Methods for Seafood Authenticity Testing in Europe

  • Véronique Verrez-Bagnis
  • Carmen G. Sotelo
  • Rogério Mendes
  • Helena Silva
  • Kristina Kappel
  • Ute Schröder
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Seafood authenticity is a key parameter for seafood quality, particularly in Europe where regulations provide a strict framework for seafood labeling. A wide variety of methods are commonly used in control laboratories (private or public) to identify seafood species, but emergent approaches for the development of new and fast DNA- and protein-based methods for species differentiation are also considered. To address the challenges in controlling further labeling requirements in the latest European legislation on seafood product traceability and labeling (Regulation (EU) 1379/2013), a review of the development of methods to identify fishing areas and to distinguish between wild and farmed fish, as well as an overview of the advanced methods that could be used for differentiation of fresh and frozen-thawed fish, is given. These methods will become increasingly important in the near future as the risk-based control of food authenticity is prescribed by the new EU control regulation (Regulation (EU) 2017/625).

Keywords

Seafood identification Traceability Seafood geographical discrimination Seafood authentication 

References

  1. 1.
    FAO (2016) The state of world fisheries and aquaculture 2016: contributing to food security and nutrition for all. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  2. 2.
    European Commission (2016) Facts and figures on the Common Fisheries Policy. European Union. https://ec.europa.eu/fisheries/facts_figures_en. Accessed 24 Oct 2017
  3. 3.
    Pardo MÁ, Jiménez E, Pérez-Villarreal B (2016) Misdescription incidents in seafood sector. Food Control 62:277–283CrossRefGoogle Scholar
  4. 4.
    Warner K, Mustain P, Lowell B, Geren S, Talmage S (2016) Deceptive dishes: seafood swaps found worldwide. http://usa.oceana.org/publications/reports/deceptive-dishes-seafood-swaps-found-worldwide#. Accessed 23 Oct 2017
  5. 5.
    Agnew DJ, Pearce J, Pramod G, Peatman T, Watson R, Beddington JR, Pitcher TJ (2009) Estimating the worldwide extent of illegal fishing. PLoS One 4(2):e4570CrossRefGoogle Scholar
  6. 6.
    Griffiths AM, Sotelo CG, Mendes R, Pérez-Martín RI, Schröder U, Shorten M, Silva HA, Verrez-Bagnis V, Mariani S (2014) Current methods for seafood authenticity testing in Europe: is there a need for harmonisation? Food Control 45:95–100CrossRefGoogle Scholar
  7. 7.
    Kappel K, Schröder U (2016) Substitution of high-priced fish with low-priced species: adulteration of common sole in German restaurants. Food Control 59:478–486CrossRefGoogle Scholar
  8. 8.
    Wang D, Hsieh YHP (2016) The use of imported pangasius fish in local restaurants. Food Control 65:136–142CrossRefGoogle Scholar
  9. 9.
    Regulatory Fish encyclopedia: U. S. Food and Drug Administration (1993–2017) https://www.fda.gov/food/foodscienceresearch/rfe/default.htm
  10. 10.
    Kappel K, Schröder U (2015) Species identification of fishery products in Germany. J Verbrauch Lebensm 10:31–34CrossRefGoogle Scholar
  11. 11.
    Rehbein H, Etienne M, Jerome M, Hattula T, Knudsen LB, Jessen F, Luten JB, Bouquet W, Mackie IM, Ritchie HA, Martin R, Mendes R (1995) Influence of variation in methodology on the reliability of the isoelectric focusing method of fish species identification. Food Chem 52:193–197CrossRefGoogle Scholar
  12. 12.
    Altinelataman C et al (2009) Comparison of IEF patterns of sarcoplasmic proteins of fish from North Atlantic and Aegean Sea. Food Control 20:980–985CrossRefGoogle Scholar
  13. 13.
    Piñeiro C, Barros-Velázquez J, Pérez-Martín R, Gallardo JM (2000) Specific enzyme detection following IEF as complimentary tool for the differentiation of related gadoid fish species. Food Chem 70:241–245CrossRefGoogle Scholar
  14. 14.
    Abdullah A, Rehbein H (2015) Authentication of closely related scombrid, catfish and tilapia species by PCR-based analysis and isoelectric focusing of parvalbumin. Eur Food Res Technol 241:497–511CrossRefGoogle Scholar
  15. 15.
    Schiefenhövel K, Rehbein H (2013) Differentiation of Sparidae species by DNA sequence analysis, PCR-SSCP and IEF of sarcoplasmic proteins. Food Chem 138:154–160CrossRefGoogle Scholar
  16. 16.
    Schiefenhövel K, Rehbein H (2011) Identification of barramundi (Lates calcarifer) and tilapia (Oreochromis spp.) fillets by DNA- and protein-analytical methods. J Verbrauch Lebensm 6:203–214CrossRefGoogle Scholar
  17. 17.
    Ataman C, Çelik U, Rehbein H (2006) Identification of some Aegean fish species by native isoelectric focusing. Eur Food Res Technol 222:99–104CrossRefGoogle Scholar
  18. 18.
    Renon P, Bernardi C, Malandra R, Biondi PA (2005) Isoelectric focusing of sarcoplasmic proteins to distinguish swordfish, blue marlin and Mediterranean spearfish. Food Control 16:473–477CrossRefGoogle Scholar
  19. 19.
    Chen TY, Shiau CY, Noguchi T, Wei CI, Hwang DF (2003) Identification of puffer fish species by native isoelectric focusing technique. Food Chem 83:475–479CrossRefGoogle Scholar
  20. 20.
    Hsieh YHP, Chen FC, Nur M (1997) Rapid species identification of cooked red snapper using isoelectric focusing. J Food Sci 62:15–19CrossRefGoogle Scholar
  21. 21.
    Rehbein H (1995) Differentiation of scombroid fish species (tunas, bonitos and mackerels) by isoelectric focusing, titration curve analysis and native polyacrylamide gel electrophoresis of sarcoplasmic proteins. Electrophoresis 16:820–822CrossRefGoogle Scholar
  22. 22.
    Piñeiro C et al (1998) Two-dimensional electrophoretic study of the water-soluble protein fraction in white muscle of gadoid fish species. J Agric Food Chem 46:3991–3997CrossRefGoogle Scholar
  23. 23.
    Berrini A, Tepedino V, Borromeo V, Secchi C (2006) Identification of freshwater fish commercially labelled “perch” by isoelectric focusing and two-dimensional electrophoresis. Food Chem 96:163–168CrossRefGoogle Scholar
  24. 24.
    Piñeiro C, Barros-Velázquez J, Sotelo CG, Pérez-Martín RI, Gallardo JM (2000) Specific enzyme detection following IEF as complimentary tool for the differentiation of related gadoid fish species. Food Chem 70:241–245CrossRefGoogle Scholar
  25. 25.
    Girija N, Rehbein H (1988) Comparison of parvalbumin patterns from different fish species by isoelectric focusing of muscle extracts. Comp Biochem Physiol B Comp Biochem 91:723–728CrossRefGoogle Scholar
  26. 26.
    Arif SH, Jabeen M, Hasnain AU (2007) Biochemical characterization and thermostable capacity of parvalbumins: the major fish-food allergens. J Food Biochem 31:121–137CrossRefGoogle Scholar
  27. 27.
    Sotelo CG, Piñeiro C, Gallardo JM, Pérez-Martin RI (1992) Identification of fish species in smoked fish products by electrophoresis and isoelectric focusing. Z Lebensm Unters Forsch 195:224–227CrossRefGoogle Scholar
  28. 28.
    Etienne M, Jérôme M, Fleurence J, Rehbein H, Kundiger R, Yman IM, Ferm M, Craig A, Mackie I, Jessen F, Smelt A, Luten J (1999) A standardized method of identification of raw and heat-processed fish by urea isoelectric focusing: a collaborative study. Electrophoresis 20:1923–1933CrossRefGoogle Scholar
  29. 29.
    Etienne M, Jérôme M, Fleurence J, Rehbein H, Kundiger R, Mendes R, Costa H, Martınez I (2001) Species identification of formed fishery products and high pressure-treated fish by electrophoresis: a collaborative study. Food Chem 72:105–112CrossRefGoogle Scholar
  30. 30.
    Rehbein H, Kündiger I, Yman IM, Ferm M, Etienne M, Jerome M, Craig A, Mackie I, Jessen F, Martinez I, Mendes R, Smelt A, Luten J, Piñeiro C, Pérez-Martín R (1999) Species identification of cooked fish by urea isoelectric focusing and sodium dodecylsulfate polyacrylamide gel electrophoresis: a collaborative study. Food Chem 67:333–339CrossRefGoogle Scholar
  31. 31.
    Etienne M, Jérôme M, Fleurence J, Rehbein H, Kündiger R, Mendes R, Costa H, Pérez-Martín R, Piñeiro-González C, Craig A, Mackie I, Yman IM, Ferm M, Martínez I, Jessen F, Smelt A, Luten J (2000) Identification of fish species after cooking by SDS−PAGE and urea IEF: a collaborative study. J Agric Food Chem 48:2653–2658CrossRefGoogle Scholar
  32. 32.
    Mackie I, Craig A, Etienne M, Jérôme M, Fleurence J, Jessen F, Smelt A, Kruijt A, Yman IM, Ferm M, Martinez I, Pérez-Martín R, Piñeiro C, Rehbein H, Kündiger R (2000) Species identification of smoked and gravad fish products by sodium dodecylsulphate polyacrylamide gel electrophoresis, urea isoelectric focusing and native isoelectric focusing: a collaborative study. Food Chem 71:1–7CrossRefGoogle Scholar
  33. 33.
    Asensio L, González I, García T, Martín R (2008) Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control 19:1–8CrossRefGoogle Scholar
  34. 34.
    Taylor WG, Jones JL (1992) An immunoassay for verifying the identity of canned sardines. Food Agric Immunol 4:169–175CrossRefGoogle Scholar
  35. 35.
    Dominguez E, Perez MD, Puyol P, Calvo M (1997) Use of immunological techniques for detecting species substitution in raw and smoked fish. Z Lebensm Unters Forsch A 204:279–281CrossRefGoogle Scholar
  36. 36.
    Céspedes A, García T, Carrera E, González I, Fernández A, Asensio L, Hernández PE, Martín R (1999) Indirect ELISA for the identification of sole (Solea solea), European plaice (Pleuronectes platessa), flounder (Platichthys flesus), and Greenland halibut (Reinhardtius hippoglossoides). J Food Prot 62:1178–1182CrossRefGoogle Scholar
  37. 37.
    Asensio L, González I, Rodríguez MA, Mayoral B, López-Calleja I, Hernández PE, García T, Martín R (2003) Identification of grouper (Epinephelus guaza), wreck fish (Polyprion americanus), and Nile perch (Lates niloticus) fillets by polyclonal antibody-based enzyme-linked immunosorbent assay. J Agric Food Chem 51:1169–1172CrossRefGoogle Scholar
  38. 38.
    Carrera E, Terni M, Montero A, García T, González I, Martín R (2014) ELISA-based detection of mislabeled albacore (Thunnus alalunga) fresh and frozen fish fillets. Food Agric Immunol 25:569–577CrossRefGoogle Scholar
  39. 39.
    Chen YT, Hsieh YHP (2014) A sandwich ELISA for the detection of fish and fish products. Food Control 40:265–273CrossRefGoogle Scholar
  40. 40.
    Verrez-Bagnis V, Escriche-Roberto I (1993) The performance of ELISA and dot-blot methods for the detection of crab flesh in heated and sterilized surimi-based products. J Sci Food Agric 63:445–449CrossRefGoogle Scholar
  41. 41.
    Reed ZH, Park JW (2010) Quantification of Alaska pollock surimi in prepared crabstick by competitive ELISA using a myosin light chain 1 specific peptide. Food Chem 123:196–201CrossRefGoogle Scholar
  42. 42.
    Ochiai Y, Watabe S (2003) Identification of fish species in dried fish products by immunostaining using anti-myosin light chain antiserum. Food Res Int 36:1029–1103CrossRefGoogle Scholar
  43. 43.
    Huang T, Marshall MR, Kao K, Otwell WE, Wei C (1995) Development of monoclonal antibodies for red snapper (Lutjanus campechanus) identification using enzyme-linked immunosorbent assay. J Agric Food Chem 43:2301–2307CrossRefGoogle Scholar
  44. 44.
    Asensio L, González I, Rodriguez MA, Mayoral B, López-Calleja I, Hernández PE, García T, Martin R (2003) Development of a specific monoclonal antibody for grouper (Epinephelus guaza) identification by an indirect enzyme-linked immunosorbent assay. J Food Prot 66:886–889CrossRefGoogle Scholar
  45. 45.
