7(2):109–125CrossRefGoogle Scholar
  10. 10.
    Kühn BF, Thybo AK (2001) Sensory quality of scab-resistant apple cultivars. Postharvest Biol Technol 23(1):41–50CrossRefGoogle Scholar
  11. 11.
    Endrizzi I, Torri L, Corollaro ML, Demattè ML, Aprea E, Charles M, Biasioli F, Gasperi F (2015) A conjoint study on apple acceptability: sensory characteristics and nutritional information. Food Qual Prefer 40:39–48CrossRefGoogle Scholar
  12. 12.
    Campeanu G, Neata G, Darjanschi G (2009) Chemical composition of the fruits of several apple cultivars growth as biological crop. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37(2):161Google Scholar
  13. 13.
    Feliciano RP, Antunes C, Ramos A, Serra AT, Figueira M, Duarte CM, de Carvalho A, Bronze MR (2010) Characterization of traditional and exotic apple varieties from Portugal. Part 1–nutritional, phytochemical and sensory evaluation. J Funct Foods 2(1):35–45CrossRefGoogle Scholar
  14. 14.
    Wu J, Gao H, Zhao L, Liao X, Chen F, Wang Z, Hu X (2007) Chemical compositional characterization of some apple cultivars. Food Chem 103(1):88–93CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Li P, Cheng L (2010) Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in ‘Honeycrisp’apple flesh. Food Chem 123(4):1013–1018CrossRefGoogle Scholar
  16. 16.
    Nour V, Trandafir I, Ionica ME (2010) Compositional characteristics of fruits of several apple (Malus domestica Borkh.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38(3):228Google Scholar
  17. 17.
    Péneau S, Hoehn E, Roth H-R, Escher F, Nuessli J (2006) Importance and consumer perception of freshness of apples. Food Qual Prefer 17(1):9–19CrossRefGoogle Scholar
  18. 18.
    Oraguzie N, Alspach P, Volz R, Whitworth C, Ranatunga C, Weskett R, Harker FR (2009) Postharvest assessment of fruit quality parameters in apple using both instruments and an expert panel. Postharvest Biol Technol 52(3):279–287CrossRefGoogle Scholar
  19. 19.
    Donno D, Beccaro G, Mellano M, Torello Marinoni D, Cerutti A, Canterino S, Bounous G (2012) Application of sensory, nutraceutical and genetic techniques to create a quality profile of ancient apple cultivars. J Food Qual 35(3):169–181CrossRefGoogle Scholar
  20. 20.
    Gatti E, Di Virgilio N, Magli M, Predieri S (2011) Integrating sensory analysis and hedonic evaluation for apple quality assessment. J Food Qual 34(2):126–132CrossRefGoogle Scholar
  21. 21.
    Rizzolo A, Vanoli M, Spinelli L, Torricelli A (2010) Sensory characteristics, quality and optical properties measured by time-resolved reflectance spectroscopy in stored apples. Postharvest Biol Technol 58(1):1–12CrossRefGoogle Scholar
  22. 22.
    Aprea E, Charles M, Endrizzi I, Corollaro ML, Betta E, Biasioli F, Gasperi F (2017) Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds. Sci Rep 7:44950CrossRefGoogle Scholar
  23. 23.
    Charles M, Endrizzi I, Aprea E, Zambanini J, Betta E, Gasperi F (2017) Dynamic and static sensory methods to study the role of aroma on taste and texture: a multisensory approach to apple perception. Food Qual Prefer 62:17–30CrossRefGoogle Scholar
  24. 24.
    Echeverría G, Graell J, Lara I, Lopez M, Puy J (2008) Panel consonance in the sensory evaluation of apple attributes: influence of mealiness on sweetness perception. J Sens Stud 23(5):656–670CrossRefGoogle Scholar
  25. 25.
    Pineau N, Schlich P, Cordelle S, Mathonnière C, Issanchou S, Imbert A, Rogeaux M, Etiévant P, Köster E (2009) Temporal dominance of sensations: construction of the TDS curves and comparison with time–intensity. Food Qual Prefer 20(6):450–455CrossRefGoogle Scholar
  26. 26.
