Skip to main content

Plants Probiotics as a Tool to Produce Highly Functional Fruits

  • Living reference work entry
  • First Online:
Bioactive Molecules in Food

Abstract

Plant probiotics are bacteria capable of improving crop yields reducing or even eliminating chemical fertilizers. During the last years, several studies show that many of these bacteria can improve not just production, but also food quality, through the increase of some nutrients as well as some plant bioactive compounds, which are beneficial to human health. This chapter compiles some of the recent research focused on the capabilities of several bacterial plant probiotics to enhance the production of more functional foods, and therefore benefiting our health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Shahzad SM, Arif MS, Riaz M, Iqbal Z, Ashraf M (2013) PGPR with varied ACC-deamisae activity induced different growth and yield response in maize (Zea mays L.) under fertilized conditions. Eur J Soil Biol 57:27–34

    Article  CAS  Google Scholar 

  2. García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2:183–205

    Article  Google Scholar 

  3. Jiménez-Gómez A, Celador-Lera L, Fradejas-Bayón M, Rivas R (2017) Plant probiotic bacteria enhance the quality of fruit and horticultural crops. AIMS Microbiol 3:483–501

    Article  Google Scholar 

  4. Trienekens J, Zurbier P (2008) Quality and safety standards in the food industry, developments and challenges. Int J Prod Econ 113:107–122

    Article  Google Scholar 

  5. García-Fraile P, Menéndez E, Celador-Lera L, Diez-Méndez A, Jiménez-Gómez A, Marcos-García M, Cruz-González XA, Martínez-Hidalgo P, Mateos PF, Rivas R (2017) Bacterial probiotics: a truly green revolution. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore

    Google Scholar 

  6. Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  CAS  Google Scholar 

  7. Menéndez E, García-Fraile P (2017) Plant probiotic bacteria: solutions to feed the world. AIMS Microbiol 3:502–524

    Article  Google Scholar 

  8. Qin Y, Fu Y, Dong C, Jia N, Liu H (2016) Shifts of microbial communities of wheat (Triticum aestivum L.) cultivation in a closed artificial ecosystem. Appl Microbiol Biotechnol 100:4085–4095

    Article  CAS  Google Scholar 

  9. Young CC, Shen FT, Singh S (2012) Strategies for the exploration and development of biofertilizer. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer, Berlin/Heidelberg

    Google Scholar 

  10. Jiménez-Gómez A, Menéndez E, Flores-Félix JD, García-Fraile P, Mateos PF, Rivas R (2016) Effective colonization of spinach root surface by rhizobium. In: Gonzalez-Andres F, James E (eds) Biological nitrogen fixation and beneficial plant-microbe interaction. Springer International Publishing, Switzerland

    Google Scholar 

  11. García-Fraile P, Carro L, Robledo M, Ramírez-Bahena MH, Flores-Félix JD, Fernández MT, Mateos PF, Rivas R, Igual JM, Martínez-Molina E, Peix A, Velázquez E (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7:e38122. 57

    Article  Google Scholar 

  12. Mudryj AN, Yu N, Aukema HM (2014) Nutritional and health benefits of pulses. Appl Physiol Nutr Metab 9:1197–1204

    Article  Google Scholar 

  13. Foyer CH, Lam HM, Nguyen HT, Siddique KHM, Varshney RK, Colmer TD, Mori TA, Hodgson JM, Cooper JW, Cowling W, Bramley H, Miller AJ, Kunert K, Vorster J, Cullis C, Ozga JA, Wahlqvist MK, Liang Y, Shou H, Shi K, Yu J, Fodor N, Kiaser BN, Wong KL, Valliyodan B, Considine MJ (2016) Neglecting legumes has compromised human health and sustainable food production. Nat Plants 2:16112

    Article  Google Scholar 

  14. Marventano S, Izquierdo Pulido M, Sánchez-González C, Godos J, Speciani A, Galvano F, Grosso G (2016) Legume consumption and CVD risk: a systematic review and meta-analysis. Public Health Nutr 20:245–254

    Article  Google Scholar 

  15. Rebello CJ, Greenway FL, Finley JW (2014) A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obes Rev 15:392–407

    Article  CAS  Google Scholar 

  16. Singhal P, Kaushik G, Mathur P (2014) Antidiabetic potential of commonly consumed legumes: a review. Crit Rev Food Sci Nutr 54:655–672