    Asensio L, González I, Pavón MA, García T, Martín R (2008) An indirect ELISA and a PCR technique for the detection of grouper (Epinephelus marginatus) mislabeling. Food Addit Contam 25:677–683CrossRefGoogle Scholar
  46. 46.
    Asensio L, González I, Rodríguez MA, Hernández PE, García T, Martín R (2003) Development of a monoclonal antibody for grouper (Epinephelus marginatus) and wreck fish (Polyprion americanus) authentication using an indirect ELISA. J Food Sci 68:1900–1903CrossRefGoogle Scholar
  47. 47.
    McNulty ST, Klesius PH (2005) Development of an indirect enzyme-linked immunoabsorbent assay using a monoclonal antibody to identify Ictalurus sp. fillets. Aquac Res 36:1279–1284CrossRefGoogle Scholar
  48. 48.
    Gajewski KG, Chen YT, Hsieh YH (2009) Production and characterization of monoclonal antibodies specific to pangasius catfish, basa, and tra. J Food Sci 74:C241–C247CrossRefGoogle Scholar
  49. 49.
    Hsieh YH, Chen YT, Gajewski K (2009) Monoclonal antibody-based sandwich ELISA for reliable identification of imported Pangasius catfish. J Food Sci 74:C602–C607CrossRefGoogle Scholar
  50. 50.
    Fernández A, García T, Asensio L, Rodríguez MA, González I, Lobo E (2002) Identification of the clam species Ruditapes decussatus (grooved carpet shell), Venerupis romboides (yellow carpet shell) and Venerupis pullastra (pullet carpet shell) by ELISA. Food Agric Immunol 14:65–71CrossRefGoogle Scholar
  51. 51.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467CrossRefGoogle Scholar
  52. 52.
    Garcia-Sancho M (2010) A new insight into Sanger’s development of sequencing: from proteins to DNA, 1943–1977. J Hist Biol 43:265–323CrossRefGoogle Scholar
  53. 53.
    Bartlett SE, Davidson WS (1991) Identification of Thunnus tuna species by the polymerase chain-reaction and direct sequence-analysis of their mitochondrial cytochrome-b genes. Can J Fish Aquat Sci 48:309–317CrossRefGoogle Scholar
  54. 54.
    Bartlett SE, Davidson WS (1992) FINS (Forensically Informative Nucleotide Sequencing): a procedure for identifying the animal origin of biological specimens. BioTechniques 12:408–411Google Scholar
  55. 55.
    Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitocondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A 86:6196–6200CrossRefGoogle Scholar
  56. 56.
    Quinteiro J, Sotelo CG, Rehbein H, Pryde SE, Medina I, Pérez-Martín RI, Rey-Méndez M, Mackie IM (1998) Use of mtDNA direct polymerase chain reaction (PCR) sequencing and PCR-restriction fragment length polymorphism methodologies in species identification of canned tuna. J Agric Food Chem 46:1662–1669CrossRefGoogle Scholar
  57. 57.
    Sanjuan A, Comesaña AS (2002) Molecular identification of nine commercial flatfish species by polymerase chain reaction- restriction fragment length polymorphism analysis of a segment if the cytochrome b region. J Food Protect 65:1016–1023CrossRefGoogle Scholar
  58. 58.
    Pepe T, Trotta M, Di Marco I, Cennamo P, Anastasio A, Cortesi ML (2005) Mitochondrial cytochrome b DNA sequence variations: an approach to fish species identification in processed fish products. J Food Protect 68:421–425CrossRefGoogle Scholar
  59. 59.
    Jérôme M, Martinsohn JT, Ortega D, Carreau P, Verrez-Bagnis V, Mouchel O (2008) Toward fish and seafood traceability: anchovy species determination in fish products by molecular markers and support through a public domain database. J Agric Food Chem 56:3460–3469CrossRefGoogle Scholar
  60. 60.
    Blanco M, Perez-Martin RI, Sotelo CG (2008) Identification of shark species in seafood products by forensically informative nucleotide sequencing (FINS). J Agric Food Chem 56:9868–9874CrossRefGoogle Scholar
  61. 61.
    Lago FC, Herrero B, Vieites JM, Espiñeira M (2011) Genetic identification of horse mackerel and related species in seafood products by means of forensically informative nucleotide sequencing methodology. J Agric Food Chem 59:2223–2228CrossRefGoogle Scholar
  62. 62.
    Huang YR, Yin MC, Hsieh YL, Yeh YH, Yang YC, Chung YL, Hsieh C (2014) Authentication of consumer fraud in Taiwanese fish products by molecular trace evidence and forensically informative nucleotide sequencing. Food Res Int 55:294–302CrossRefGoogle Scholar
  63. 63.
    Rasmussen RS, Morrissey MT (2009) Application of DNA-based methods to identify fish and seafood substitution on the commercial market. Compr Rev Food Sci Food Saf 8:118–154CrossRefGoogle Scholar
  64. 64.
    Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321CrossRefGoogle Scholar
  65. 65.
    Hebert PDN, Ratnasingham S, de Waard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol Sci 270:S96–S99CrossRefGoogle Scholar
  66. 66.
    Viñas J, Tudela S (2009) A validated methodology for genetic identification of tuna species (Genus Thunnus). PLoS One 4:e7606CrossRefGoogle Scholar
  67. 67.
    Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7:544–548CrossRefGoogle Scholar
  68. 68.
    Armani A, Guardone L, Castigliego L, D’Amico P, Messina A, Malandra R, Gianfaldoni D, Guidi A (2015) DNA and mini-DNA barcoding for the identification of Porgies species (family Sparidae) of commercial interest on the international market. Food Control 50:589–596CrossRefGoogle Scholar
  69. 69.
    Shokralla S, Hellberg SE, Handy SM, King I, Hajibabaei M (2015) A DNA mini-barcoding system for authentication of processed fish products. Nature. Sci Rep 5:15894CrossRefGoogle Scholar
  70. 70.
    Steinke D, Vences M, Salzburger W, Meyer A (2005) TaxI: a software tool for DNA barcoding using distance methods. Philos Trans R Soc B 360:1975–1980CrossRefGoogle Scholar
  71. 71.
    Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41:D36–D42CrossRefGoogle Scholar
  72. 72.
    Hellberg RS, Pollack S, Hanner RH (2016) Seafood species identification using DNA sequencing. In: Naaum AM, Hanner RH (eds) Seafood authenticity and traceability: a DNA perspective. Academic Press, LondonGoogle Scholar
  73. 73.
    Wong EK, Hanner RH (2008) DNA barcoding detects market substitution in North American seafood. Food Res Int 41:828–837CrossRefGoogle Scholar
  74. 74.
    Zhang J, Hanner RH (2012) Molecular approach to the identification of fish in the South China sea. PlosOne 7:e30621CrossRefGoogle Scholar
  75. 75.
    Lowenstein JH, Amato G, Kolokotronis SO (2009) The real maccoyii: identifying tuna sushi with DNA barcodes: contrasting characteristic attributes and genetic distances. PlosOne 4:e7866CrossRefGoogle Scholar
  76. 76.
    Ferrito V, Bertolino V, Pappalardo AM (2016) White fish authentication by COIBar-RFLP: toward a common strategy for the rapid identification of species in convenience seafood. Food Control 70:130–137CrossRefGoogle Scholar
  77. 77.
    Bustin SA (2005) Real-time PCR. In: Fuchs J, Podda M (eds) Encyclopedia of Diagnostic Genomics and Proteomics. CRC Press, New YorkGoogle Scholar
  78. 78.
    Kutyavin IV, Afonina IA, Mills A, Gorn VV, Lukhtanov EA, Belousov EA, Singer MJ, Walburger DK, Lokhov SG, Gall AA, Dempcy R, Reed MW, Meyer RB, Hedgpeth J (2000) 3′-Minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res 28:655–661CrossRefGoogle Scholar
  79. 79.
    Ugozzoli LA, Latorra D, Pucket R, Arar K, Hamby K (2004) Real-time genotyping with oligonucleotide probes containing locked nucleic acids. Anal Biochem 324:143–152CrossRefGoogle Scholar
  80. 80.
    Raymaekers M, Smets R, Maes B, Cartuyvels R (2009) Checklist for optimization and validation of real-time PCR assays. J Clinic Lab Anal 23:145–151CrossRefGoogle Scholar
  81. 81.
    Broeders S, Huber I, Grohmann L, Berben G, Taverniers I, Mazzara M, Roosens N, Morisset D (2014) Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci Technol 37:115–126CrossRefGoogle Scholar
  82. 82.
    Taylor MI, Fox C, Rico I, Rico C (2002) Species specific probes for simultaneous identification of (Gadus morhua L.) haddock (Melanogrammus aeglefinus L.) and whiting (Merlangius merlangus L.) Mol Ecol Notes 2:599–601CrossRefGoogle Scholar
  83. 83.
    Trotta M, Schonhuth S, Pepe T, Cortesi ML, Piyet A, Bautista JM (2005) Multiplex PCR method for use in real-time PCR for identification of fish fillets from grouper (Epinephelus and Mycteroperca species) and common substitute species. J Agric Food Chem 53:2039–2045CrossRefGoogle Scholar
  84. 84.
    Espiñeira M, Vieites JM (2016) Genetic system for an integral traceability of European eel (Anguilla anguilla) in aquaculture and seafood products: authentication by fast real-time PCR. Eur Food Res Technol 242:25–31CrossRefGoogle Scholar
  85. 85.
    Espiñeira M, Vieites JM (2016) Fast real time PCR for control of intra-species recycling in aquaculture feed, focused to the most relevant fish species farmed in Europe. Food Chem 204:352–357CrossRefGoogle Scholar
  86. 86.
    Lopez I, Pardo MA (2005) Application of relative quantification TaqMan real-time Polymerase chain reaction technology for the identification and quantification of Thunnus alalunga and Thunnus albacares. J Agric Food Chem 53:4554–4560CrossRefGoogle Scholar
  87. 87.
    Herrero B, Madriñan M, Vieites JM, Espiñeira M (2010) Authentication of Atlantic cod (Gadus morhua) using real-time PCR. J Agric Food Chem 58:4794–4799CrossRefGoogle Scholar
  88. 88.
    Herrero B, Lago FC, Vieites JM, Espiñeira M (2011) Authentication of swordfish (Xiphias gladius) by RT-PCR and FINS methodologies. Eur Food Res Technol 233:195–202CrossRefGoogle Scholar
  89. 89.
    Herrero B, Vieites JM, Espiñeira M (2011) Duplex real-time PCR for authentication of anglerfish species. Eur Food Res Technol 233:817–823CrossRefGoogle Scholar
  90. 90.
    Rasmussen Hellberg RS, Morrissey MT, Hanner R (2010) A multiplex PCR method for the identification of commercially important salmon and trout species (Oncorhynchus and Salmo) in North America. J Food Sci 75:C595–C606CrossRefGoogle Scholar
  91. 91.
    Chen S, Zhang J, Chen W, Zhang Y, Wang J, Xu D, Zhou Y (2012) Quick method for grouper species identification using real-time PCR. Food Control 27:108–112CrossRefGoogle Scholar
  92. 92.
    Dalama J, Vieites JM, Espiñeira M (2015) Detection of the causal agents of Keriorrhea (Lepidocybium flavobrunneum and Ruvettus pretiosus) by means of real time PCR. Food Chem 174:326–329CrossRefGoogle Scholar
  93. 93.
    Terio V, Di Pinto P, Decaro N, Parisi A, Desario C, Martella V, Buonavogli C, Tantillo MG (2010) Identification of tuna species in commercial cans by minor groove binder probe real-time polymerase chain reaction analysis of mitochondrial DNA sequences. Mol Cell Probes 24:352–356CrossRefGoogle Scholar
  94. 94.
    Chuang PS, Chen M, Shiao JCH (2012) Identification of tuna species by real-time polymerase chain reaction technique. Food Chem 133:1055–1061CrossRefGoogle Scholar
  95. 95.
    Bojolly D, Doyen P, Le Fur B, Christaki U, Verrez-Bagnis V, Grard T (2017) Development of a qPCR method for the identification of two related tuna species, bigeye tuna (Thunnus obesus) and yellowfin tuna (Thunnus albacares) in canned tuna. J Agric Food Chem 65:913–920CrossRefGoogle Scholar
  96. 96.
    Giusti A, Castigliego L, Rubino R, Gianfaldoni D, Guidi A, Armani A (2015) A conventional multiplex PCR assay for the detection of toxic gemfish species (Ruvettus pretiosus and Lepidocybium flavobrunneum): a simple method to combat health frauds. J Agric Food Chem 64:960–968CrossRefGoogle Scholar
  97. 97.
    Herrero B, Vieites JM, Espiñeira M (2011) Authentication of Atlantic salmon (Salmo salar) using real-time PCR. Food Chem 127:1268–1272CrossRefGoogle Scholar
  98. 98.