    Jones MG, Outlaw WH, & Lowry, OH (1977) Enzymic assay of 10− 7 to 10− 14 moles of sucrose in plant tissues. Plant Physiol 60(3):379–383.Google Scholar
  27. 27.
    Bengoechea ML, Sancho AI, Bartolomé B, Estrella I, Gómez-Cordovés C, Hernández MT (1997) Phenolic composition of industrially manufactured purees and concentrates from peach and apple fruits. J Agric Food Chem 45(10):4071–4075CrossRefGoogle Scholar
  28. 28.
    Dolenc K, Stampar F (1997) An investigation of the application and conditions of analyses of HPLC methods for determining sugars and organic acids in fruits. Res Rep Biotech Fac Univ Ljubljana 69:99–106Google Scholar
  29. 29.
    Fuleki T, Pelayo E, Palabay RB (1994) Sugar composition of varietal juices produced from fresh and stored apples. J Agric Food Chem 42(6):1266–1275CrossRefGoogle Scholar
  30. 30.
    Miller NJ, Rice-Evans CA (1997) The relative contributions of ascorbic acid and phenolic antioxidants to the total antioxidant activity of orange and apple fruit juices and blackcurrant drink. Food Chem 60(3):331–337CrossRefGoogle Scholar
  31. 31.
    Jha SN, Rai D, Shrama R (2012) Physico-chemical quality parameters and overall quality index of apple during storage. J Food Sci Technol 49(5):594–600CrossRefGoogle Scholar
  32. 32.
    Ackermann J, Fischer M, Amado R (1992) Changes in sugars, acids, and amino acids during ripening and storage of apples (cv. Glockenapfel). J Agric Food Chem 40(7):1131–1134CrossRefGoogle Scholar
  33. 33.
    Harker FR, Marsh KB, Young H, Murray SH, Gunson FA, Walker SB (2002) Sensory interpretation of instrumental measurements 2: sweet and acid taste of apple fruit. Postharvest Biol Technol 24(3):241–250CrossRefGoogle Scholar
  34. 34.
    Harker FR, Amos RL, Echeverría G, Gunson FA (2006) Influence of texture on taste: insights gained during studies of hardness, juiciness, and sweetness of apple fruit. J Food Sci 71(2):S77CrossRefGoogle Scholar
  35. 35.
    Winisdorffer G, Musse M, Quellec S, Barbacci A, Le Gall S, Mariette F, Lahaye M (2015) Analysis of the dynamic mechanical properties of apple tissue and relationships with the intracellular water status, gas distribution, histological properties and chemical composition. Postharvest Biol Technol 104:1–16CrossRefGoogle Scholar
  36. 36.
    Füzfai Z, Katona ZF, Kovács E, Molnár-Perl I (2004) Simultaneous identification and quantification of the sugar, sugar alcohol, and carboxylic acid contents of sour cherry, apple, and ber fruits, as their trimethylsilyl derivatives, by gas chromatography− mass spectrometry. J Agric Food Chem 52(25):7444–7452CrossRefGoogle Scholar
  37. 37.
    Pangborn R (1963) Relative taste intensities of selected sugars and organic acids. J Food Sci 28(6):726–733CrossRefGoogle Scholar
  38. 38.
    Cameron AT (1947) The taste sense and the relative sweetness of sugars and other sweet substances. Sugar research foundation, New YorkGoogle Scholar
  39. 39.
    Dahlberg A, Penczek E (1940) Dextrose and corn sirup for frozen desserts. NY St Agric Exp Sta Tech Bull 3–36Google Scholar
  40. 40.
    Stone H, Oliver SM (1969) Measurement of the relative sweetness of selected sweeteners and sweetener mixtures. J Food Sci 34(2):215–222CrossRefGoogle Scholar
  41. 41.