    Article  CAS  Google Scholar 

  17. Johnson CS, Thavaraja D, Combs GF, Thavarajah P (2013) Lentil (Lens culinaris L.): a prebiotic-rich whole food legume. Food Res Int 51:107–113

    Article  CAS  Google Scholar 

  18. Shakuntala S, Mol P, Muralikrishna G (2014) Pectic oligosaccharides derived from chickpea (Cicer arietinum L.) husk pectin and elucidation of their role in prebiotic and antioxidant activities. Trends Carbohyd Res 6:29–36

    Google Scholar 

  19. Souframanien J, Roja G, Gopalakrishna T (2014) Genetic variation in raffinose family oligosaccharides and sucrose content in black gram [Vigna mungo L. (Hepper)]. J Food Legumes 27:37–41

    Google Scholar 

  20. Wongputtisin P, Ramaraj R, Unpaprom Y, Kawaree R, Pongtrakul N (2015) Raffinose family oligosaccharides in seed of Glycine max cv. Chiang Mai60 and potential source of prebiotic substances. Int J Food Sci Technol 50:1750–1756

    Article  CAS  Google Scholar 

  21. Karnpanit W, Coorey R, Clements J, Nasar-Abbas SM, Khan MK, Jayasena V (2016) Effect of cultivar, cultivation year and dehulling on raffinose family oligosaccharides in Australian sweet lupin (Lupinus angustifolius L.) Food Sci Technol 51:1386–1392

    CAS  Google Scholar 

  22. Chen KI, Erh MH, Su NW, Liu WH, Chou CC, Cheng KC (2012) Soyfoods and soybean products: from traditional use to modern applications. Appl Microbiol Biotechnol 96:9–22

    Article  CAS  Google Scholar 

  23. Bensmira M, Jiang B (2015) Total phenolic compounds and antioxidant activity of a novel peanut based kefir. Food Sci Biotechnol 24:1055–1060

    Article  CAS  Google Scholar 

  24. Kasprowicz-Potocka M, Borowczyk P, Zaworska A, Nowak W, Frankiewicz A, Gulewicz P (2016) The effect of dry yeast fermentation on chemical composition and protein characteristics of blue lupin seeds. Food Technol Biotechnol 54:360–366

    Article  Google Scholar 

  25. Parra K, Ferrer M, Piñero M, Barboza Y, Medina LM (2013) Use of Lactobacillus acidophilus and Lactobacillus casei for a potential probiotic legume–based fermented product using pigeon pea (Cajanus cajan). J Food Protect 76:265–271

    Article  CAS  Google Scholar 

  26. Murevanhema YY, Jideani VA (2013) Potential of bambara groundnut (Vigna subterranea (L.) Verdc) milk as a probiotic beverage-a review. Crit Rev Food Sci Nutr 53:954–967

    Article  Google Scholar 

  27. Mridula D, Sharma M (2015) Development of non-dairy probiotic drink utilizing sprouted cereals, legume and soymilk. LWT-Food Sci Technol 62:482–487

    Article  Google Scholar 

  28. Wu H, Rui X, Li W, Chen X, Jiang M, Dong M (2015) Mung bean (Vigna radiata) as probiotic food through fermentation with Lactobacillus plantarum B1–6. LWT-Food Sci Technol 63:445–451

    Article  CAS  Google Scholar 

  29. Cornara L, Xiao J, Burlando B (2016) Therapeutic potential of temperate forage legumes: a review. Crit Rev Food Sci Nutr 56:S149–S161

    Article  Google Scholar 

  30. Silva LR, Peix Á, Albuquerque C, Velázquez E (2016) Bioactive compounds of legumes as health promoters. In: Silva LR, Silva BM (eds) Natural bioactive compounds from fruits and vegetables as health promoters, Sharjah, UAE. Science Publishers, Bentham, pp 3–27

    Chapter  Google Scholar 

  31. Bouchenak M, Lamri-Senhadji M (2013) Nutritional quality of legumes, and their role in cardiometabolic risk prevention: a review. J Med Food 16:185–198

    Article  CAS  Google Scholar 

  32. Afshin A, Micha R, Khatibzadeh S, Mozaffarian D (2014) Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr 100:278–288