    Herrero B, Lago FC, Vieites JM, Espiñeira M (2011) Real-time PCR method applied to seafood products for authentication of European sole (Solea solea) and differentiation of common substitute species. Food Addit Contam: Part A 29:12–18CrossRefGoogle Scholar
  99. 99.
    Hird HJ, Hold GL, Chisholm J, Reece P, Russel VJ, Brown J, Goodie R, MacArthur R (2005) Development of a method for the quantification of haddock (Melanogrammus aeglefinus) in commercial products using real-time PCR. Eur Food Res Technol 220:633–637CrossRefGoogle Scholar
  100. 100.
    Hird HJ, Chisholm J, Kaye J, Colyer A, Hold GL, Conyers CM, Núñez JI, MacArthur R (2012) Development of real-time PCR assay for the detection of Atlantic cod (Gadus morhua), Atlantic salmon (Salmo salar) and European plaice (Pleuronectes platessa) in complex food samples. Eur Food Technol 234:127–136CrossRefGoogle Scholar
  101. 101.
    Vadopalas B, Bouma JV, Jackels CR, Friedmann CS (2006) Application of real-time PCR for simultaneous identification and quantification of larval abalone. J Exp Mar Biol Ecol 334:219–228CrossRefGoogle Scholar
  102. 102.
    Dias PJ, Sollelis L, Cook EJ, Piertney SB, Davie IM, Snow M (2008) Development of a real-time PCR assay for detection of Mytilus species specific alleles: application to a sampling survey in Scotland. J Exp Mar Biol Ecol 367:253–258CrossRefGoogle Scholar
  103. 103.
    Sánchez A, Quinteiro J, Rey-Méndez M, Perez-Martín RI, Sotelo CG (2014) Identification and quantification of two species of oyster larvae using real-time PCR. Aquat Living Resour 27:135–145CrossRefGoogle Scholar
  104. 104.
    Espiñeira M, Vieites JM (2012) Rapid method for controlling the correct labelling of products containing common octopus (Octopus vulgaris) and main substitute species (Eledone cirrhosa and Dosidicus gigas) by fast real-time PCR. Food Chem 135:2439–2444CrossRefGoogle Scholar
  105. 105.
    Herrero B, Lago FC, Vieites JM, Espiñeira M (2012) Rapid method for controlling the correct labelling of products containing European squid (Loligo vulgaris) by fast real-time PCR. Eur Food Res Technol 234:77–85CrossRefGoogle Scholar
  106. 106.
    Ye J, Feng J, Liu S, Zhang Y, Jiang X, Dai Z (2016) Identification of four squid species by quantitative real-time polymerase chain reaction. Mol Cell Probes 30:22–29CrossRefGoogle Scholar
  107. 107.
    Swoboda I (2011) Fish allergy: new strategies for improvement of diagnosis and treatment. Allergologie 34:388–397CrossRefGoogle Scholar
  108. 108.
    Sun M, Liang C, Gao H, Li C, Deng M (2009) Detection of parvalbumin, a common fish allergen gene in food, by real-time polymerase chain reaction. J AOAC Int 92:234–240Google Scholar
  109. 109.
    Herrero B, Vieites JM, Espiñeira M (2014) Development of an in-house fast real-time PCR method for detection of fish allergen in foods and comparison with a commercial kit. Food Chem 151:415–420CrossRefGoogle Scholar
  110. 110.
    Tetzlaff C, Mäde D (2016) Development of a real-time PCR system for the detection of the potential allergen fish in food. Eur Food Res Technol 243:849–857CrossRefGoogle Scholar
  111. 111.
    Herrero B, Vieites JM, Espiñeira M (2012) Fast real-time PCR for the detection of crustacean allergen in foods. J Agric Food Chem 60:1893–1897CrossRefGoogle Scholar
  112. 112.
    Eischeid AC, Kim B, Kasko SM (2012) Two quantitative real-time PCR assays for the detection of penaeid shrimp and Blue crab, crustacean shellfish allergen. J Agric Food Chem 61:5669–5674CrossRefGoogle Scholar
  113. 113.
    Zagon J, Schmidt J, Schmidt AS, Broll H, Lampen A, Seidler T, Braeunin A (2017) A novel screening approach based on six real-time PCR systems for the detection of crustacean species in food. Food Control 79:27–34CrossRefGoogle Scholar
  114. 114.
    Martin I, García T, Rojas M, Pegels N, Pavón M, Hernández PE, González I, Martin R (2010) Real-time polymerase chain reaction detection of fishmeal in feedstuffs. J AOAC Int 93:1768–1777Google Scholar
  115. 115.
    Pegels N, González I, López-Calleja I, García T, Martin R (2013) Detection of fish-derived ingredients in animal feeds by a Taqman real-time PCR assay. Food Anal Met 6:1040–1048CrossRefGoogle Scholar
  116. 116.
    Benedetto A, Abete MC, Squadrone S (2011) Towards a quantitative application of real-time PCR technique for fish DNA detection in feedstuffs. Food Chem 126:1436–1442CrossRefGoogle Scholar
  117. 117.
    Kochzius M, Nölte M, Weber H, Silkenbeumer N, Hjörleifsdottir S, Hreggvidsson GO, Marteinsson V, Kappel K, Planes S, Tinti F, Magoulas A, Vazquez EG, Turan C, Hervet C, Falgueras DC, Antoniou A, Landi M, Blohm D (2008) DNA microarrays for identifying fishes. Mar Biotechnol 10:207–217CrossRefGoogle Scholar
  118. 118.
    Kochzius M, Seidel C, Antoniou A, Botla SK, Campo D, Cariani A, Vazquez EG, Hauschild J, Hervet C, Hjörleifsdottir S, Hreggvidsson G, Kappel K, Landi M, Magoulas A, Marteinsson V, Nölte M, Planes S, Tinti F, Turan C, Venugopal MN, Weber H, Blohm D (2010) Identifying fishes through DNA barcodes and microarrays. PLoS One 5:e12620CrossRefGoogle Scholar
  119. 119.
    Chitipothu S, Cariani A, Bertasi F, Stagioni M, Kochzius M, Blohm D, Tinti T, Landi M (2014) Invertebrate DNA chip: opportunities and challenges in the development and application of microarrays for marine biodiversity studies. In: Rogers JV (ed) Microarrays: principles, applications and technologies, Genetics – research and issues. Nova Science Publishers, New YorkGoogle Scholar
  120. 120.
    Teletchea F, Bernillon J, Duffraisse M, Laudet V, Hanni C (2008) Molecular identification of vertebrate species by oligonucleotide microarray in food and forensic samples. J Appl Ecol 45:967–975CrossRefGoogle Scholar
  121. 121.
    Yoon HK, Kim GE, Jeong D, Jung JW, Chung IH, Kang S, Kim CG, Hwang SY, Lee YH (2008) Development of salmon identification DNA chip based on mitochondrial COIII-ND3-ND4L variations. Biochip J 2:287–295Google Scholar
  122. 122.
    Yoon HK, Jeong D, Chung IH, Jung JW, Oh MJ, Kim S, Lee YH, Kim CG, Hwang SY (2009) Rapid species identification of elasmobranch fish (skates and rays) using oligonucleotide microarray. Biochip J 3:87–96Google Scholar
  123. 123.
    Kim JH, Park JY, Jung JW, Kim MJ, Lee WS, An CM, Kang JH, Hwang SY (2011) Species identification of filefishes (Monacanthidae) using DNA microarray in Korean marketplace. Biochip J 5:229–235CrossRefGoogle Scholar
  124. 124.
    Park JY, Kim JH, Kim EM, Kang JH, Kang HS, An CM, Lee WS, Hwang SY (2013) Development of a DNA chip to identify the place of origin of hairtail species. Biochip J 7:136–142CrossRefGoogle Scholar
  125. 125.
    Park JY, Cho H, Kang JH, Kim EM, An CM, Kim JH, Lee WS, Hwang SY (2014) Development of DNA microarray for species identification of eels (Anguilliformes and Myxiniformes) in Korean fisheries markets. Biochip J 8:310–316CrossRefGoogle Scholar
  126. 126.
    Park JY, Kim JH, An YR, Kim MJ, Lee WS, An CM, Jung JW, Kang JH, Moon HB, Hwang SY (2010) A DNA microarray for species identification of cetacean animals in Korean water. Biochip J 4:197–203CrossRefGoogle Scholar
  127. 127.
    Handy SM, Chizhikov V, Yakes BJ, Paul SZ, Deeds JR, Mossoba MM (2014) Microarray chip development using infrared imaging for the identification of catfish species. Appl Spectrosc 68:1365–1373CrossRefGoogle Scholar
  128. 128.
    Chisholm J, Conyers CM, Hird H (2008) Species identification in food products using the bioMerieux FoodExpert-ID (R) system. Eur Food Res Technol 228:39–45CrossRefGoogle Scholar
  129. 129.
    Applewhite L, Rasmussen R, Morrissey M (2012) Species identification of seafood. In Granata LA, Flick GJ, Martin RE (eds.), The Seafood Industry, Wiley-Blackwell OxfordGoogle Scholar
  130. 130.
    Iwobi AN, Huber I, Hauner G, Miller A, Busch U (2011) Biochip technology for the detection of animal species in meat products. Food Anal Method 4:389–398CrossRefGoogle Scholar
  131. 131.
  132. 132.
    Reed GH, Wittwer CT (2004) Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem 50:1748e1754CrossRefGoogle Scholar
  133. 133.
    Druml B, Cichna-Markl M (2014) High resolution melting (HRM) analysis of DNA: its role and potential in food analysis. Food Chem 158:245–254CrossRefGoogle Scholar
  134. 134.
    Madesis P, Ganopoulos I, Anagnostis A, Tsaftaris A (2012) The application of Bar- HRM (Barcode DNA-High Resolution Melting) analysis for authenticity testing and quantitative detection of bean crops (Leguminosae) without prior DNA purification. Food Control 25:576–582CrossRefGoogle Scholar
  135. 135.
    Sakaridis I, Ganopoulos I, Argiriou A, Tsaftaris A (2013) High resolution melting analysis for quantitative detection of bovine milk in pure water buffalo mozzarella and other buffalo dairy products. Int Dairy J 28:32–35CrossRefGoogle Scholar
  136. 136.
    Akiyama H, Nakamura F, Yamada C, Nakamura K, Nakajima O, Kawakami H, Harikai N, Furui S, Kitta K, Teshima R (2009) A screening method for the detection of the 35S promoter and the nopaline synthase terminator in genetically modified organisms in a real-time multiplex polymerase chain reaction using high-resolution melting-curve analysis. Biol Pharm Bull 32:1824–1829CrossRefGoogle Scholar
  137. 137.
    Klomtong P, Phasuk Y, Duangjinda M (2016) Animal species identification through high resolution melting real time PCR (HRM) of the mitocondrial 16SrRNA gene. Ann Anim Sci 16:415–424CrossRefGoogle Scholar
  138. 138.
    Fernandes TJR, Costa J, Oliveira MBPP, Mafra I (2017) DNA barcoding coupled to HRM analysis as a new and simple tool for the authentication of Gadidae fish species. Food Chem 230:49–57CrossRefGoogle Scholar
  139. 139.
    Tomas C, Ferreira IMLPLVO, Faria MA (2017) Codfish authentication by a fast short amplicon high resolution melting analysis (SA-HRMA) method. Food Control 71:255–263CrossRefGoogle Scholar
  140. 140.
    Jilberto F, Araneda C, Larrain MA (2017) High resolution melting analysis for identification of commercially-important Mytilus species. Food Chem 229:716–720CrossRefGoogle Scholar
  141. 141.
    Yang S, Li C, Wu Q, Zhu C, Xu X, Zhou G (2014) High-resolution melting analysis: a promising molecular method for meat traceability. Eur Food Res Technol 239:473–480CrossRefGoogle Scholar
  142. 142.
    Vogelstein B, Kinzler KW (1999) Digital PCR. Proc Natl Acad Sci U S A 96:9236–9241CrossRefGoogle Scholar
  143. 143.
    Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, Emslie KR (2012) Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84:1003–1011CrossRefGoogle Scholar
  144. 144.
    Sanders R, Hugget JF, Bushell CA, Cowen S, Scott DJ, Foy CA (2011) Evaluation of digital PCR for absolute DNA quantification. Anal Chem 83:6474–6484CrossRefGoogle Scholar
  145. 145.
    Cai Y, He Y, Lu R, Chen H, Wang Q, Pan L (2017) Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR. PlosOne 12:e0181949CrossRefGoogle Scholar
  146. 146.
    Shehata HR, Li J, Chen S, Redda H, Cheng S, Tabujara N, Li H, Warriner K, Hanner R (2017) Droplet digital polymerase chain reaction (ddPCR) assays integrated with an internal control for quantification of bovine, porcine, chicken and turkey species in food and feed. PLoS One 12:e0182872CrossRefGoogle Scholar
  147. 147.