    Yamaguchi S, Yoshikawa T, Ikeda S, Ninomiya T (1970) Studies on the taste of some sweet substances: part I. Measurement of the relative sweetness part II. Interrelationships among them. Agric Biol Chem 34(2):181–197Google Scholar
  42. 42.
    Yamaki S (2010) Metabolism and accumulation of sugars translocated to fruit and their regulation. J Jpn Soc Horticult Sci 79(1):1–15CrossRefGoogle Scholar
  43. 43.
    Yamaki S, Ino M (1992) Alteration of cellular compartmentation and membrane permeability to sugars in immature and mature apple fruit. J Am Soc Hortic Sci 117(6):951–954Google Scholar
  44. 44.
    Harker FR, Kupferman EM, Marin AB, Gunson FA, Triggs CM (2008) Eating quality standards for apples based on consumer preferences. Postharvest Biol Technol 50(1):70–78CrossRefGoogle Scholar
  45. 45.
    Grange G (1976) United States standards for grades of apples. United States Department of Agriculture, Washington, DCGoogle Scholar
  46. 46.
    WSDA (1999) Clarifying new Red Delicious inspections. Good fruit grower, 50:41Google Scholar
  47. 47.
    Smith RB, Lougheed EC, Franklin EW, McMillan I (1979) The starch iodine test for determining stage of maturation in apples. Can J Plant Sci 59(3):725–735Google Scholar
  48. 48.
    Blanpied G, Silsby KJ (1992) Predicting harvest date windows for apples. Cornell Cooperative Extension, IthacaGoogle Scholar
  49. 49.
    Vaysse P, Reynier P, Codarin S, Roche L, Marti A (2006) L’analyse sensorielle sur la pomme: Un outil indispensable pour la filière. Infos-Ctifl 225:20–23Google Scholar
  50. 50.
    ICUMSA (2007) Method GS4/3–13: the determination of refractometric dry substance (RDS %) of molasses and very pure syrups (liquid sugars). International Commission for Uniform Methods of Sugar Analysis, Verlag Dr. Albert Bartens KG, BerlinGoogle Scholar
  51. 51.
    Dongare M, Buchade P, Awatade M, Shaligram A (2014) Mathematical modeling and simulation of refractive index based brix measurement system. Optik-Int J Light Electron Opt 125(3):946–949CrossRefGoogle Scholar
  52. 52.
    Smith S (1985) Measurement of the quality of apples: recommendations of an EEC working group. Office for Official Publication of the European Communities, LuxembourgGoogle Scholar
  53. 53.
    Aaby K, Haffner K, Skrede G (2002) Aroma quality of Gravenstein apples influenced by regular and controlled atmosphere storage. LWT-Food Sci Technol 35(3):254–259CrossRefGoogle Scholar
  54. 54.
    Lateur M, Planchon V, Moons E (2001) Evaluation par l’analyse sensorielle des qualités organoleptiques d'anciennes variétés de pommes. Biotechnol Agron Soc Environ 5(3):180–188Google Scholar
  55. 55.
    Mehinagic E, Royer G, Symoneaux R, Bertrand D, Jourjon F (2004) Prediction of the sensory quality of apples by physical measurements. Postharvest Biol Technol 34(3):257–269CrossRefGoogle Scholar
  56. 56.
    Thybo AK, Kühn BF, Martens H (2004) Explaining Danish children’s preferences for apples using instrumental, sensory and demographic/behavioural data. Food Qual Prefer 15(1):53–63CrossRefGoogle Scholar
  57. 57.
    Varela P, Salvador A, Fiszman S (2005) Shelf-life estimation of ‘Fuji’apples: sensory characteristics and consumer acceptability. Postharvest Biol Technol 38(1):18–24CrossRefGoogle Scholar
  58. 58.
    Watada AE, Abbott JA, Hardenburg RE (1980) Sensory characteristics of apple fruit [cultivars, storage, quality]. J-Am Soc Horticult Sci (USA) 105:371–375Google Scholar
  59. 59.
    Raessler M (2011) Sample preparation and current applications of liquid chromatography for the determination of non-structural carbohydrates in plants. TrAC Trends Anal Chem 30(11):1833–1843CrossRefGoogle Scholar
  60. 60.