    Article  CAS  Google Scholar 

  33. Zhu B, Sun Y, Qi L, Zhong R, Miao X (2015) Dietary legume consumption reduces risk of colorectal cancer: evidence from a meta-analysis of cohort studies. Sci Rep 5:8797

    Article  CAS  Google Scholar 

  34. Arnoldi A, Zanoni C, Lammi C, Boschin G (2015) The role of grain legumes in the prevention of hypercholesterolemia and hypertension. Crit Rev Plant Sci 34:144–168

    Article  CAS  Google Scholar 

  35. Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  36. Mulas D, García-Fraile P, Carro L, Ramírez-Bahena H, Casquero P, Velázquez E, González-Andrés F (2011) Distribution and efficiency of Rhizobium leguminosarum strains nodulating Phaseolus vulgaris in Northern Spanish soils: selection of native strains that replace conventional N fertilization. Soil Biol Biochem 43:2283–2293

    Article  CAS  Google Scholar 

  37. Araujo J, Díaz-Alcántara CA, Velázquez E, Urbano B, González-Andrés F (2015) Bradyrhizobium yuanmingense related strains form nitrogen-fixing symbiosis with Cajanus cajan L. in Dominican Republic and are efficient biofertilizers to replace N fertilization. Sci Hortic 192:421–428

    Article  Google Scholar 

  38. Sarr PS,Wase Okon J, Boyogueno Begoude DA, Araki S, Amband Z, Shibata M, Funakawa S (2016) Symbiotic N2-fixation estimated by the 15N tracer technique and growth of Pueraria phaseoloides (Roxb.) Benth. Inoculated with Bradyrhizobium strain in field conditions. Scientifica Vol. 2016. ID article 7026859

    Google Scholar 

  39. Silva LR, Bento C, Gonçalves AC, Flores-Félix JD, Ramírez-Bahena MH, Peix A, Velazquez E (2017) Legume bioactive compounds: influence of rhizobial inoculation. AIMS Microbiol 3(2):267–278

    Article  Google Scholar 

  40. Messina M (2014) Soy foods, isoflavones, and the health of postmenopausal women. Am J Clin Nutr 100:423S–230S

    Article  CAS  Google Scholar 

  41. Wang Q, Ge X, Tian X, Zhang Y, Zhang J, Zhang P (2013) Soy isoflavone: the multipurpose phytochemical (review). Biomed Rep 1:697–701

    Article  CAS  Google Scholar 

  42. Hwang KA, Choi KC (2015) Anticarcinogenic effects of dietary phytoestrogens and their chemopreventive mechanisms. Nutr Cancer 21:1–8

    Google Scholar 

  43. Messina M (2016) Impact of soy foods on the development of breast cancer and the prognosis of breast cancer patients. Forsch Komplementmed 23:75–80

    Article  Google Scholar 

  44. Zhong XS, Ge J, Chen SW, Xiong YQ, Ma SJ, Chen Q (2016) Association between dietary isoflavones in soy and legumes and endometrial cancer: a systematic review and meta-analysis. J Acad Nutr Diet. in press.

    Google Scholar 

  45. Van Die MD, Bone KM, Williams SG, Pirotta MV (2014) Soy and soy isoflavones in prostate cancer: a systematic review and meta-analysis of randomized controlled trials. BJU Int 113:E119–E130

    Article  Google Scholar 

  46. Yu Y, Jing X, Li H, Zhao X, Wang D (2016) Soy isoflavone consumption and colorectal cancer risk: a systematic review and meta-analysis. Sci Rep 6:25939

    Article  CAS  Google Scholar 

  47. Bittner K, Rzeppa S, Humpf HU (2013) Distribution and quantification of flavan-3-ols and procyanidins with low degree of polymerization in nuts, cereals, and legumes. J Agric Food Chem 61:9148–9154

    Article  CAS  Google Scholar 

  48. Ojwang LO, Yang L, Dykes L, Awika J (2013) Proanthocyanidin profile of cowpea (Vigna unguiculata) reveals catechin-O-glucoside as the dominant compound. Food Chem 139:35–43

    Article  CAS  Google Scholar 

  49. Takahama U, Yamauchi R, Hirota S (2013) Isolation and characterization of a cyaniding-catechin pigment from adzuki bean (Vigna angularis). Food Chem 141:282–288