    Valentini A, Taberlet P, Miaud C, Civade R, Herder J, Thomsen PF, Bellemain E, Besnard A, Coissac E, Boyer F, Gaboriaud C, Jean P, Poulet N, Roset N, Copp GH, Geniez P, Pont D, Argillier C, Baudoin JM, Peroux T, Crivelli AJ, Olivier A, Acqueberge M, Le Brun M, Møller PR, Willerslev E, Dejean T (2016) Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol Ecol 25:929–942CrossRefGoogle Scholar
  148. 148.
    Lacoursiere-Roussel A, Cote G, Leclerc V, Bernatchez L (2016) Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. J Appl Ecol 53:1148–1157CrossRefGoogle Scholar
  149. 149.
    Bertolini F, Ghionda MC, D’Alessandro E, Geraci C, Chiofalo V, Fontanesi L (2015) A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures. PLoS One 10:e0121701CrossRefGoogle Scholar
  150. 150.
    Tillmar AO, Dell'Amico B, Welander J, Holmlund G (2013) A universal method for species identification of mammals utilizing next generation sequencing for the analysis of DNA mixtures. PLoS One 8:e83761CrossRefGoogle Scholar
  151. 151.
    Muñoz-Colmenero M, Martínez JL, Roca A, Garcia-Vazquez E (2017) NGS tools for traceability in candies as high processed food products: Ion Torrent PGM versus conventional PCR-cloning. Food Chem 214:631–636CrossRefGoogle Scholar
  152. 152.
    Cheng X, Su X, Chen X, Zhao H, Bo C, Xu J, Bai H, Ning K (2014) Biological ingredient analysis of traditional Chinese medicine preparation based on high-throughput sequencing: the story for Liuwei Dihuang wan. Sci Rep 4:5147CrossRefGoogle Scholar
  153. 153.
    Coghlan ML, Haile J, Houston J, Murra DC, White NE, Moolhuijzen P, Bellgard ML, Bunce M (2012) Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns. PLoS Genet 8:e1002657CrossRefGoogle Scholar
  154. 154.
    Ivanova NV, Kuzmina ML, Braukmann TWA, Borisenko AV, Zakharov EV (2016) Authentication of herbal supplements using next generation sequencing. PLoS One 11:e0156426CrossRefGoogle Scholar
  155. 155.
    Park JY, Lee SY, An CM, Kang JH, Kim JH, Chai JC, Chen J, Kang JS, Ahn JJ, Lee YS, Hwang SY (2012) Comparative study between next generation sequencing technique and identification of microarray for species identification within blended food products. Biochip J 6:354–361CrossRefGoogle Scholar
  156. 156.
    De Battisti C, Marciano S, Magnabosco C, Busato S, Arcangeli G, Cattoli G (2014) Pyrosequencing as a tool for rapid fish species identification and commercial fraud detection. J Agric Food Chem 62:198–205CrossRefGoogle Scholar
  157. 157.
    Abbadi M, Marciano S, Tosi F, De Battisti C, Panzarin V, Arcangeli G, Cattoli G (2017) Species identification of bivalve molluscs by pyrosequencing. J Sci Food Agric 97:512–519CrossRefGoogle Scholar
  158. 158.
    Kappel K, Haase I, Käppel C, Sotelo CG, Schröder U (2017) Species identification in mixed tuna samples with next-generation sequencing targeting two short cytochrome b gene fragments. Food Chem 234:212–219CrossRefGoogle Scholar
  159. 159.
    Carvalho DC, Palhares RM, Drummond MG, Gadanho M (2017) Food metagenomics: next generation sequencing identifies species mixtures and mislabeling within highly processed cod products. Food Control 80:183–186CrossRefGoogle Scholar
  160. 160.
    Pompanon F, Deagle BE, Symondson WOC, Brown DS, Jarman SN, Taberlet P (2012) Who is eating what: diet assessment using next generation sequencing. Mol Ecol 21:1931–1950CrossRefGoogle Scholar
  161. 161.
    Ripp F, Krombholz CF, Liu Y, Weber M, Schäfer A, Schmidt B, Köppel R, Hankeln T (2014) All-food-Seq (AFS): a quantifiable screen for species in biological samples by deep DNA sequencing. BMC Genomics 15:639CrossRefGoogle Scholar
  162. 162.
    Liu YC, Ripp F, Koeppel R, Schmidt H, Hellmann SL, Weber M, Krombholz CF, Schmidt B, Hankeln T (2017) AFS: identification and quantification of species composition by metagenomic sequencing. Bioinformatics 33:1396–1398Google Scholar
  163. 163.
    Lan F, Haliburton JR, Yuan A, Abate AR (2016) Droplet barcoding for massively parallel single-molecule deep sequencing. Nat Commun 7:11784CrossRefGoogle Scholar
  164. 164.
    Tewhey R, Warner JB, Nakano M, Libby B, Medkova M, David PH, Kotsopoulos SK, Samuels ML, Hutchison JB, Larson JW, Topol EJ, Weiner MP, Harismendy O, Olson J, Link DR, Frazer KA (2009) Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol 27:1025–U1094CrossRefGoogle Scholar
  165. 165.
    Clark LF (2015) The current status of DNA barcoding technology for species identification in fish value chains. Food Policy 54:85–94CrossRefGoogle Scholar
  166. 166.
    Compton J (1991) Nucleic acid sequence-based amplification. Nature 350:91–92CrossRefGoogle Scholar
  167. 167.
    Kievits T, Van Gemen B, Van Strijp D, Schukkink R, Dircks M, Adriaanse H, Malek L, Sooknanan R, Lens P (1991) NASBA isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J Virol Methods 35:273–286CrossRefGoogle Scholar
  168. 168.
    Ulrich RM, John DE, Barton GW, Hendrick GS, Fries DP, Paul JH (2013) Ensuring seafood identity: grouper identification by real-time nucleic acid sequence-based amplification (RT-NASBA). Food Control 31:337–344CrossRefGoogle Scholar
  169. 169.
    Ulrich RM, John DE, Barton GW, Hendrick GS, Fries DP, Paul JH (2015) A handheld sensor assay for the identification of grouper as a safeguard against seafood mislabeling fraud. Food Control 53:81–90CrossRefGoogle Scholar
  170. 170.
    Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63–e63CrossRefGoogle Scholar
  171. 171.
    Saull J, Duggan C, Hobbs G, Edwards T (2016) The detection of Atlantic cod (Gadus morhua) using loop mediated isothermal amplification in conjunction with a simplified DNA extraction process. Food Control 59:306–313CrossRefGoogle Scholar
  172. 172.
    Ye J, Feng J, Dai Z, Meng L, Zhang Y, Jiang X (2017) Application of loop-mediated isothermal amplification (LAMP) for rapid detection of jumbo flying squid Dosidicus gigas (D’Orbigny, 1835). Food Anal Method 10:1452–1459CrossRefGoogle Scholar
  173. 173.
    Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4:e204CrossRefGoogle Scholar
  174. 174.
    Vincent M, Xu Y, Kong H (2004) Helicase-dependent isothermal DNA amplification. EMBO Rep 5:795–800CrossRefGoogle Scholar
  175. 175.
    Coutlée F, Bobo L, Mayur K, Yolken RH, Viscidi RP (1989) Immunodetection of DNA with biotinylated RNA probes: a study of reactivity of a monoclonal antibody to DNA-RNA hybrids. Anal Biochem 181:96–105CrossRefGoogle Scholar
  176. 176.
    Sue MJ, Yeap SK, Omar AR, Tan SW (2014) Application of PCR-ELISA in molecular diagnosis. Biomed Res Int 2014:653014CrossRefGoogle Scholar
  177. 177.
    Sotelo CG, Pérez-Martin RI (2003) Species identification in processed seafoods. In: Lees M (ed) Food authenticity and traceability. Woodhead Publishing, LondonGoogle Scholar
  178. 178.
    Holzhauser T, Stephan O, Vieths S (2002) Detection of potentially allergenic hazelnut (Corylus avellana) residues in food: a comparative study with DNA PCR-ELISA and protein sandwich-ELISA. J Agric Food Chem 50:5808–5815CrossRefGoogle Scholar
  179. 179.
    Milne SA, Gallacher S, Cash P, Lees DN, Henshilwood K, Porter AJR (2007) A sensitive and reliable reverse transcriptase PCR-enzyme-linked immunosorbent assay for the detection of human pathogenic viruses in bivalve molluscs. J Food Protect 70:1475–1482CrossRefGoogle Scholar
  180. 180.
    Musiani M, Gallinella G, Venturoli S, Zerbini M (2007) Competitive PCR– ELISA protocols for the quantitative and the standardized detection of viral genomes. Nat Protoc 2:2511–2519CrossRefGoogle Scholar
  181. 181.
    Asensio L, González I, Rodríguez MA, Hernández PE, García T, Martín R (2004) PCR-ELISA for the semiquantitative detection of Nile perch (Lates niloticus) in sterilized fish muscle mixtures. J Agric Food Chem 52:4419–4422CrossRefGoogle Scholar
  182. 182.
    Santaclara FJ, Velasco A, Pérez-Martín RI, Quinteiro J, Rey-Méndez M, Pardo MA, Jimenez E, Sotelo CG (2015) Development of a multiplex PCR-ELISA method for the genetic authentication of Thunnus species and Katsuwonus pelamis in food products. Food Chem 180:9–16CrossRefGoogle Scholar
  183. 183.
    Taboada L, Sánchez A, Velasco A, Santaclara FJ, Pérez-Martín RI, Sotelo CG (2014) Identification of Atlantic cod (Gadus morhua), ling (Molva molva), and Alaska pollock (Gadus chalcogrammus) by PCR-ELISA using duplex PCR. J Agric Food Chem 62:5699–5706CrossRefGoogle Scholar
  184. 184.
    Trantakis IA, Spaniolas S, Kalaitzis P, Ioannou PC, Tucker GA, Christopoulos TK (2012) Dipstick test for DNA-based food authentication: application to coffee authenticity assessment. J Agric Food Chem 60:713–717CrossRefGoogle Scholar
  185. 185.
    Taboada L, Sánchez A, Pérez-Martín RI, Sotelo CG (2017) A new method for the rapid detection of Atlantic cod (Gadus morhua), Pacific cod (Gadus macrocephalus), Alaska pollock (Gadus chalcogrammus) and ling (Molva molva) using a lateral flow dipstick assay. Food Chem 233:182–189CrossRefGoogle Scholar
  186. 186.
    Arunrut N, Prombun P, Saksmerprome V, Flegel TW, Kiatpathomchai W (2011) Rapid and sensitive detection of infectious hypodermal and hematopoietic necrosis virus by loop-mediated isothermal amplification combined with a lateral flow dipstick. J Virol Methods 171:21–25CrossRefGoogle Scholar
  187. 187.
    Surasilp T, Longyant S, Rukpratanporn S, Sridulyakul P, Sithigorngul P, Chaivisuthangkura P (2011) Rapid and sensitive detection of Vibrio vulnificus by loop-mediated isothermal amplification combined with lateral flow dipstick targeted to rpoS gene. Mol Cell Probes 25:158–163CrossRefGoogle Scholar
  188. 188.
    Huang X, Zhai C, You Q, Chen H (2014) Potential of cross-priming amplification and DNA-based lateral-flow strip biosensor for rapid on-site GMO screening. Anal Bioanal Chem 406:4243–4249CrossRefGoogle Scholar
  189. 189.
    Pineiro C, Barros-Velázquez J, Vázquez J, Figueras A, Gallardo JM (2003) Proteomics as a tool for the investigation of seafood and other marine products. J Proteome Res 2:127–135CrossRefGoogle Scholar
  190. 190.
    Marcos B, Liu J, Rai DK, Di Luca A, Mullen AM (2011) Assessment in the quality and safety of food of animal origin. In: Eckersall PD, Whitfield PD (eds) Methods in animal proteomics, 1st edn. Wiley, ChichesterGoogle Scholar
  191. 191.
    Carrera M, Cañas B, Gallardo JM (2013) Proteomics for the assessment of quality and safety of fishery products. Food Res Int 54:972–979CrossRefGoogle Scholar
  192. 192.
    Tedesco S, Mullen W, Cristobal S (2014) High-throughput proteomics: a new tool for quality and safety in fishery products. Curr Protein Pept Sci 15:118–133CrossRefGoogle Scholar
  193. 193.
    Mazzeo MF, Siciliano RA (2016) Proteomics for the authentication of fish species. J Proteome 147:119–124CrossRefGoogle Scholar
  194. 194.
    Ortea I, O’Connor G, Maquet A (2016) Review on proteomics for food authentication. J Proteome 147:212–225CrossRefGoogle Scholar
  195. 195.