    Ruiz-Matute A, Hernandez-Hernandez O, Rodriguez-Sanchez S, Sanz M, Martinez-Castro I (2011) Derivatization of carbohydrates for GC and GC–MS analyses. J Chromatogr B 879(17):1226–1240CrossRefGoogle Scholar
  61. 61.
    Guan Y, Peace C, Rudell D, Verma S, Evans K (2015) QTLs detected for individual sugars and soluble solids content in apple. Mol Breed 35(6):135CrossRefGoogle Scholar
  62. 62.
    Corollaro ML, Aprea E, Endrizzi I, Betta E, Demattè ML, Charles M, Bergamaschi M, Costa F, Biasioli F, Corelli Grappadelli L (2014) A combined sensory-instrumental tool for apple quality evaluation. Postharvest Biol Technol 96:135–144CrossRefGoogle Scholar
  63. 63.
    Stone H, Sidel JL (2004) Descriptive analysis. In: Stone H, Sidel JL (eds) Sensory evaluation practices. Academic, London, pp 201–245CrossRefGoogle Scholar
  64. 64.
    Stone H, Sidel JL (1998) Quantitative descriptive analysis: developments, applications and the future. Food Technol (USA) 52:48Google Scholar
  65. 65.
    Stone H, Sidel JL, Oliver S, Woolsey A, Singleton C (1974) Sensory Evaluation by quantitative descriptive analysis. Food Technol 28:24–28Google Scholar
  66. 66.
    Lawless HT, Heymann H (2010) Sensory evaluation of food: principles and practices. Springer Science & Business Media, New YorkCrossRefGoogle Scholar
  67. 67.
    Dever MC, Cliff MA, Hall JW (1995) Analysis of variation and multivariate relationships among analytical and sensory characteristics in whole apple evaluation. J Sci Food Agric 69(3):329–338CrossRefGoogle Scholar
  68. 68.
    Williams AA, Carter CS (1977) A language and procedure for the sensory assessment of Cox’s Orange Pippin apples. J Sci Food Agric 28(12):1090–1104CrossRefGoogle Scholar
  69. 69.
    Brookfield PL, Nicoll S, Gunson FA, Harker FR, Wohlers M (2011) Sensory evaluation by small postharvest teams and the relationship with instrumental measurements of apple texture. Postharvest Biol Technol 59(2):179–186CrossRefGoogle Scholar
  70. 70.
    Hampson C, Quamme H, Hall J, MacDonald R, King M, Cliff M (2000) Sensory evaluation as a selection tool in apple breeding. Euphytica 111(2):79–90CrossRefGoogle Scholar
  71. 71.
    Depledt F (ed) (2013) Evaluation Sensorielle, manuel méthodologique, 3e edn., Lavoisier / Tec&Doc, ParisGoogle Scholar
  72. 72.
    ISO Standard (1992) 5492. Terms relating to sensory analysis. International Organization for Standardization. Austrian Standards Institute, ViennaGoogle Scholar
  73. 73.
    Vangdal E (1985) Quality criteria for fruit for fresh consumption. Acta Agric Scand 35(1):41–47CrossRefGoogle Scholar
  74. 74.
    Fellers PJ (1991) The relationship between the ratio of degrees brix to percent acid and sensory flavor in grapefruit juice. Food Technol (USA) 45:72–75Google Scholar
  75. 75.
    Mitchell GF, Mayer G, Biasi W (1991) Effect of harvest maturity on storage performance of ‘Hayward’kiwifruit. Acta Hortic 297:617–626Google Scholar
  76. 76.
    Stevens JC (1996) Detection of tastes in mixture with other tastes: issues of masking and aging. Chem Senses 21(2):211–221CrossRefGoogle Scholar
  77. 77.
    Pangborn R, Trabue IM (1964) Taste interrelationships. V. Sucrose, sodium chloride, and citric acid in lima bean puree. J Food Sci 29(2):233–240CrossRefGoogle Scholar
  78. 78.
    Keast RS, Breslin PA (2003) An overview of binary taste–taste interactions. Food Qual Prefer 14(2):111–124CrossRefGoogle Scholar
  79. 79.
    Sanz C, Olias JM, Perez AG (1997) Aroma biochemistry of fruits and vegetables. In: Tomas-Barberan FA, Robins RJ (eds) Phytochemistry of fruit and vegetables. Oxford University Press, New York, pp 125–155Google Scholar
  80. 80.
    Maarse H (1991) Volatile compounds in foods and beverages. CRC press, New YorkGoogle Scholar
  81. 81.
    Nijssen L, van Ingen-Visscher C, Donders J (2011) Volatile Compounds in Food (VCF) database, version 13.1. TNO Triskelion, ZeistGoogle Scholar
  82. 82.
    Aprea E, Corollaro ML, Betta E, Endrizzi I, Demattè ML, Biasioli F, Gasperi F (2012) Sensory and instrumental profiling of 18 apple cultivars to investigate the relation between perceived quality and odour and flavour. Food Res Int 49(2):677–686CrossRefGoogle Scholar
  83. 83.
    Dixon J, Hewett EW (2000) Factors affecting apple aroma/flavour volatile concentration: a review. N Z J Crop Hortic Sci 28(3):155–173CrossRefGoogle Scholar
  84. 84.
    Dalton P, Doolittle N, Nagata H, Breslin P (2000) The merging of the senses: integration of subthreshold taste and smell. Nat Neurosci 3(5):431–432CrossRefGoogle Scholar
  85. 85.
    Prescott J (1999) Flavour as a psychological construct: implications for perceiving and measuring the sensory qualities of foods. Food Qual Prefer 10(4):349–356CrossRefGoogle Scholar
  86. 86.
    Spence C (2012) Chapter: 10 Multi-sensory integration and the psychophysics of flavour perception. In: Food oral processing: fundamentals of eating and sensory perception. Blackwell, Oxford, p 203CrossRefGoogle Scholar
  87. 87.
    Keast RS, Dalton PH, Breslin PA (2004) Flavor interactions at the sensory level. In: Flavor perception. Blackwell, Oxford, pp 228–255CrossRefGoogle Scholar
  88. 88.
    Murphy C, Cain WS, Bartoshuk LM (1977) Mutual action of taste and olfaction. Sens Processes 1(3):204–211Google Scholar
  89. 89.
    Murphy C, Cain WS (1980) Taste and olfaction: independence vs interaction. Physiol Behav 24(3):601–605CrossRefGoogle Scholar
  90. 90.
    Bonnans SR, Noble A (1995) Interaction of salivary flow with temporal perception of sweetness, sourness, and fruitiness. Physiol Behav 57(3):569–574CrossRefGoogle Scholar
  91. 91.
    Cliff M, Noble AC (1990) Time-intensity evaluation of sweetness and fruitiness and their interaction in a model solution. J Food Sci 55(2):450–454CrossRefGoogle Scholar
  92. 92.
    Schifferstein HN, Verlegh PW (1996) The role of congruency and pleasantness in odor-induced taste enhancement. Acta Psychol 94(1):87–105CrossRefGoogle Scholar
  93. 93.
    Stevenson RJ, Prescott J, Boakes RA (1999) Confusing tastes and smells: how odours can influence the perception of sweet and sour tastes. Chem Senses 24(6):627–635CrossRefGoogle Scholar
  94. 94.
    Poinot P, Arvisenet G, Ledauphin J, Gaillard J-L, Prost C (2013) How can aroma–related cross–modal interactions be analysed? A review of current methodologies. Food Qual Prefer 28(1):304–316CrossRefGoogle Scholar
  95. 95.
    Baldwin E, Scott J, Einstein M, Malundo T, Carr B, Shewfelt R, Tandon K (1998) Relationship between sensory and instrumental analysis for tomato flavor. J Am Soc Hortic Sci 123(5):906–915Google Scholar
  96. 96.
    Schwieterman ML, Colquhoun TA, Jaworski EA, Bartoshuk LM, Gilbert JL, Tieman DM, Odabasi AZ, Moskowitz HR, Folta KM, Klee HJ (2014) Strawberry flavor: diverse chemical compositions, a seasonal influence, and effects on sensory perception. PLoS One 9(2):e88446CrossRefGoogle Scholar
  97. 97.
    Mehinagic E, Royer G, Symoneaux R, Jourjon F, Prost C (2006) Characterization of odor-active volatiles in apples: influence of cultivars and maturity stage. J Agric Food Chem 54(7):2678–2687CrossRefGoogle Scholar
  98. 98.
    Komthong P, Katoh T, Igura N, Shimoda M (2006) Changes in the odours of apple juice during enzymatic browning. Food Qual Prefer 17(6):497–504CrossRefGoogle Scholar
  99. 99.
    Tanaka F, Miyazawa T, Okazaki K, Tatsuki M, Ito T (2015) Sensory and metabolic profiles of “fuji” apples (malus domestica borkh.) grown without synthetic agrochemicals: the role of ethylene production. Biosci Biotechnol Biochem 79(12):2034–2043CrossRefGoogle Scholar
  100. 100.
    Saint-Eve A, Déléris I, Panouillé M, Dakowski F, Cordelle S, Schlich P, Souchon I (2011) How texture influences aroma and taste perception over time in candies. Chemosens Percept 4(1–2):32CrossRefGoogle Scholar
  101. 101.
    Hollowood T, Linforth R, Taylor A (2002) The effect of viscosity on the perception of flavour. Chem Senses 27(7):583–591CrossRefGoogle Scholar
  102. 102.
    Bult JH, de Wijk RA, Hummel T (2007) Investigations on multimodal sensory integration: texture, taste, and ortho-and retronasal olfactory stimuli in concert. Neurosci Lett 411(1):6–10CrossRefGoogle Scholar
  103. 103.
    Lethuaut L, Brossard C, Rousseau F, Bousseau B, Genot C (2003) Sweetness–texture interactions in model dairy desserts: effect of sucrose concentration and the carrageenan type. Int Dairy J 13(8):631–641CrossRefGoogle Scholar
  104. 104.
    de Roos KB (2003) Effect of texture and microstructure on flavour retention and release. Int Dairy J 13(8):593–605CrossRefGoogle Scholar
  105. 105.
    Ferry A-L, Hort J, Mitchell J, Cook D, Lagarrigue S, Pamies BV (2006) Viscosity and flavour perception: why is starch different from hydrocolloids? Food Hydrocoll 20(6):855–862CrossRefGoogle Scholar
  106. 106.
    Kokini JL, Bistany K, Poole M, Stier E (1982) Use of mass transfer theory to predict viscosity-sweetness interactions of fructose and sucrose solutions containing tomato solids. J Texture Stud 13(2):187–200CrossRefGoogle Scholar
  107. 107.
    Gierczynski I, Laboure H, Guichard E (2008) In vivo aroma release of milk gels of different hardnesses: inter-individual differences and their consequences on aroma perception. J Agric Food Chem 56(5):1697–1703CrossRefGoogle Scholar
  108. 108.
    Andani Z, Jaeger S, Wakeling I, MacFie H (2001) Mealiness in apples: towards a multilingual consumer vocabulary. J Food Sci 66(6):872–879CrossRefGoogle Scholar
  109. 109.
    Heenan S, Soukoulis C, Silcock P, Fabris A, Aprea E, Cappellin L, Märk TD, Gasperi F, Biasioli F (2012) PTR-TOF-MS monitoring of in vitro and in vivo flavour release in cereal bars with varying sugar composition. Food Chem 131(2):477–484CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.BIOFORTIS Sensory and ConsumerSaint HerblainFrance
  2. 2.Department of Food Quality and Nutrition, Research and Innovation CentreFondazione Edmund Mach (FEM)San Michele all’AdigeItaly

Personalised recommendations