    Article  CAS  Google Scholar 

  50. Han KH, Kitano-Okada T, Seo JM, Kim SJ, Sasaki K, Shimada KI, Fukushima M (2015) Characterization of anthocyanins and proanthocyanidins of adzuki bean extracts and their antioxidant activity. J Funct Foods 14:692–701

    Article  CAS  Google Scholar 

  51. Golam Masum Akond ASM, Khandaker L, Berthold J, Gates L, Peters K, Delong H, Hossain K (2011) Anthocyanin, total polyphenols and antioxidant activity of common bean. Am J Food Technol 6:385–394

    Article  Google Scholar 

  52. Kruger MJ, Davies N, Myburgh KH, Lecour S (2014) Proanthocyanidins, anthocyanins and cardiovascular diseases. Food Res Int 59:41–52

    Article  CAS  Google Scholar 

  53. González-Abuín N, Pinent M, Casanova-Marti A, Ardevol A (2015) Procyanidins and their healthy protective effects against type 2 diabetes. Curr Med Chem 22:39–50

    Article  Google Scholar 

  54. Lin BW, Gong CC, Song HF, Cui YY (2016) Effects of anthocyanins on the prevention and treatment of cancer. Br J Pharmacol 174:1226–1243.

    Google Scholar 

  55. Fernández-Marín B, Milla R, Martín-Robles N, Arc E, Kranner I, Becerril JM, García-Plazaola JI (2014) Side-effects of domestication: cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. BMC Plant Biol 14:1599

    Article  Google Scholar 

  56. Zhang B, Deng Z, Tang Y, Tsao R (2014) Fatty acid, carotenoid and tocopherol compositions of 20 Canadian lentil cultivars and synergistic contribution to antioxidant activities. Food Chem 161:296–304

    Article  CAS  Google Scholar 

  57. Kalogeropoulos N, Chiou A, Ioannou M, Karathanos VT, Hassapidou M, Andrikopoulos NK (2010) Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem 121:682–690

    Article  CAS  Google Scholar 

  58. Boschin G, Arnoldi A (2011) Legumes are valuable sources of tocopherols. Food Chem 127:1199–1203

    Article  CAS  Google Scholar 

  59. Ulatowski L, Parker R, Warrier G, Sultana R, Butterfield DA, Manod D (2013) Vitamin E is essential for Purkinje neuron integrity. Neuroscience 260:120–129

    Article  Google Scholar 

  60. Saari JC (2016) Vitamin A and vision. Subcell Biochem 81:231–259

    Article  CAS  Google Scholar 

  61. Silva LR, Pereira MJ, Azevedo J, Mulas R, Velázquez E, González-Andrés F, Valentao P, Andrade PB (2013) Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds. Food Chem 141:3636–3648

    Article  CAS  Google Scholar 

  62. Ramsden CE, Zamora D, Majchrzak-Hong S, Faurot KR, Broste SK, Frantz RP, Davis JM, Ringel A, Suchindran CM, Hibbeln JR (2016) Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota coronary experiment (1968–73). BMJ 353:i1246

    Article  Google Scholar 

  63. Zock PL, Blom WA, Nettleton JA, Hornstra G (2016) Progressing insights into the role of dietary fats in the prevention of cardiovascular disease. Curr Cardiol Rep 18:111

    Article  Google Scholar 

  64. Huth PJ, Fulgoni VL, Larson BT (2015) A systematic review of high-oleic vegetable oil substitutions for other fats and oils on cardiovascular disease risk factors: implications for novel high-oleic soybean oils. Adv Nutr 6:674–693

    Article  CAS  Google Scholar 

  65. Couto C, Silva LR, Valentão P, Velázquez E, Peix A, Andrade PB (2011) Effects induced by the nodulation with Bradyrhizobium japonicum on Glycine max (soybean) metabolism and antioxidant potential. Food Chem 127:1487–1495

    Article  CAS  Google Scholar 

  66. Farfour SA, Al-Saman MA, Hamouda RA (2015) Potential activity of some biofertilizer agents on antioxidant and phytochemical constituents of faba bean plant. Glo Adv Res J Agr Sci 4:26–32

    Google Scholar 

  67. Singh A, Jain A, Sarma BK, Upadhyay RS, Singh HB (2014) Beneficial compatible microbes enhance antioxidants in chickpea edible parts through synergistic interactions. LWT-Food Sci Technol 56:390–397