    Jagadeesh DS, Kannegundla U, Reddy RK (2017) Application of proteomic tools in food quality and safety. Adv Anim Vet Sci 5:213–225Google Scholar
  196. 196.
    Ortea I, Böhme K, Calo-Mata P, Barros-Velázquez J (2017) Molecular techniques–genomics and proteomics. In: Georgiou C (ed) Food authentication: management analysis and regulation, 1st edn. Wiley, ChichesterGoogle Scholar
  197. 197.
    Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846CrossRefGoogle Scholar
  198. 198.
    McLafferty FW, Breuker K, Jin M, Han X, Infusini G, Jiang H, Kong X, Begley TP (2007) Top-down MS, a powerful complement to the high capabilities of proteolysis proteomics. FEBS J 274(24):6256–6268CrossRefGoogle Scholar
  199. 199.
    López JL, Marina A, Álvarez G, Vázquez J (2002) Application of proteomics for fast identification of species-specific peptides from marine species. Proteomics 2:1658–1665CrossRefGoogle Scholar
  200. 200.
    Ortea I, Cañas B, Calo-Mata P, Barros-Velázquez J, Gallardo JM (2009) Arginine kinase peptide mass fingerprinting as a proteomic approach for species identification and taxonomic analysis of commercially relevant shrimp species. J Agric Food Chem 57:5665–5672CrossRefGoogle Scholar
  201. 201.
    Ortea I, Canas B, Gallardo JM (2009) Mass spectrometry characterization of species-specific peptides from arginine kinase for the identification of commercially relevant shrimp species. J Proteome Res 8:5356–5362CrossRefGoogle Scholar
  202. 202.
    Pascoal A, Ortea I, Gallardo JM, Cañas B, Barros-Velázquez J, Calo-Mata P (2012) Species identification of the northern shrimp (Pandalus borealis) by polymerase chain reaction–restriction fragment length polymorphism and proteomic analysis. Anal Biochem 421:56–67CrossRefGoogle Scholar
  203. 203.
    Ortea I, Cañas B, Gallardo JM (2011) Selected tandem mass spectrometry ion monitoring for the fast identification of seafood species. J Chrom A 1218:4445–4451CrossRefGoogle Scholar
  204. 204.
    Salla V, Murray KK (2013) Matrix-assisted laser desorption ionization mass spectrometry for identification of shrimp. Anal Chim Acta 794:55–59CrossRefGoogle Scholar
  205. 205.
    Carrera M, Cañas B, Piñeiro C, Vázquez J, Gallardo JM (2006) Identification of commercial hake and grenadier species by proteomic analysis of the parvalbumin fraction. Proteomics 6:5278–5287CrossRefGoogle Scholar
  206. 206.
    Carrera M, Canas B, López-Ferrer D, Pineiro C, Vázquez J, Gallardo JM (2011) Fast monitoring of species-specific peptide biomarkers using high-intensity-focused-ultrasound-assisted tryptic digestion and selected MS/MS ion monitoring. Anal Chem 83:5688–5695CrossRefGoogle Scholar
  207. 207.
    Carrera M, Cañas B, Piñeiro C, Vázquez J, Gallardo JM (2007) De novo mass spectrometry sequencing and characterization of species-specific peptides from nucleoside diphosphate kinase B for the classification of commercial fish species belonging to the family Merlucciidae. J Proteome Res 6:3070–3080CrossRefGoogle Scholar
  208. 208.
    Barik SK, Banerjee S, Bhattacharjee S, Gupta SKD, Mohanty S, Mohanty BP (2013) Proteomic analysis of sarcoplasmic peptides of two related fish species for food authentication. App Biochem 171:1011–1021Google Scholar
  209. 209.
    Mazzeo MF, Giulio BD, Guerriero G, Ciarcia G, Malorni A, Russo GL, Siciliano RA (2008) Fish authentication by MALDI-TOF mass spectrometry. J Agric Food Chem 56:11071–11076CrossRefGoogle Scholar
  210. 210.
    Del Prete E, d’Esposito D, Mazzeo MF, Siciliano RA, Facchiano A (2016) Comparative analysis of MALDI-TOF mass spectrometric data in proteomics: a case study. In: Angelini C, Rancoita P, Rovetta S (eds) Computational intelligence methods for bioinformatics and biostatistics, CIBB 2015. Springer, ChamGoogle Scholar
  211. 211.
    Wulff T, Nielsen ME, Deelder AM, Jessen F, Palmblad M (2013) Authentication of fish products by large-scale comparison of tandem mass spectra. J Proteome Res 12:5253–5259CrossRefGoogle Scholar
  212. 212.
    Wulff T, Jessen F, Palmblad M, Nielsen ME (2013) Tandem mass spectrometry for species recognition and phenotyping in fish. In: Rodregues P, Eckersall D, de Almeida A (eds) Farm animal proteomics 2013. Wageningen Academic Publishers, WageningenGoogle Scholar
  213. 213.
    Siciliano RA, d’Esposito D, Mazzeo MF (2015) Food authentication by MALDIMS: MALDI-TOF MS analysis of fish species. In: Cramer R (ed) Advances in MALDI and laser-induced soft ionization mass spectrometry. Springer, ChamGoogle Scholar
  214. 214.
    Nessen MA, van der Zwaan DJ, Grevers S, Dalebout H, Staats M, Kok E, Palmblad M (2016) Authentication of closely related fish and derived fish products using tandem mass spectrometry and spectral library matching. J Agric Food Chem 64:3669–3677CrossRefGoogle Scholar
  215. 215.
    Ulrich S, Beindorf PM, Biermaier B, Schwaiger K, Gareis M, Gottschalk C (2017) A novel approach for the determination of freshness and identity of trouts by MALDI-TOF mass spectrometry. Food Control 80:281–289CrossRefGoogle Scholar
  216. 216.
    Stahl A, Schröder U (2017) Development of a MALDI–TOF MS-based protein fingerprint database of common food fish allowing fast and reliable identification of fraud and substitution. J Agric Food Chem 65:7519–7527CrossRefGoogle Scholar
  217. 217.
    Spielmann G, Huber I, Maggipinto M, Haszprunar G, Busch U, Pavlovic M (2017) Comparison of five preparatory protocols for fish species identification using MALDI-TOF MS. Eur Food Res Technol (in press).  https://doi.org/10.1007/s00217-017-2983-2
  218. 218.
    Yamashita M, Namikoshi A, Iguchi J, Takashima Y, Hossain MA, Yabu T, Yamashita Y (2008) Molecular identification of species and the geographic origin of seafood. In: Tsukamoto K, Kawamura T, Takeuchi T, Beard TD, Kaiser MJ Jr (eds) Fisheries for Global Welfare and Environment, 5th World Fisheries Congress. TerraPub, TokyoGoogle Scholar
  219. 219.
    Leal MC, Pimentel P, Ricardo F, Rosa R, Calado R (2015) Seafood traceability: current needs, available tools, and biotechnological challenges for origin certification. Trends in Biotechnol 33:331–336CrossRefGoogle Scholar
  220. 220.
    Ensing D, Crozier WW, Boylan P, O'Maoiléidigh N, McGinnity P (2013) An analysis of genetic stock identification on a small geographical scale using microsatellite markers, and its application in the management of a mixed-stock fishery for Atlantic salmon (Salmo salar) in Ireland. J Fish Biol 82:2080–2094CrossRefGoogle Scholar
  221. 221.
    El Sheikha AF, Montet D (2016) How to Determine the geographical origin of seafood? Crit Rev Food Sci Nutr 56:306–317CrossRefGoogle Scholar
  222. 222.
    Arechavala-Lopez P, Sanchez-Jerez P, Bayle-Sempere J, Fernandez-Jover D, Martinez-Rubio L, Lopez-Jimenez JA, Martinez-Lopez FJ (2010) Direct interaction between wild fish aggregations at fish farms and fisheries activity at fishing grounds: a case study with Boops boops. Aquaculture Res 42:996–1010CrossRefGoogle Scholar
  223. 223.
    Tanner DK, Brazner JC, Bardy VJ (2000) Factors influencing carbon, nitrogen, and phosphorus content of fish from a Lake Superior coastal wetland. Can J Fish Aquatic Sci 57:1243–1251CrossRefGoogle Scholar
  224. 224.
    Stowasser G, Pond DW, Collins MA (2012) Fatty acid trophic markers elucidate resource partitioning within the demersal fish community of South Georgia and Shag Rocks (Southern Ocean). Mar Biol 159:2299–2310CrossRefGoogle Scholar
  225. 225.
    Hoelzel AR (1992) Molecular genetic analysis of populations: a practical approach. IRL Press, CambridgeGoogle Scholar
  226. 226.
    Teletchea F (2009) Molecular identification methods of fish species: reassessment and possible applications. Rev Fish Biol Fisheries 19:265–293CrossRefGoogle Scholar
  227. 227.
    Boudinar AS, Chaoui L, Quignard JP, Aurelle D, Kara MH (2016) Otolith shape analysis and mitochondrial DNA markers distinguish three sand smelt species in the Atherina boyeri species complex in western Mediterranean. Estuar Coast Shelf Sci 182:202–210CrossRefGoogle Scholar
  228. 228.
    Standish JD, Sheehy M, Warner RR (2008) Use of otolith natal elemental signatures as natural tags to evaluate connectivity among open-coast fish populations. Mar Ecol Prog Ser 356:259–268CrossRefGoogle Scholar
  229. 229.
    Ricardo F, Genio L, Leal MC, Albuquerque R, Queiroga H, Rosa R, Calado R (2015) Trace element fingerprinting of cockle (Cerastoderma edule) shells can reveal harvesting location in adjacent areas. Sci Rep 5:11932CrossRefGoogle Scholar
  230. 230.
    Tanner SE, Reis-Santos P, Vasconcelos RP, França S, Thorrold SR, Cabral H (2012) Otolith geochemistry discriminates among estuarine nursery areas of Solea solea and S. senegalensis over time. Mar Ecol Progr Ser 452:193–203CrossRefGoogle Scholar
  231. 231.
    Tanner SE, Reis-Santos P, Cabral HN (2016) Otolith chemistry in stock delineation: a brief overview, current challenges and future prospects. Fish Res 173:206–213CrossRefGoogle Scholar
  232. 232.
    Wells BK, Thorrold SR, Jones CM (2000) Geographic variation in trace element composition of juvenile weakfish scales. Trans Am Fish Soc 129:889–900CrossRefGoogle Scholar
  233. 233.
    Danezis GP, Tsagkaris AS, Brusic V, Georgiou CA (2016) Food authentication: state of the art and prospects. Curr Opin Food Sci 10:22–31CrossRefGoogle Scholar
  234. 234.
    Leatherhead Food Research (2015) Literature review on isotope ratios in seafood. Factsheet FS81:7–15Google Scholar
  235. 235.
    Camin F, Boner M, Bontempo L, Fauhl-Hassek C, Kelly SD, Riedl J, Rossmann A (2016) Stable isotope techniques for verifying the declared geographical origin of food in legal cases: review. Trends Food Sci Technol 61:176–187CrossRefGoogle Scholar
  236. 236.
    Krivachy N, Rossmann A, Schmidt HL (2015) Potentials and caveats with oxygen and sulfur stable isotope analyses in authenticity and origin checks of food and food commodities. Food Control 48:143–150CrossRefGoogle Scholar
  237. 237.
    Li L, Boyd CE, Sun Z (2016) Authentication of fishery and aquaculture products by multi-element and stable isotope analysis: review. Food Chem 194:1238–1244CrossRefGoogle Scholar
  238. 238.
    Ashford J, Jones CM (2007) Oxygen and carbon stable isotopes in otoliths record spatial isolation of Patagonian toothfish (Dissostichus eleginoides). Geochim Cosmochim Acta 71:87–94CrossRefGoogle Scholar
  239. 239.
    Whitledge G (2008) Assessment of otolith chemistry as an indicator of fish movement or transfer between the Illinois river system and lake Michigan. Reports, Paper 6Google Scholar
  240. 240.
    Matta ME, Orland IJ, Ushikubo T, Helser TE, Black BA, Valley JW (2013) Otolith oxygen isotopes measured by high-precision secondary ion mass spectrometry reflect life history of a yellowfin sole (Limanda aspera). Rapid Commun Mass Spectrom 27:691–699CrossRefGoogle Scholar
  241. 241.
    Thomas CJ, Cahoon LB (1993) Stable isotope analyses differentiate between different trophic pathways supporting rocky-reef fishes. Mar Ecol Prog Ser 95:19–24CrossRefGoogle Scholar
  242. 242.
    Olsen SA, Hansen PK, Givskud H, Ervik A, Samuelsen OB (2015) Changes in fatty acid composition and stable isotope signature of Atlantic cod (Gadus morhua) in response to laboratory dietary shifts. Aquaculture 435:277–285CrossRefGoogle Scholar
  243. 243.
    Dixon HJ, Dempson JB, Power M (2015) Assessing the use of different marine growth zones of adult Atlantic salmon scales for studying marine trophic ecology with stable isotope analysis. Fish Res 164:112–119CrossRefGoogle Scholar
  244. 244.
    Curtis JM, Stunza GW, Overath RD, Vegac RR (2014) Otolith chemistry can discriminate signatures of hatchery-reared and wild spotted seatrout. Fish Res 153:31–40CrossRefGoogle Scholar
  245. 245.
    Moreno-Rojas JM, Tulli F, Messina M, Tibaldi E, Guillou C (2008) Stable isotope ratio analysis as a tool to discriminate between rainbow trout (O. mykiss) fed diets based on plant or fish-meal proteins. Rapid Commun Mass Spectrom 22:3706–3710CrossRefGoogle Scholar
  246. 246.
    Morrison DJ, Preston T, Bron JE, Hemderson RJ, Cooper K, Strachan F, Bell JG (2007) Authenticating production origin of gilthead sea bream (Sparus aurata) by chemical and isotopic fingerprinting. Lipids 42:537–545CrossRefGoogle Scholar
  247. 247.
    Wolff BA, Johnson BM, Breton AR, Martinez PJ, Winkelman DL (2012) Origins of invasive piscivores determined from the strontium isotope ratio (87Sr/86Sr) of otoliths. Can J Fish Aquatic Sci 69:724–739CrossRefGoogle Scholar
  248. 248.
    Carrera M, Gallardo JM (2017) Determination of the geographical origin of all commercial hake species by stable isotope ratio (SIR) analysis. J Agric Food Chem 65(5):1070–1077CrossRefGoogle Scholar
  249. 249.
    Li L, Boyd C, Sun Z (2016) AuAuthentication of fishery and aquaculture products by multi-element and stable isotope analysis. Food Chem 194:1238–1244CrossRefGoogle Scholar
  250. 250.
    Kim H, Kumar KS, Hwang SY, Kang BC, Moon HB, Shin KNH (2015) Utility of stable isotope and cytochrome oxidase I gene sequencing analyses in inferring origin and authentication of hairtail fish and shrimp. J Agric Food Chem 63:5548–5556CrossRefGoogle Scholar
  251. 251.
    Chaguri MP, Maulvault AL, Costa S, Gonçalves A, Nunes ML, Carvahlo ML, Sant’Ana LS, Bandarra N, Marques A (2017) Chemometrics tools to distinguish wild and farmed meagre (Argyrosomus regius). J Food Process Pres 41:e13312Google Scholar
  252. 252.
    Ménard F, Lorrain A, Potier M, Marsac F (2007) Isotopic evidence of distinct feeding ecologies and movement patterns in two migratory predators (yellowfin tuna and swordfish) of the western Indian Ocean. Mar Biol 153(2):141–152CrossRefGoogle Scholar
  253. 253.
    Carter JF, Tinggi T, Yang X, Fry B (2015) Stable isotope and trace metal compositions of Australian prawns as a guide to authenticity and wholesomeness. Food Chem 170:241–248CrossRefGoogle Scholar
  254. 254.
    Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nature Reviews 5:435–445CrossRefGoogle Scholar
  255. 255.
    Chistiakov DA, Hellemans B, Volckaert FAM (2006) Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fish genetics. Aquaculture 255:1–29CrossRefGoogle Scholar
  256. 256.
    Lane H, Symonds JE, Ritchie PA (2016) The phylogeography and population genetics of Polyprion oxygeneios based on mitochondrial DNA sequences and microsatellite DNA markers. Res 174:19–29Google Scholar
  257. 257.
    Sanchez G, Tomano S, Yamashiro C, Fujita R, Wakabayashi T, Sakai M, Umino S (2016) Population genetics of the jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae) in the northern Humboldt current system based on mitochondrial and microsatellite DNA markers. Fish Res 175:1–9CrossRefGoogle Scholar
  258. 258.
    Cabranes C, Fernandez-Rueda P, Martínez JL (2008) Genetic structure of Octopus vulgaris around the Iberian Peninsula and Canary Islands as indicated by microsatellite DNA variation. J Marine Sci 65:12–16Google Scholar
  259. 259.
    De Luca D, Catanese G, Procaccini G, Fiorito G (2016) Octopus vulgaris (Cuvier, 1797) in the Mediterranean sea: genetic diversity and population structure. PLoS One 11:e0149496CrossRefGoogle Scholar
  260. 260.
    Andre C, Larsson LC, Laikre L, Bekkevold D, Brigham J, Carvalho GR, Dahlgren TG, Hutchinson WF, Mariani S, Mudde K, Ruzzante DE, Ryman N (2011) Detecting population structure in a high gene-flow species, Atlantic herring (Clupea harengus): direct, simultaneous evaluation of neutral vs putatively selected loci. Heredity 106:270–280CrossRefGoogle Scholar
  261. 261.
    Wang L, Liu S, Zhuang Z, Guo L, Meng Z, Lin H (2013) Population genetic studies revealed local adaptation in a high gene-flow marine fish, the small yellow croaker (Larimichthys polyactis). PLoS One 8:e83493CrossRefGoogle Scholar
  262. 262.
    Zhigileva ON, Baranova OG, Pozhidaev VV, Brol IS, Moiseenko TI (2013) Comparative analysis of using isozyme and Issr-Pcr markers for population differentiation of Cyprinid Fish. Turk J Fish Aquat Sc 13:159–168Google Scholar
  263. 263.
    Le Nguyen DD, Ngoc HH, Dijoux D, Loiseau G, Montet D (2008) Determination of fish origin by using 16S rDNA fingerprinting of bacterial communities by PCR-DGGE: an application on Pangasius fish from Viet Nam. Food Control 19:454–460CrossRefGoogle Scholar
  264. 264.
    Montet D, Le Nguyen DD, El Sheikha AF, Condur A, Métayer I, Loiseau G (2008) Application of PCR-DGGE in determining food origin: cases studies of fish and fruits. Asp Appl Biol 87:11–22Google Scholar
  265. 265.
    Cuéllar-Pinzón J, Presa P, Hawkins SJ, Pita A (2016) Genetic markers in marine fisheries: types, tasks and trends. Fish Res 173:194–205CrossRefGoogle Scholar
  266. 266.
    Davey JW, Blaxter ML (2010) RADSeq: next-generation population genetics. Brief Funct Genomics 9:416–423CrossRefGoogle Scholar
  267. 267.
    Martinsohn JT, Ogden R, FishPopTrace Consortium (2009) Developing SNP-based population genetic assignment methods to investigate illegal fishing. Forensic Sci Int Genet Suppl Ser 2:294–296CrossRefGoogle Scholar
  268. 268.
    Milano I, Babbucci M, Panitz F, Ogden R, Nielsen RO, Taylor MI, Heylar SJ, Carvalho GR, Espiñeira M, Atanassova M, Tinti F, Maes GE, Patarnello T, FishPopTrace Consortium, Bargelloni L (2011) Novel tools for conservation genomics: comparing two high-throughput approaches for SNP discovery in the transcriptome of the European hake. PLoS One 6(11):e28008CrossRefGoogle Scholar
  269. 269.
    Nielsen EE, Cariani A, Mac Aoidh E, Maes GE, Milano I, Ogden R, Taylor M, Hemmer-Hansen J, Babbucci M, Bargelloni L, Bekkevold D, Diopere E, Grenfell L, Helyar S, Limborg MT, Martinsohn JT, McEwing R, Panitz F, Patarnello T, Tinti F, Van Houdt JKJ, Volckaert FAM, Waples RS, Albin JEJ, Vieites JMB, Barmintsev V, Bautista JM, Bendixen C, Bergé JP, Blohm D, Cardazzo B, Diez A, Espiñeira M, Geffen AJ, Gonzalez E, González-Lavín N, Guarniero I, Jerôme M, Kochzius M, Krey G, Mouchel O, Negrisolo E, Piccinetti C, Puyet A, Rastorguev S, Smith JP, Trentini M, Verrez-Bagnis V, Volkov A, Zanzi A, Carvalho GR (2012) Gene-associated markers provide tools for tackling illegal fishing and false eco-certification. Nat Commun 3:851CrossRefGoogle Scholar
  270. 270.
    Arechavala-Lopez P, Fernandez-Jover D, Black KD, Ladoukakis E, Bayle-Sempere JT, Sanchez-Jerez P, Dempster T (2013) Differentiating the wild or farmed origin of Mediterranean fish: a review of tools for sea bream and sea bass. Rev Aquacult 5:137–157CrossRefGoogle Scholar
  271. 271.
    Bylemans J, Maes GE, Diopere E, Cariani A, Senn H, Taylor MI, Helyar S, Bargelloni L, Bonaldo A, Carvalho G, Guarniero I, Komen H, Martinsohn JT, Nielsen EE, Tinti F, Volckaert FAM, Ogden R (2016) Evaluating genetic traceability methods for captive-bred marine fish and their applications in fisheries management and wildlife forensics. Aquacult Environ Interact 8:131–145CrossRefGoogle Scholar
  272. 272.
    Burch R (2015) Literature review: isotope ratios in seafood. Leatherhead Food Research. FS81_7_15 Isotope ratios in seafood. http://www.seafish.org/media/Publications/FS81_7_15_Isotope_ratios_in_seafood.pdf. Accessed June 2017
  273. 273.
    Kim H, Kumar KS, Shin KY (2015) Applicability of stable C and N isotope analysis in inferring the geographical origin and authentication of commercial fish (mackerel, yellow croaker and pollock). Food Chem 172:523–527CrossRefGoogle Scholar
  274. 274.
    Chaguri MP, Maulvault AL, Nunes ML, Santiago DA, Denadai JC, Fogaca FH, Sant’Ana LS, Ducatti C, Bandarra N, Carvalho ML, Marques A (2015) Different tools to trace geographic origin and seasonality of croaker (Micropogonias furnieri). LWT – Food Sci Technol 61:194–200CrossRefGoogle Scholar
  275. 275.
    Kelly S, Heaton K, Hoogewerff J (2005) Tracing the geographical origin of food: the application of multi-element and multi-isotope analysis. Trends Food Sci Tech 16(12):555–567CrossRefGoogle Scholar
  276. 276.
    Bell JG, Preston T, Henderson RJ, Strachan F, Bron JE, Cooper K, Douglas JM (2007) Discrimination of wild and cultured European sea bass (Dicentrarchus labrax) using chemical and isotopic analyses. J Agric Food Chem 55:5934–5941CrossRefGoogle Scholar
  277. 277.
    Fasolato L, Novelli E, Salmaso L, Corain L, Camin F, Perini M, Antonetti P, Balzan S (2010) Application of nonparametric multivariate analyses to the authentication of wild and farmed European sea bass (Dicentrarchus labrax). Results of a survey on fish sampled in the retail trade. J Agric Food Chem 58:10979–10988CrossRefGoogle Scholar
  278. 278.
    Moreno-Rojas JM, Serra F, Giani I, Moretti VM, Reniero F, Guillou C (2007) The use of stable isotope ratio analyses to discriminate wild and farmed gilthead sea bream (Sparus aurata). Rapid Commun Mass Sp 21:207–211CrossRefGoogle Scholar
  279. 279.
    Serrano R, Blanes MA, Orero L (2007) Stable isotope determination in wild and farmed gilthead sea bream (Sparus aurata) tissues from the western Mediterranean. Chemosphere 69:1075–1080CrossRefGoogle Scholar
  280. 280.
    Molkentin J, Lehmann I, Ostermeyer U, Rehbein H (2015) Traceability of organic fish – authenticating the production origin of salmonids by chemical and isotopic analysis. Food Control 53:55–66CrossRefGoogle Scholar
  281. 281.
    Gamboa-Delgado J, Molina-Poveda C, Godinez-Siordia DE, Villareal-Cavazos D, Ricque- Marie D, Cruz-Suarez LE (2014) Application of stable isotope analysis to differentiate shrimp extracted by industrial fishing or produced through aquaculture practices. Can J Fish Aquat Sci 71:1520–1528CrossRefGoogle Scholar
  282. 282.
    Molkentin J, Meisel H, Lehmann I, Rehbein H (2007) Identification of organically farmed Atlantic salmon by analysis of stable isotopes and fatty acids. Eur Food Res Technol 224:535–543CrossRefGoogle Scholar
  283. 283.
    Thomas F, Jamin E, Wietzerbin K, Guérin R, Lees M, Morvan E, Billault I, Derrien S, Moreno Rojas JM, Serra F, Guillou C, Aursand M, McEvoy L, Prael A, Robins RJ (2008) Determination of origin of Atlantic salmon (Salmo salar): the use of mulitprobe and multielement isotopic analysis in combination with fatty acid composition to assess wild or farmed origin. J Agric Food Chem 56:989–997CrossRefGoogle Scholar
  284. 284.
    Mnari A, Boundel I, Chraief I, Hammami M, Romdhane MS, El Cafsi M, Chaouch A (2007) Fatty acids in muscle and liver of Tunisian wild and farmed gilthead sea bream, Sparus aurata. Food Chem 100:1393–1397CrossRefGoogle Scholar
  285. 285.
    Periago MJ, Ayala MD, López-Albors O, Abdel I, Martínez C, Garcia-Alcázar A, Ros G, Gil F (2005) Muscle cellularity and flesh quality of wild and farmed sea bass, Dicentrarchus labrax L. Aquaculture 249:175–188CrossRefGoogle Scholar
  286. 286.
    Šimat V, Bogdanović T, Krželj M, Soldo A, Maršić-Lučić J (2012) Differences in chemical, physical and sensory properties during shelf life assessment of wild and farmed gilthead sea bream (Sparus aurata, L.) J Applied Ichthyol 28:95–101CrossRefGoogle Scholar
  287. 287.
    Attouchi M, Sadok S (2012) The effects of essential oils addition on the quality of wild and farmed sea bream (Sparus Aurata) stored in ice. Food Bioprocess Tech 5:1803–1816CrossRefGoogle Scholar
  288. 288.
    Berge GM, Witten PE, Baeverfjord G, Vegusdal A, Wadsworth S, Ruyter B (2009) Diets with different n-6/n-3 fatty acid ratio in diets for juvenile Atlantic salmon, effects on growth, body composition, bone development and eicosanoid production. Aquaculture 296:299–308.  https://doi.org/10.1016/j.aquaculture.2009.08.029 CrossRefGoogle Scholar
  289. 289.
    Strobel C, Jahreis G, Kuhnt K (2012) Survey of n-3 and n-6 polyunsaturated fatty acids in fish and fish products. Lipids Health Dis 11:144CrossRefGoogle Scholar
  290. 290.
    Yildiz M, Sener E, Timur M (2008) Effects of differences in diet and seasonal changes on the fatty acid composition in fillets from farmed and wild sea bream (Sparus aurata L.) and sea bass (Dicentrarchus labrax L.) Int J Food Sci Tech 43:853–858CrossRefGoogle Scholar
  291. 291.
    Dubois V, Breton S, Linder M, Fanni J, Parmentier M (2003) Fatty acid profiles of vegetable oils with regard to their nutritional potential. European J Lipid Sci Tech 109:710–732CrossRefGoogle Scholar
  292. 292.
    Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184CrossRefGoogle Scholar
  293. 293.
    Ferreira M, Caetano M, Antunes P, Costa J, Gil O, Bandarra N, Pousão-Ferreira P, Vale C, Reis-Henrique MA (2010) Assessment of contaminants and biomarkers of exposure in wild and farmed sea bass. Ecotox Environ Safe 73:579–588CrossRefGoogle Scholar
  294. 294.
    Sharma P, Kumar V, Sinha AK, Ranjan J, Kithsiri HM, Venkateshwarlu G (2010) Comparative fatty acid profiles of wild and farmed tropical freshwater fish rohu (Labeo rohita). Fish Physiol Biochem 36:411–417CrossRefGoogle Scholar
  295. 295.
    Lenas DS, Triantafillou DJ, Chatziantoniou S, Nathanailides C (2011) Fatty acid profile of wild and farmed gilthead sea bream (Sparus aurata). J Verbrauch Lebensm 6:435–440CrossRefGoogle Scholar
  296. 296.
    Ottavian M, Facco P, Fasolato L, Novelli E, Mirisola M, Perini M, Barolo M (2012) Use of near-infrared spectroscopy for fast fraud detection in seafood: application to the authentication of wild European sea bass (Dicentrarchus labrax). J Agr Food Sci 60:639–648CrossRefGoogle Scholar
  297. 297.
    Fuentes A, Fernández-Segovia I, Serra JA, Barat JM (2010) Comparison of wild and cultured sea bass (Dicentrarchus labrax) quality. Food Chem 119:1514–1518CrossRefGoogle Scholar
  298. 298.
    Mnari A, Bouhlel I, Chouba L, Hammami M, El Cafsi M, Chaouch A (2010) Total lipid content, fatty acid and mineral compositions of muscles and liver in wild and farmed sea bass (Dicentrarchus labrax). Afr J Food Sc 4:522–530Google Scholar
  299. 299.
    Turchini GM, Torstensen BE, Ng WG (2009) Fish oil replacement in finfish nutrition. Rev Aquacult 1:10–57CrossRefGoogle Scholar
  300. 300.
    Asdari R, Aliyu-Paiko M, Hashim R, Ramachandran S (2011) Effects of different dietary lipid sources in the diet for Pangasius hypophthalmus (Sauvage, 1878) juvenile on growth performance, nutrient utilization, body indices and muscle and liver fatty acid composition. Aquac Nutr 17:44–53CrossRefGoogle Scholar
  301. 301.
    Petenuci ME, Rocha INA, de Sousa SC, Schneider VV, Alves da Costa LA, Visentainer JV (2016) Seasonal variations in lipid content, fatty acid composition and nutritional profiles of five freshwater fish from the Amazon basin. J Am Oil Chem Soc 93:1373CrossRefGoogle Scholar
  302. 302.
    Khitouni IK, Mihoubi NB, Bouain A, Rebah FB (2014) Seasonal variation of the chemical composition, fatty acid profiles and mineral elements of Diplodus annularis (Linnaeus, 1758) caught in the Tunisian coastal water. J Food Nutr Res 2:306–311Google Scholar
  303. 303.
    Grigorakis K, Alexis MN, Taylor KDA, Hole M (2002) Comparison of wild and cultured gilthead sea bream; composition, appearance and seasonal alterations. Int J Food Sci Tech 37:477–484CrossRefGoogle Scholar
  304. 304.
    Busetto ML, Moretti VM, Moreno-Rojas JM, Caprino F, Giani I, Malandra R, Bellagamba F, Guillou CJ (2008) Authentication of farmed and wild turbot (Psetta maxima) by fatty acid and isotopic analyses combined with chemometrics. Agric Food Chem 56:2742–2750CrossRefGoogle Scholar
  305. 305.
    Fernandez-Jover D, Martinez-Rubio L, Sanchez-Jerez P, Bayle-Sempere JT, Lopez-Jimenez JA, Martínez-Lopez FJ, Pål-Arne B, Uglem I, Dempster T (2011) Waste feed from coastal fish farms: a trophic subsidy with compositional side-effects for wild gadoids. Estuar Coast Shelf S 91:568–559CrossRefGoogle Scholar
  306. 306.
    Fernandez-Jover D, Lopez-Jimenez JA, Sanchez-Jerez P, Bayle-Sempere J, Gimenez-Casalduero F, Martínez-Lopez FJ, Dempster T (2007) Changes in body condition and fatty acid composition of wild Mediterranean horse mackerel (Trachurus mediterraneus, Steindachner, 1868) associated with sea cage fish farms. Mar Environ Res 63:1–18CrossRefGoogle Scholar
  307. 307.
    Aursand M, Standal IB, Praël A, McEvoy L, Irvine J, Axelson DE (2009) 13C NMR pattern recognition techniques for the classification of Atlantic salmon (Salmo salar L.) according to their wild, farmed, and geographical origin. J Agric Food Chem 57(9):3444–3451CrossRefGoogle Scholar
  308. 308.
    Megdal PA, Craft NA, Handelman GJ (2009) A simplified method to distinguish farmed (Salmo salar) from wild salmon: fatty acid ratios versus astaxanthin chiral isomers. Lipids 44(6):569–576CrossRefGoogle Scholar
  309. 309.
    Mannina L, Sobolev AP, Capitani D, Iaffaldano N, Rosato MP, Ragni P, Reale A, Sorrentino E, D’Amico I, Coppola R (2008) NMR metabolic profiling of organic and aqueous sea bass extracts: implications in the discrimination of wild and cultured sea bass. Talanta 77:433–444CrossRefGoogle Scholar
  310. 310.
    Del Coco L, Papadia P, De Pascali SA, Bressani G, Storelli C, Zonno V, Fanizzi FP (2009) Comparison among different gilthead sea bream (Sparus aurata) farming systems: activity of intestinal and hepatic enzymes and 13C-NMR analysis of lipids. Forum Nutr 1:291–301Google Scholar
  311. 311.
    Costa R, Albergamo A, Piparo M, Zaccone G, Capillo G, Manganaro A, Dugo P, Mondello L (2017) Multidimensional gas chromatographic techniques applied to the analysis of lipids from wild-caught and farmed marine species. Eur J Lipid Sci Technol 119:1600043CrossRefGoogle Scholar
  312. 312.
    Martinez I, Stendhal I, Aursand M, Yamashita Y, Yamashita M (2009) Analytical methods to differentiate farmed from wild seafood. In: Nollet LML, Toldra F (eds) Handbook of seafood and seafood products analysis, 1st edn. CRC Press/Taylor and Francis Group, Boca RatonGoogle Scholar
  313. 313.
    Gram L, Huss HH (1996) Microbiological spoilage of fish and fish products. Int J Food Microbiol 33:121–137CrossRefGoogle Scholar
  314. 314.
    Matsumoto J (1979) Denaturation of fish muscle proteins during frozen storage. In: Fennema O (ed) Proteins at low temperatures, Advances in chemistry series. American Chemical Society, Washington, DCGoogle Scholar
  315. 315.
    Uddin M (2009) Differentiation of fresh and frozen-thawed fish. In: Nollet LML, Toldra F (eds) Handbook of seafood and seafood products analysis. CRC Press/Taylor and Francis Group, Boca RatonGoogle Scholar
  316. 316.
    Pavlov A, Garcia de Fernando GD, Diaz O, Fernandez M, Lopez D, Ordonez JA, Hoz L (1994) Effect of freezing on the b-hydroxyl-CoA-dehydrogenase (HADH) activity of fish meat. Z Lebensm Unters For 198:465–468CrossRefGoogle Scholar
  317. 317.
    Fernandez M, Mano S, Garcia de Fernando GD, Ordonez JÁ, Hoz L (1999) Use of b-hydroxyacyl-CoA-dehydrogenase (HADH) activity to differentiate frozen from unfrozen fish and shellfish. Eur Food Res Technol 209:205–208CrossRefGoogle Scholar
  318. 318.
    Salfi V, Fucetola F, Pannunzio G (1985) A micromethod for the differentiation of fresh from frozen fish muscle. J Sci Food Agric 36:811CrossRefGoogle Scholar
  319. 319.
    Nambudiri DD, Gopakumar K (1990) Effect of freezing and thawing on press juices enzyme activity in the muscle of farmed fish and shellfish. IIF–IIR, commission C2. Aberdeen 3:229–233Google Scholar
  320. 320.
    Karvinen VP, Bamford DH, Granroth B (1982) Changes in muscle subcellular fraction of Baltic herring (Clupea Harengus Membras). J Sci Food Agric 33:763–772CrossRefGoogle Scholar
  321. 321.
    Barbagli C, Crescenzy GS (1981) Influence of freezing and thawing on the release of cytochrome oxidase from chicken’s liver and from beef and trout muscle. J Food Sci 46:491–496CrossRefGoogle Scholar
  322. 322.
    Chhatbar SK, Velankar NK (1977) A biochemical test for the distinction of fresh fish from frozen and thawed fish. Fish Technnol 14:131–133Google Scholar
  323. 323.
    Rehbein H (1979) Development of an enzymatic method to differentiate fresh and sea frozen and thawed fish fillets. Z Lebensm Unters Fors 169:263–265CrossRefGoogle Scholar
  324. 324.
    Frigerio R, Ardemagni A, Cantoni C (1980) Variazoni quantitative della succino-deidrogenasi durante la lavorazione di molluschi. Arch Vet Ital 31:162–166Google Scholar
  325. 325.
    Salfi V, Fucetola F, Verticelli V, Arata P (1986) Optimized procedures of biochemical analysis for the differentiation between fresh and frozen thawed fish products. Test of mitochondrial malate dehydrogenase. Ind Alim 25:634Google Scholar
  326. 326.
    Gould E (1971) An objective test for determining whether fresh fish have been frozen and thawed. In: Kreuzer R (ed) Fish inspection quality control. Fishing News (Books) Ltd, LondonGoogle Scholar
  327. 327.
    Kitamikado M, Yuan CS, Ueno R (1990) An enzymatic method designed to differentiate between fresh and frozen–thawed fish. J Food Sci 55:74–76CrossRefGoogle Scholar
  328. 328.
    Yuan CS, Yoshioka K, Ueno R (1988) Differentiation of frozen–thawed fish from unfrozen fish by determination of neutral b-N-acetylglucosaminidase activity in the blood. Bull Jpn Soc Sci Fish 54:2143–2148CrossRefGoogle Scholar
  329. 329.
    Rehbein H (1992) Physical and biochemical methods for the differentiation between fresh and frozen–thawed fish or fillets. Ital J Food Sci 2:75–86Google Scholar
  330. 330.
    Nilsson K, Ekstrand B (1993) The effect of storage on ice and various freezing treatments on enzyme leakage in muscle tissue of rainbow trout. Z Lebensm Unters For 197:3–7CrossRefGoogle Scholar
  331. 331.
    Rehbein H, Cakli S (2000) The lysosomal enzyme activities of fresh, cooled, frozen and smoked salmon fish (Onchorhyncus keta and Salmo salar). Turk J Vet Anim Sci 24:103–108Google Scholar
  332. 332.
    Erickson MC (2012) Chemical measurements. In: Sun D-W (ed) Handbook of frozen food processing and packaging. CRC Press/Taylor & Francis Group, Boca Raton, pp 563–586Google Scholar
  333. 333.
    Okazaki E, Yamashita Y, Uddin M (2006) Classification of fresh and frozen-thawed fish–a review. Refrigeration 81:175–181Google Scholar
  334. 334.
    Love RM (1956) Post-mortem changes in the lenses of fish eyes. II. Effects of freezing, and their usefulness in determining the past history of the fish. J Sci Food Agric 7:220–226CrossRefGoogle Scholar
  335. 335.
    Duflos G, Le Fur B, Mulak V, Becel P, Malle P (2002) Comparison of methods of differentiating between fresh and frozen–thawed fish or fillets. J Sci Food Agric 82:1341–1345CrossRefGoogle Scholar
  336. 336.
    Yoshioka K, Kitamikado M (1983) Differentiation of freeze–thawed fish from fresh fish by the examination of medulla of crystalline lens. Bull Jpn Soc Sci Fish 49:151–154CrossRefGoogle Scholar
  337. 337.
    Yoshioka K (1983) Differentiation of freeze-thawed fish from fresh fish by the determination of hematocrit value. Bull Jpn Soc Sci Fish 49:149–151CrossRefGoogle Scholar
  338. 338.
    Yoshioka K, Kitamikado M (1988) Differentiation of freeze-thawed fish fillet from fresh fish fillet by the examination of erythrocyte. Nippon Suisan Gakk 54:1221–1225CrossRefGoogle Scholar
  339. 339.
    Karoui R, Thomas E, Dufour E (2006) Utilisation of a rapid technique based on front-face fluorescence spectroscopy for differentiating between fresh and frozen–thawed fish fillets. Food Res Int 39(3):349–355CrossRefGoogle Scholar
  340. 340.
    Karoui R, Hassoun A, Ethuin P (2017) Front face fluorescence spectroscopy enables rapid differentiation of fresh and frozen-thawed sea bass (Dicentrarchus labrax) fillets. J Food Eng 202:89–98CrossRefGoogle Scholar
  341. 341.
    Yawen G, Haiqing T, Changrong O, Yamin L, Caiye W, Jinxuan C (2016) Differentiation between fresh and frozen-thawed large yellow croaker based on front-face fluorescence spectroscopy technique. Trans Chin Soc Agric Eng 32:279–285Google Scholar
  342. 342.
    Kim JB, Murata M, Sagakuchi M (1987) A method for the differentiation of frozen–thawed from unfrozen fish fillets by a combination of torrymeter readings and K values. Nippon Suisan Gakk 53:159–164CrossRefGoogle Scholar
  343. 343.
    Oehlenschläger J (2003) Measurement of freshness of fish based on electrical properties. In: Luten JB, Oehlenschläger J, Olafsdottir G (eds) Quality of fish from catch to consumer: labelling, monitoring and traceability. Wageningen Academic Publishers, WageningenGoogle Scholar
  344. 344.
    Kent M, Oehlenschläger J (2009) Measuring electrical properties. In: Rehbein H, Oehlenschläger J (eds) Fishery products: quality, safety and authenticity. Wiley-Blackwell, Oxford, UKGoogle Scholar
  345. 345.
    Sakaguchi M, Murata M, Kim JB (1989) The effects of repeated freeze-thaw cycle on torrymeter readings of carp fillets. Nippon Suisan Gakk 55:1665–1669CrossRefGoogle Scholar
  346. 346.
    Zhang L, Shen H, Luo Y (2010) Study on the electric conduction properties of fresh and frozen–thawed grass carp (Ctenopharyngodon idellus) and tilapia (Oreochromis niloticus). Int J Food Sci Tech 45:2560–2564CrossRefGoogle Scholar
  347. 347.
    Vidaček S, Medića H, Botka-Petrakb K, Nežakc J, Petrak T (2008) Bioelectrical impedance analysis of frozen sea bass (Dicentrarchus labrax). J Food Eng 88:263–271CrossRefGoogle Scholar
  348. 348.
    Fernández-Segovia I, Fuentes A, Aliño M, Masot R, Alcañiz M, Barat JM (2012) Detection of frozen–thawed salmon (Salmo salar) by a rapid low-cost method. J Food Eng 113:210–216CrossRefGoogle Scholar
  349. 349.
    Charpentier J, Goutefongea R, Salé P, Thomasset A (1972) La discrimination des viandes fraiches et congelées par mesures d’impédance à deux fréquences. Ann Biol, Biochim Biophys 12:173–178CrossRefGoogle Scholar
  350. 350.
    Fuentes A, Masot R, Fernández-Segovia I, Ruiz-Rico M, Alcañiz M, Barat JM (2013) Differentiation between fresh and frozen–thawed sea bream (Sparus aurata) using impedance spectroscopy techniques. Innov Food Sci Emerg 19:210–217CrossRefGoogle Scholar
  351. 351.
    Kent M, Oehlenschlager J, Mierke-Klemeyer S, Knöchel R, Daschner F, Schimmer O (2004) Estimation of the quality of frozen cod using a new instrumental method. Eur Food Res Tech 219:540–544CrossRefGoogle Scholar
  352. 352.
    Mendes R, Schimmer O, Vieira H, Pereira J, Teixeira B (2017) Control of abusive water addition to Octopus vulgaris with non-destructive methods. J Sci Food Agric (in press). 98:369–376Google Scholar
  353. 353.
    Aursand M, Veliyulin E, Standal IB, Falch E, Aursand IG, Erikson U (2009) Nuclear magnetic resonance. In: Rehbein H, Oehlenschläger J (eds) Fishery products: quality, safety and authenticity. Wiley-Blackwell, Oxford, UKGoogle Scholar
  354. 354.
    Nott KP, Evans SD, Hall LD (1999) The effect of freeze-thawing on the magnetic resonance imaging parameters of cod and mackerel. LWT - Food Sci Technol 32(5):261–268CrossRefGoogle Scholar
  355. 355.
    Howell N, Shavila Y, Grootveld M, Williams S (1996) High resolution NMR and MRI studies on fresh and frozen cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). J Sci Food Agric 72:49–56CrossRefGoogle Scholar
  356. 356.
    Nott KP, Evans SD, Hall LD (1999) Quantitative magnetic resonance imaging of fresh and frozen–thawed trout. Magn Reson Imag 17:445–455CrossRefGoogle Scholar
  357. 357.
    Foucat L, Taylor RG, Labas R, Renou JP (2001) Characterization of frozen fish by NMR imaging and histology. Am Lab 33:38–43Google Scholar
  358. 358.
    Aursand IG, Veliyulin E, Böcker U, Ofstad R, Rustad T, Erikson U (2009) Water and salt distribution in Atlantic salmon (Salmo salar) studied by low-field 1H NMR, 1H and 23Na MRI and light microscopy: effects of raw material quality and brine salting. Agric Food Chem 57(1):46–54CrossRefGoogle Scholar
  359. 359.
    Veliyulin E, Borge A, Singstad T, Gribbestad I, Erikson U (2006) Post-mortem studies of fish using magnetic resonance imaging. In: Webb GA (ed) Modern magnetic resonance. Springer, The NetherlandsGoogle Scholar
  360. 360.
    Leduc F, Krzewinski F, Le Fur B, N’Guessan A, Malle P, Kol O, Duflos G (2012) Differentiation of fresh and frozen/thawed fish, European sea bass (Dicentrarchus labrax), gilthead seabream (Sparus aurata), cod (Gadus morhua) and salmon (Salmo salar), using volatile compounds by SPME/GC/MS. J Sci Food Agric 92:2560–2568CrossRefGoogle Scholar
  361. 361.
    Ottavian M, Fasolato L, Facco P, Barolo M (2013) Foodstuff authentication from spectral data: toward a species-independent discrimination between fresh and frozen–thawed fish samples. J Food Eng 119:765–775CrossRefGoogle Scholar
  362. 362.
    Ottavian M, Fasolato L, Serva L, Facco P, Barolo M (2014) Data fusion for food authentication: fresh/frozen–thawed discrimination in west African goatfish (Pesudupeneus prayensis) fillets. Food Bioprocess Technol 7:1025–1036CrossRefGoogle Scholar
  363. 363.
    Sivertsen AH, Kimiya T, Heia K (2011) Automatic freshness assessment of cod (Gadus morhua) fillets by VIS/NIR spectroscopy. J Food Eng 103:317–323CrossRefGoogle Scholar
  364. 364.
    Fasolato L, Balzan S, Riovanto R, Berzaghi P, Mirisola M, Ferlito JC, Serva L, Benozzo F, Passera R, Tepedino V, Novelli E (2012) Comparison of visible and near-infrared reflectance spectroscopy to authenticate fresh and frozen–thawed swordfish (Xiphias gladius L). J Aquat Food Prod T 21:493–507CrossRefGoogle Scholar
  365. 365.
    Zhu F, Zhang D, He Y, Liu F, Sun DW (2012) Application of visible and near infrared hyperspectral imaging to differentiate between fresh and frozen–thawed fish fillets. Food Bioprocess Tech 6:2931–2937CrossRefGoogle Scholar
  366. 366.
    Kimiya T, Sivertsen AH, Heia K (2013) VIS/NIR spectroscopy for non-destructive freshness assessment of Atlantic salmon (Salmo salar L) fillets. J Food Eng 116:758–764CrossRefGoogle Scholar
  367. 367.
    Uddin M, Okazaki E (2004) Classification of fresh and frozen-thawed fish by near-infrared spectroscopy. J Food Sci 69:665–668CrossRefGoogle Scholar
  368. 368.
    Uddin M, Okazaki E, Turza S, Yumiko Y, Tanaka M, Fukuda Y (2005) Non-destructive visible/NIR spectroscopy for differentiation of fresh and frozen-thawed fish. J Food Sci 70:c506–c510CrossRefGoogle Scholar
  369. 369.
    Zhang A, Cheng F (2013) Identification of fresh shrimp and frozen-thawed shrimp by Vis/NIR spectroscopy. 2nd International Conference on Nutrition and Food Sciences IPCBEE, vol 53. IACSIT Press, SingaporeGoogle Scholar
  370. 370.
    Weeranantanaphan J, Downey G, Allen P, Sun DW (2011) A review of near infrared spectroscopy in muscle food analysis: 2005–2010. J Near Infrared Spec 19:61–104CrossRefGoogle Scholar
  371. 371.
    Sone I, Olsen RL, Sivertsen AH, Eilertsen G, Heia K (2012) Classification of fresh Atlantic salmon (Salmo salar L.) fillets stored under different atmospheres by hyperspectral imaging. J Food Eng 109:482–489CrossRefGoogle Scholar
  372. 372.
    Chaijan M, Benjakul S, Visessanguan W, Faustman C (2006) Changes of lipids in sardine (Sardinella gibbosa) muscle during iced storage. Food Chem 99(1):83–91CrossRefGoogle Scholar
  373. 373.
    Velioğlua HM, Temizb HT, Boyacib IH (2015) Differentiation of fresh and frozen-thawed fish samples using Raman spectroscopy coupled with chemometric analysis. Food Chem 172:283–290CrossRefGoogle Scholar
  374. 374.
    Grunert T, Stephan R, Ehling-Schulz M, Johler S (2017) Rapid differentiation of fresh and thawed meat or fish by FTIR spectroscopy. Technology opportunity, ref. no. UZ-17/359. http://www.switt.ch/adminall2/userfiles/technologien/608_top_uz17359_johler.pdf accessed June 2017

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Véronique Verrez-Bagnis
    • 1
  • Carmen G. Sotelo
    • 2
  • Rogério Mendes
    • 3
  • Helena Silva
    • 3
  • Kristina Kappel
    • 4
  • Ute Schröder
    • 4
  1. 1.IfremerNantesFrance
  2. 2.Instituto de Investigaciones Marinas (CSIC)VigoSpain
  3. 3.Portuguese Institute for the Sea and AtmosphereLisbonPortugal
  4. 4.Department of Safety and Quality of Milk and Fish ProductsMax Rubner-InstitutKielGermany

Personalised recommendations