    Article  CAS  Google Scholar 

  68. Chopra B, Dhingra AK, Dhar KL (2013) Psoralea corylifolia L. (Buguchi)-Folklore to modern evidence: review. Fitoterapia 90:44–56

    Article  CAS  Google Scholar 

  69. Liu RM, Li AF, Sun AL, Kong L (2004) Preparative isolation and purification of psoralen and isopsoralen from Psoralea corylifolia by high-speed counter-current chromatography. J Chromatogr A 1057:225–228

    Article  CAS  Google Scholar 

  70. Wolf P (2016) Psoralen-ultraviolet A endures as one of the most powerful treatments in dermatology: reinforcement of this ‘triple-product therapy’ by the 2016. British guidelines. Br J Dermatol 174:11–14

    Article  CAS  Google Scholar 

  71. Prabha C, Maheshwari DK, Bajpai VK (2013) Diverse role of fast growing rhizobia in growth promotion and enhancement of psoralen content in Psoralea corylifolia L. Pharmacogn Mag 9:S57–S65

    Article  Google Scholar 

  72. Skrovankova S, Sumczynski D, Mlcek J, Jurikova T, Sochor J (2015) Bioactive compounds and antioxidant activity in different types of berries. Int J Mol Sci 16:24673–24706

    Article  CAS  Google Scholar 

  73. Nile SH, Park SW (2014) Edible berries: bioactive components and their effect on human health. Nutrition 30:134–144

    Article  CAS  Google Scholar 

  74. Zhao Y (2007) Berry fruit: value-added products for health promotion. CRC press, Boca Raton

    Book  Google Scholar 

  75. Alvarez-Suarez JM, Giampieri F, Tulipani S, Casoli T, Santos-Buelga C, Busco F, Quiles JL, Cordero MD, Bompadre S, Mezzetti B, Battino M (2014) One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. J Nutr Biochem 25:289–294

    Article  CAS  Google Scholar 

  76. Tulipani S, Armeni T, Giampieri F, Alvarez-Suarez JM, Gonzalez-Paramas AM, Santos-Buelga C, Busco F, Principato G, Bompadre S, Mezzetti B, Battino M (2014) Strawberry intake increases blood fluid, erythrocyte and mononuclear cell defenses against oxidative challenge. Food Chem 156:87–93

    Article  CAS  Google Scholar 

  77. Pırlak L, Köse M (2009) Effects of plant growth promoting rhizobacteria on yield and some fruit properties of strawberry. J Plant Nutr 32:1173–1184

    Article  Google Scholar 

  78. Erturk Y, Ercisli S, Cakmakci R (2012) Yield and growth response of strawberry to plant growth-promoting rhizobacteria inoculation. J Plant Nutr 35:817–826

    Article  CAS  Google Scholar 

  79. Flores-Félix JD, Silva LR, Rivera LP, Marcos-Garcia M, Garcia-Fraile P, Martinez-Molina E, Mateos PF, Velázquez E, Andrade P, Rivas R (2015) Plants probiotics as a tool to produce highly functional fruits: the case of Phyllobacterium and vitamin C in strawberries. PLoS One 10:e0122281

    Article  Google Scholar 

  80. Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic 124:62–66

    Article  CAS  Google Scholar 

  81. Bona E, Lingua G, Manassero P, Cantamessa S, Marsano F, Todeschini V, Copetta A, Massa N, Avidano L, Gamalero E, Berta G (2015) AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 25:181–193

    Article  CAS  Google Scholar 

  82. Robert P, Fredes C (2015) The encapsulation of anthocyanins from berry-type fruits. Trends in foods. Molecules 20:5875–5888

    Article  CAS  Google Scholar 

  83. Aaby K, Wrolstad RE, Ekeberg D, Skrede G (2007) Polyphenol composition and antioxidant activity in strawberry purees; impact of achene level and storage. J Agr Food Chem 55:5156–5166

    Article  CAS  Google Scholar 

  84. Lingua G, Bona E, Manassero P, Marsano F, Todeschini V, Cantamessa S, Copetta A, Gamalero E, Berta G (2013) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. Selva) in conditions of reduced fertilization. Int J Mol Sci 14:16207–16225

    Article  Google Scholar 

  85. Orhan E, Esitken A, Ercisli S, Turan M, Sahin F (2006) Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic 111:38–43

    Article  CAS  Google Scholar 

  86. Basu P, Maier C (2016) In vitro antioxidant activities and polyphenol contents of seven commercially available fruits. Pharm Res 8:258

    Google Scholar 

  87. García-Seco D, Bonilla A, Algar E, García-Villaraco A, Gutierrez-Mañero J, Ramos-Solano B (2013) Enhanced blackberry production using Pseudomonas fluorescens as elicitor. Agron Sustain Dev 33:385–392

    Article  Google Scholar 

  88. Ramos-Solano B, García-Villaraco A, Gutiérrez-Mañero FJ, Lucas JA, Bonilla A, García-Seco D (2014) Annual changes in bioactive contents and production in field-grown blackberry after inoculation with Pseudomonas fluorescens. Plant Physiol Biochem 74:1–8

    Article  CAS  Google Scholar 

  89. García-Seco D, Zhang Y, Gutierrez-Mañero FJ, Martin C, Ramos-Solano B (2015) Application of Pseudomonas fluorescens to blackberry under field conditions improves fruit quality by modifying flavonoid metabolism. PLoS One 10:e0142639

    Article  Google Scholar 

  90. Drewnowski A (2005) Concept of a nutritious food: toward a nutrient density score. Am J Clin Nutr 82:721–732

    CAS  Google Scholar 

  91. Ramsay SA, Shriver LH, Taylor CA (2017) Variety of fruit and vegetables is related to preschoolers’ overall diet quality. Prev Med 5:112–117

    Google Scholar 

  92. Combs JGF, McClung JP (2016) The vitamins: fundamental aspects in nutrition and health. Academic, Amsterdam

    Google Scholar 

  93. Bona E, Cantamessa S, Massa N, Manassero P, Marsano F, Copetta A, Lingua G, Gamalero E, Berta G (2017) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27:1–11

    Article  CAS  Google Scholar 

  94. Gül A, Kidoglu F, Tüzel Y (2008) Effects of nutrition and Bacillus amyloliquefaciens on tomato (Solanum lycopersicum L.) growing in perlite. Span J Agric Res 6:422–429

    Article  Google Scholar 

  95. Shen F, Zhu TB, Teng MJ, Chen Y, Liu MQ, Hu F, Li HX (2016) Effects of interaction between vermicompost and probiotics on soil nronerty, yield and quality of tomato. Yingyong Shengtai Xuebao 27:484

    Google Scholar 

  96. Dorais M, Ehret DL, Papadopoulos AP (2008) Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem Rev 7:231–250

    Article  CAS  Google Scholar 

  97. Martínez-Valverde I, Periago MJ, Provan G, Chesson A (2002) Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J Sci Food Agr 82:323–330

    Article  Google Scholar 

  98. Ochoa-Velasco CE, Valadez-Blanco R, Salas-Coronado R, Sustaita-Rivera F, Hernández-Carlos B, García-Ortega S, Santos-Sánchez NF (2016) Effect of nitrogen fertilization and Bacillus licheniformis biofertilizer addition on the antioxidants compounds and antioxidant activity of greenhouse cultivated tomato fruits (Solanum lycopersicum L. var. Sheva). Sci Hortic 201:338–345

    Article  CAS  Google Scholar 

  99. Ordookhani K (2011) Investigation of PGPR on antioxidant activity of essential oil and microelement contents of sweet basil. Adv Environ Biol 5:1114–1120

    Google Scholar 

  100. Sharafzadeh S (2012) Effects of PGPR on growth and nutrients uptake of tomato. Int J Adv Eng Technol 2:27

    Google Scholar 

  101. Heidari M, Golpayegani A (2012) Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.) J Saudi Soc Agr Sci 11:57–61

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the funding received by the Regional Government of Castile and Leon and the Spanish Ministry of Economics and Competitiveness (JCyL SA169U14 and MINECO; AGL2015-70510-R). AJG is funded by the FPU predoctoral fellowship from the Spanish Government. JDFF is funded by the University of Salamanca with a predoctoral fellowship. PGF receives funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 750795.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paula García-Fraile or Raúl Rivas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Jiménez-Gómez, A., García-Fraile, P., Flores-Félix, J.D., Rivas, R. (2018). Plants Probiotics as a Tool to Produce Highly Functional Fruits. In: Mérillon, JM., Ramawat, K. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54528-8_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54528-8_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54528-8

  • Online ISBN: 978-3-319-54528-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics