Skip to main content

CLAs in Animal Source Foods: Healthy Benefits for Consumers

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Bioactive Molecules in Food

Abstract

Conjugated linoleic acid (CLA) is a group of polyunsaturated fatty acids that exist as positional and stereo-isomers of octadecadienoate (18:2). Among these isomers, the most studied two isomers are cis 9, trans 11-CLA and trans 10, cis 12-CLA due to their biological effects. CLA can be naturally synthesized in the rumen of ruminant animals by bacteria Butyrivibrio fibrisolvens via the Δ-9-desaturase of trans 11 octadecanoic acid pathway. The major dietary sources of CLA are represented by meat and milk from ruminant animals. Although references to CLA can be traced back to the 1950s, current interest in the health benefits of CLA started in the late 1980s, after it was identified as the anti-carcinogenic component present in fried ground beef. Since then, an extensive literature has documented the anticarcinogenic effects of CLA. In addition, there is some evidence that CLA is also anti-atherosclerotic, has beneficial effects on type 2 diabetes, and may play a key role in helping to regulate body fat. The fact that the richest natural sources of CLA, meat and dairy products, are consumed by people worldwide has very interesting implications for public health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CLA:

Conjugated Linoleic Acid

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

FAME:

Fatty Acid Methyl Esters

MUFA:

Monounsaturated Fatty Acids

PUFA:

Polyunsaturated Fatty Acids

SFA:

Saturated Fatty Acids

TFA:

Trans Fatty Acids

References

  1. de Castro Cardoso Pereira PM, dos Reis Baltazar Vicente AF (2013) Meat nutritional composition and nutritive role in the human diet. Meat Sci 93:586–592

    Article  Google Scholar 

  2. Wang WJ, Crompton RH (2004) The role of load-carrying in the evolution of modern body proportions. J Anat 204:417–430

    Article  Google Scholar 

  3. Domínguez-Rodrigo M, Bunn HT, Mabulla AZP, Baquedano E, Uribelarrea D, Pérez-González A, Gidna A, Yravedra J, Diez-Martin F, Egeland CP, Barba R, Arriaza MC, Organista E, Ansón M (2014) On meat eating and human evolution: A taphonomic analysis of BK4b (Upper Bed II, Olduvai Gorge, Tanzania), and its bearing on hominin megafaunal consumption. Quaternary Intern 322–323:129–152

    Google Scholar 

  4. Mann N (2007) Meat in the human diet: an anthropological perspective. Nutr Dietet 64(s4):S102–S107

    Article  Google Scholar 

  5. Valsta LM, Tapanainen H, Männistö S (2005) Meat fats in nutrition. Meat Sci 70:525–530

    Article  CAS  Google Scholar 

  6. Binnie MA, Barlow K, Johnson V, Harrison C (2014) Red meats: time for a paradigm shift in dietary advice. Meat Sci 98:445–451

    Article  Google Scholar 

  7. Toldrá F, Reig M (2012) Biochemistry of raw meat and poultry. In: Simpson BK, Nollet LML, Toldrá F, Benjakul S, Paliyath G, Hui YH (eds) Food biochemistry and food processing, 2nd edn. Wiley, New York

    Google Scholar 

  8. Toldrá F, Flores M (2004) Analysis of meat quality. In: Nollet LML (ed) Handbook of food analysis. Marcel Dekker, New York

    Google Scholar 

  9. K.J.Shingfield KJ, Reynolds CK, Hervás G, Griinari JM, Grandison AS, Beever DE (2006) Examination of the Persistency of Milk Fatty Acid Composition Responses to Fish Oil and Sunflower Oil in the Diet of Dairy Cows. J Dairy Sci 89:714–732

    Google Scholar 

  10. Nishimura T (2010) The role of intramuscular connective tissue in meat texture. Anim Sci J 81:21–27

    Google Scholar 

  11. Galica S, Oakhilla JS, Steinberga GR (2010) Adipose tissue as an endocrine organ. Molec Cell Endocrin 316:129–139

    Google Scholar 

  12. Webb EC, O’Neill HA (2008) The animal fat paradox and meat quality. Meat Sci 80:28–36

    Article  CAS  Google Scholar 

  13. IUPAC-IUB Commission on Biochemical Nomenclature (1978) The nomenclature of lipids. J Lipid Res 19:114–129

    Google Scholar 

  14. Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson RI, Hughes SI, Whittington FM (2008) Fat deposition, fatty acid composition and meat quality: a review. Meat Sci 78:343–358

    Article  CAS  Google Scholar 

  15. Teye GA, Sheard PR, Whittington FM, Nute GR, Stewart A, Wood JD (2006) Influence of dietary oils and protein level on pork quality. 1. Effects on muscle fatty acid composition, carcass, meat and eating quality. Meat Sci 73:157–165

    Article  CAS  Google Scholar 

  16. De Smet S, Raes K, Demeyer D (2004) Meat fatty acid composition as affected by fatness and genetic factors: a review. Anim Res 53:81–98

    Google Scholar 

  17. Smith WL (2007) Nutritionally essential fatty acids and biologically indispensable cyclooxygenases. Trends Biochem Sci 33(1):27–37

    Article  Google Scholar 

  18. Kouba M, Mourot J (2011) A review of nutritional effects on fat composition of animal products with special emphasis on n-3 polyunsaturated fatty acids. Biochimie 93:13–17

    Google Scholar 

  19. Smith SB, Smith DR, Lunt DK (2004) Adipose tissue. In: Jensen WK, Devine C, Dikeman M (eds) Encyclopedia of meat sciences. Elsevier Academic Press, Oxford, UK

    Google Scholar 

  20. Woods VB, Fearon AM (2009) Dietary sources of unsaturated fatty acids for animals and their transfer into meat, milk and eggs: A review. Livestock Sci 126:1–20

    Google Scholar 

  21. Lauridsen C, Mu H, Henckel P (2005) Influence of dietary conjugated linoleic acid (CLA) and age at slaughtering on performance, slaughter- and meat quality, lipoproteins, and tissue deposition of CLA in barrows. Meat Sci 69:393–399

    Google Scholar 

  22. Huuskonen A, Jansson S, Honkavaara M, Tuomisto L, Kauppinen R, Joki-Tokola E (2010) Meat colour, fatty acid profile and carcass characteristics of Hereford bulls finished on grazed pasture or grass silage-based diets with similar concentrate allowance. Livestock Sci 131:125–129

    Google Scholar 

  23. Alfaia CPM, Alves SP, Martins SIV, Costa ASH, Fontes CMGA, Lemos JPC, Bessa RJB, Prates JAM (2009) Effect of the feeding system on intramuscular fatty acids and conjugated linoleic acid isomers of beef cattle, with emphasis on their nutritional value and discriminatory ability. Food Chem 114:939–946

    Google Scholar 

  24. Belury MA (2002) Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action. Ann Rev Nutr 22:505–531

    Article  CAS  Google Scholar 

  25. Martin D, Muriel E, Gonzalez E, Viguera J, Ruiz J (2008) Effect of dietary conjugated linoleic acid and monounsaturated fatty acids on productive, carcass and meat quality traits of pigs. Livestock Sci 117:155–164

    Google Scholar 

  26. Belaunzaran X, Bessa RJB, LavÚn P, Mantecón AR, Kramer JKG, Aldai N (2015) Horse-meat for human consumption – Current research and future opportunities. Meat Sci 108:74–81.

    Google Scholar 

  27. Parodi PW (1999) Conjugated linoleic acid: the early years. In: Yurawecz MP, Mossoba MM, Kramer JKG, Pariza MW, Nelson GJ (eds) Advances in conjugated linoleic acid research, vol 1. AOCS Press, Champaign

    Google Scholar 

  28. Hartman L, Shorland FB, McDonald IRC (1955) The trans-unsaturated acid contents of fats of ruminants and non-ruminants. Biochem J 61:603–607

    Article  CAS  Google Scholar 

  29. Hansen RP, Czochanska Z (1976) Fatty acid composition of the subcutaneous and perinephric fats of lambs grazed on pastures in New Zealand. N Z J Sci 19:413–419

    CAS  Google Scholar 

  30. McGuire M, McGuire MA, Ritzenthalera K, Shultz TD (1999) Dietary sources and intakes of conjugated linoleic acid intake in humans. In: Yurawecz MP, Mossoba MM, Kramer JKG, Pariza MW, Nelson GJ (eds) Advances in conjugated linoleic acid research, vol 1. AOCS Press, Champaign

    Google Scholar 

  31. Kramer JKG, Parodi PW, Jensen RG, Mossoba MM, Yurawecz MP, Adlof RO (1998) Rumenic acid: a proposed common name for the major conjugated linoleic acid isomer found in natural products. Lipids 33:835

    Article  CAS  Google Scholar 

  32. Olmedilla-Alonso B, Jiménez-Colmenero F, Sánchez-Muniz FJ (2013) Development and assessment of healthy properties of meat and meat products designed as functional foods. Meat Sci 95:919–930

    Google Scholar 

  33. Crumb DJ (2011) Conjugated linoleic acid – an overview. Int J Appl Res Nat Prod 4:12–18

    CAS  Google Scholar 

  34. Palmquist DL, Lock AL, Shingfield KJ, Bauman DE (2005) Biosynthesis of Conjugated Linoleic Acid in Ruminants and Humans. Adv Food Nutr Res 50:179–217

    Google Scholar 

  35. Khanal RC, Olson KC (2004) Factors affecting conjugated linoleic acid (CLA) content in milk, meat, and egg: a review. Pakistan J Nutr 3:82–98

    Article  Google Scholar 

  36. Schmid A, Collomb M, Sieber R, Bee G (2006) Conjugated linoleic acid in meat and meat products: A review. Meat Sci 73:29–41

    Google Scholar 

  37. Reiser R (1951) Hydrogenation of polyunsaturated fatty acids by the ruminant. Fed Proc 10:236

    Google Scholar 

  38. Shorland FB, Weenink RO, Johns AT (1955) Effect of the rumen on dietary fat. Nature 175:1129–1130

    Article  CAS  Google Scholar 

  39. Shorland FB, Weenink RO, Johns AT, McDonald IRC (1957) The effect of shee-rumen contents on unsaturated fatty acids. Biochem J 67:328–333

    Article  CAS  Google Scholar 

  40. Kepler CR, Tove SB (1967) Biohydrogenation of unsaturated fatty acids. J Biol Chem 242:5686–5692

    CAS  Google Scholar 

  41. Khanal RC, Dhiman TR (2004) Biosynthesis of conjugated linoleic acid: a review. Pakistan J Nutr 3:72–81

    Article  Google Scholar 

  42. De Beni Arrigoni M, Martins CL, Factori MA (2016) Lipid metabolism in the rumen. In: Millen DD (ed) Rumenology. Springer International Publishing, Switzerland

    Google Scholar 

  43. Lourenco M, Ramos-Morales E, Wallace RJ (2010) The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 4:1008–1023

    Google Scholar 

  44. Buccioni A, Decandia M, Minieri S, Molle G, Cabiddu A (2012) Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim Feed Sci Technol 174:1–25

    Google Scholar 

  45. Park Y (2009) Conjugated linoleic acid (CLA): Good or bad trans fat? J Food Comp Anal 225:S4–S12

    Google Scholar 

  46. Chilliard Y, Glasser F, Ferlay A, Bernard L, Rouel J, Doreau M (2007) Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur J Lipid Sci Technol 109:828–855

    Google Scholar 

  47. Liavonchanka A, Feussner I (2008) Biochemistry of PUFA double bond isomerases producing Conjugated Linoleic Acid. ChemBioChem 9:1867–1872

    Google Scholar 

  48. Kim YJ, Liu RH, Bond DR, Russell JB (2000) Effect of linoleic acid concentration on conjugated linoleic acid by Butyrivibrio fibrisolvens A38. Appl Environ Microbiol 66:5226–5230

    Article  CAS  Google Scholar 

  49. Troegeler-Meynadir A, Nicot MC, Bayourthe C, Moncoulon R, Enjalbert F (2003) Effects of pH and concentrations of linoleic acids on extent and intermediates of ruminal biohydrogenation in vitro. J Dairy Sci 86:4054–4063

    Article  Google Scholar 

  50. Shingfield K, Ahvenjðrvi S, Toivonen V, ár­lð A, Nurmela K, Huhtanen P, Griinari J (2003). Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Animal Sci 77:165–179.

    Google Scholar 

  51. Banni S, Carta C, Contini MS, Angioni E, Deiana M, Dessi MA, Melis MP, Corongiu FP (1996) Characterization of conjugated diene fatty acids in milk, dairy products and lamb tissues. J Nutr Biochem 7:150–155

    Article  CAS  Google Scholar 

  52. Secchiari P, Antongiovanni M, Mele M, Serra A, Buccioni A, Ferruzzi G, Paoletti F, Petacchi F (2003) Effect of kind of dietary fat on the quality of milk fat from Italian Friesian cows. Livest Prod Sci 83:43–52

    Google Scholar 

  53. Garcia C, Duby C, Catheline D, Toral PG, Bernard L, Legrand P, Rioux V (2017) Synthesis of the suspected trans-11,cis-13 conjugated linoleic acid isomer in ruminant mammary tissue by FADS3-catalyzed Δ13-desaturation of vaccenic acid. J Dairy Sci 100:783–796

    Google Scholar 

  54. Lahlou M, Kanneganti R, Massingill L, Broderick G, Park Y, Pariza M, Ferguson JD, Wu Z (2014) Grazing increases the concentration of CLA in dairy cow milk. Animal, 8:1191–1200

    Google Scholar 

  55. Lock AL, Garnsworthy PC (2002) Independent effects of dietary linoleic and linolenic fatty acids on the conjugated linoleic acid content of cows’ milk. Anim Sci 74:163–176

    CAS  Google Scholar 

  56. Kay JK, Mackle TR, Auldist MJ, Thompson NA, Bauman DE (2002) Endogenous synthesis of cis-9, trans-11 conjugated linoleic acid in pasture-fed dairy cows. J Dairy Sci 85(suppl 1):176

    Google Scholar 

  57. Khanal RC, Dhiman TR, McMahon DJ, Boman RL (2002) Influence of diet on conjugated linoleic acid content of milk, cheese and blood serum. J Dairy Sci 85(Suppl. 1):142

    Google Scholar 

  58. Bolte MR, Hess BW, Means WJ, Moss GE, Rule DC (2002) Feeding lambs high-oleate or high linoleate safflower seeds differentially influences carcass fatty acid composition. J Anim Sci 80:609–616

    Article  CAS  Google Scholar 

  59. Chilliard Y, Ferlay A, Rouel J, Lamberet G (2003) A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. J Dairy Sci 86:1751–1770

    Article  CAS  Google Scholar 

  60. Fritsche J, Rickert R, Steinhart H, Yurawecz MP, Mossoba MM, Sehat N, Roach JAG, Kramer JKG, Ku Y (1999) Conjugated linoleic acid (CLA) isomers: formation, analysis, amounts in foods, and dietary intake. Fett-Lipid 101:272–276

    Article  CAS  Google Scholar 

  61. De Marchi FE, Santos GT, Petit HV, Benchaar C (2017) Oxidative status of dairy cows fed flax meal and infused with sunflower oil in the abomasum. Anim Feed Sci Technol 228:115–122

    Google Scholar 

  62. Lerch S, Shingfield KJ, Ferlay A,Vanhatalo A, Chilliard Y (2012) Rapeseed or linseed in grass-based diets: Effects on conjugated linoleic and conjugated linolenic acid isomers in milk fat from Holstein cows over 2 consecutive lactations. J Dairy Sci 95:7269–7287

    Google Scholar 

  63. Tsai CY, Rezamand P, Loucks WI, Scholte CM, Doumit ME (2017) The effect of dietary fat on fatty acid composition, gene expression and vitamin status in pre-ruminant calves. Anim Feed Sci Technol 229:32–42

    Google Scholar 

  64. Buccioni A, Rapaccini S, Antongiovanni M, Minieri S, Conte G, Mele M (2010) Conjugated linoleic acid and C18:1 isomers content in milk fat of sheep and their transfer to Pecorino Toscano cheese. Int Dairy J 20:190–194

    Google Scholar 

  65. Rule DC, Broughton KS, Shellito SM, Maiorano G (2002) Comparison of muscle fatty acid profiles and cholesterol concentrations of bison, beef cattle, elk, and chicken. J Anim Sci 80:1202–1211

    Article  CAS  Google Scholar 

  66. Engelke CF, Siebert BD, Gregg K, Wright ADG, Vercoe PE (2004) Kangaroo adipose tissue has higher concentrations of cis 9, trans 11-conjugated linoleic acid than lamb adipose tissue. J Anim Feed Sci 13:689–692

    Article  Google Scholar 

  67. Poulson CS, Dhiman TR, Ure AL, Cornforth D, Olson KC (2004) Conjugated linoleic acid content of beef from cattle fed diets containing high grain, CLA, or raised on forages. Livest Prod Sci 91:117–128

    Google Scholar 

  68. Badiani A, Montellato L, Bochicchio D, Anfossi P, Zanardi E, Maranesi M (2004) Selected nutrient contents, fatty acid composition, including conjugated linoleic acid, and retention values in separable lean from lamb rib loins as affected by external fat and cooking method. J Agric Food Chem 52:5187–5194

    Article  CAS  Google Scholar 

  69. Dannenberger D, Nuernberg K, Nuernberg G, Scollan N, Steinhart H, Ender K (2005) Effect of pasture vs. concentrate diet on CLA isomer distribution in different tissue lipids of beef cattle. Lipids 40:589–598

    Google Scholar 

  70. Zhang W, Xiao S, Samaraweera H, Lee EJ, Ahn DU (2010) Improving functional value of meat products. Meat Sci 86:15–31

    Article  CAS  Google Scholar 

  71. Serra A, Mele M, La Comba F, Conte G, Buccioni A, Secchiari P (2009) Conjugated linoleic acid (CLA) content of meat from three muscles of Massese suckling lambs slaughtered at different weights. Meat Sci 81:396–404

    Article  CAS  Google Scholar 

  72. Mulvihill B (2001) Ruminant meat as a source of conjugated linoleic acid (CLA). Nutr Bull 26:295–299

    Article  Google Scholar 

  73. Dugan MER, Aalhus JL, Kramer JKG (2004) Conjugated linoleic acid pork research. Amer J Clin Nutr 79:1212–1216

    Article  Google Scholar 

  74. Gatlin LA, See MT, Larick DK, Lin X, Odle J (2002) Conjugated linoleic acid in combination with supplemental dietary fat alters pork fat quality. J Nutr 132:3105–3112

    Article  CAS  Google Scholar 

  75. Corino C, Pastorelli G, Douard V, Rossi R, Musella M, Mourot J (2006) L’acide linoléique conjugué en nutrition porcine. INRA Prod Anim 19:39–46

    CAS  Google Scholar 

  76. Raes K, De Smet S, Demeyer D (2004) Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: a review. Anim Feed Sci Technol 113:199–221

    Google Scholar 

  77. Corino C, Musella M, Pastorelli G, Rossi R, Paolone K, Costanza L, Manchisi A, Maiorano G (2008) Influences of dietary conjugated linoleic acid (CLA) and total lysine content on growth, carcass characteristics and meat quality of heavy pigs. Meat Sci 79:307–316

    Article  CAS  Google Scholar 

  78. Corino C, Filetti F, Gambacorta M, Manchisi A, Magni S, Pastorelli G, Rossi R, Maiorano G (2003) Influence of dietary conjugated linoleic acids (CLA) and age at slaughtering on meat quality and intramuscular collagen in rabbits. Meat Sci 66:97–103

    Article  Google Scholar 

  79. Corino C, Lo Fiego DP, Macchioni P, Pastorelli G, Di Giancamillo A, Domeneghini C, Rossi R (2007) Influence of dietary conjugated linoleic acids and vitamin E on meat quality, and adipose tissue in rabbits. Meat Sci 76:19–28

    Article  CAS  Google Scholar 

  80. Juárez M, Polvillo O, Gómez MD, Alcalde MJ, Romero F, Valera M (2009) Breed effect on carcass and meat quality of foals slaughtered at 24 months of age. Meat Sci 83:224–228

    Google Scholar 

  81. Lorenzo JM, Sarriés MV, Tateo A, Polidori P, Franco D, Lanza M (2014) Carcass characteristics, meat quality and nutritional value of horsemeat: a review. Meat Sci 96:1478–1488

    Article  CAS  Google Scholar 

  82. Polidori P, Pucciarelli S, Ariani A, Polzonetti V, Vincenzetti S (2015) A comparison of the carcass and meat quality of Martina Franca donkey foals aged 8 or 12 months. Meat Sci 206:6–10

    Article  Google Scholar 

  83. Sirri F, Tallarico N, Meluzzi A, Franchini A (2003) Fatty acid composition and productive traits of broiler fed diets containing conjugated linoleic acid. Poult Sci 82:1356–1361

    Article  CAS  Google Scholar 

  84. Grashorn MA (2005) Enrichment of eggs and poultry meat with biologically active substances by feed modifications and effects on the final quality of the product. Pol J Food Nutr Sci 14:15–20

    CAS  Google Scholar 

  85. Du M, Ahn DU (2002) Effect of dietary conjugated linoleic acid on the growth rate of live birds and on the abdominal fat content and quality of broiler meat. Poultry Sci 81:428–433

    Article  CAS  Google Scholar 

  86. Hur SJ, Kim HS, Bahk YY, Park Y (2017) Overview of conjugated linoleic acid formation and accumulation in animal products. Livest Sci 195:105–111

    Google Scholar 

  87. Qi X, Xu S, Zhan H, Yue H, Xu S, Ji F, Qi G (2011) Effects of dietary conjugated linoleic acids on lipid metabolism and antioxidant capacity in laying hens. Arch Anim Nutr 65:345–365

    Google Scholar 

  88. Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757

    Google Scholar 

  89. Valente LMP, Bandarra NM, Figueiredo-Silva AC, Rema P, Vaz-Pires P, Martins S, Prates JAM, Nunes ML (2007) Conjugated linoleic acid in diets for large-size rainbow trout (Oncorhynchus mykiss): effects on growth, chemical composition and sensory attributes. Br J Nutr 97:289–297

    Google Scholar 

  90. Dhiman TR, Nam SH, Ure AL (2009) Factors affecting conjugated linoleic acid content in milk and meat. Crit Rev Food Sci Nutr 45:463–482

    Article  Google Scholar 

  91. Siurana A, Calsamiglia S (2016) A metaanalysis of feeding strategies to increase the content of conjugated linoleic acid (CLA) in dairy cattle milk and the impact on daily human consumption. Anim Feed Sci Technol 217:13–26

    Google Scholar 

  92. Abd El-Salam MH, Hippen AR, Assem FM, El-Shafel K, Tawfik NF, El-Aassar M (2011) Preparation and properties of probiotic cheese high in conjugated linoleicacid content. Int J Dairy Technol 64:64–74

    Google Scholar 

  93. Domagala J, Sady M, Grega T, Pustkowiak H, Florkiewicz A, 2010. The influence of cheese type and fat extraction method on the content of conjugated linoleic acid. J Food Compos Anal 23:238–243

    Google Scholar 

  94. Kim JH, Kim Y, Kim YJ, Park Y (2016). Conjugated linoleic acid-potential health benefits as a functional food ingredient. Ann Rev Food Sci Tech 7:221–244

    Google Scholar 

  95. Ferguson LR (2010) Meat and cancer. Meat Sci 84:308–313

    Article  CAS  Google Scholar 

  96. Santarelli RL, Pierre F, Corpet DE (2008) Processed meat and colorectal cancer: a review of epidemiologic and experimental evidence. Nutr Cancer 60:131–144

    Article  CAS  Google Scholar 

  97. Wood JD, Richardson RI, Nute GR, Fisher AV, Campo MM, Kasapidou E, Sheard PR, Enser M (2004) Effects of fatty acids on meat quality: a review. Meat Sci 66:21–32

    Google Scholar 

  98. Wyness L, Weichselbaum E, O'Connor A, Williams EB, Benelam B, Riley H, Stanner S (2011) Red meat in the diet: an update. Brit Nutr Found Nutr Bull 36:34–77

    Article  Google Scholar 

  99. Hubbard NE, Lim D, Erickson KL (2003) Effect of separate conjugated linoleic acid isomers on murine mammary tumorigenesis. Cancer Lett 190:13–19

    Google Scholar 

  100. Aro A, Mannisto S, Salminen I, Ovaskainen ML, Kataja V, Uusitupa M (2000) Inverse association between dietary and serum conjugated linoleic acid and risk of breast cancer in postmenopausal women. Nutr Cancer 38:151–157

    Google Scholar 

  101. Ha YL, Grimm NK, Pariza MW (1989) Newly recognized anticarcinogenic fatty acids: identification and quantification in natural and processed cheeses. J Agric Food Chem 37:75–81

    Article  CAS  Google Scholar 

  102. Ip C, Chin SF, Scimeca JA, Pariza MW (1991) Mammary cancer prevention by conjugated dienoic derivative of linoleic acid. Cancer Res 51:6118–6124

    CAS  Google Scholar 

  103. Ochoa JJ, Farquharson AJ, Grant I, Moffat LE, Heys SD, Wahle KWJ (2004) Conjugated linoleic acids (CLAs) decrease prostate cancer cell proliferation: different molecular mechanisms for cis -9, trans -11 and trans -10, cis -12 isomers. Carcinogesis 25:1185–1191

    Google Scholar 

  104. Ovesen L (2004) Cardiovascular and obesity health concern. In: Jensen WK, Devine C, Dikeman M (eds) Encyclopedia of meat sciences. Elsevier Academic Press, Oxford

    Google Scholar 

  105. Arbonés-Mainar JM, Navarro MA, Guzman M., Arnal C, Surra JC, Acin S, Carnicer R, Osada J, Roche HM (2006) Selective effect of conjugatedlinoleic acid isomers on atherosclerotic lesion development in apolipoprotein E knockout mice. Atherosclerosis 189:318–327

    Google Scholar 

  106. Khosla P, Fungwe TV (2001) Conjugated linoleic acid: effects on plasma lipids and cardiovascular function. Curr Opin Lipidol 12:31–34

    Article  CAS  Google Scholar 

  107. Kritchevsky D (2000) Antimutagenic and some other effects of conjugated linoleic acid. Br J Nutr 83:459–465

    CAS  Google Scholar 

  108. Moloney F, Yeow TP, Mullen A, Nolan J., Roche HM (2004) Conjugated linoleic acid supplementation, insulin sensitivity, and lipoprotein metabolism in patients with type 2 diabetes mellitus. Am J Clin Nutr 80:887–895

    Google Scholar 

  109. Atkinson RL (1999) Conjugated Linoleic Acid for altering body composition and treating obesity. In: Yurawecz MP, Mossoba MM, Kramer JKG, Pariza MW, Nelson GJ (eds) Advances in conjugated linoleic acid research, vol 1. AOCS Press, Champaign

    Google Scholar 

  110. Silveira MB, Carraro R, Monereo S, Tébar J (2007) Conjugated linoleic acid (CLA) and obesity. Public Health Nutr 10(10A):1181–1186

    Google Scholar 

  111. Rainer L, Heiss C (2004) Conjugated Linoleic Acid: health implications and effects on body composition. J Amer Diet Assoc 2004; 104:936–938

    Google Scholar 

  112. Lee HY, Park JH, Seok SH, Baek MW, Kim DJ, Lee KE, Paek KS, Lee Y, Park JH (2006) Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. BBA-Mol Cell Biol L 1761:736–744

    Google Scholar 

  113. House RL, Cassady JP, Eisen EJ, McIntosh MK, Odle J.(2005) Conjugated linoleic acid evokes delipidation through the regulation of genes controlling lipid metabolism in adipose and liver tissue. Obesity Reviews 6:247–258

    Google Scholar 

  114. Muniyappa R, Sullivan SD, Tella SH, Abel BS, Harman SM, Blackman MR (2017) Effects of growth hormone administration on luteinizing hormone secretion in healthy older men and women. Physiol Reports 5:e13516

    Google Scholar 

  115. Csillik Z, Faigl V, Keresztes M, Galamb E, Hammon HM, Tröscher A, Fébel H, Kulcsár M, Husvéth F, Huszenicza G, Butler, WR (2017) Effect of pre- and postpartum supplementation with lipid-encapsulated conjugated linoleic acid on reproductive performance and the growth hormone–insulin-like growth factor-I axis in multiparous high-producing dairy cows. J Dairy Sci 100:5888–5898

    Google Scholar 

  116. Kreider R, Ferreira M, Greenwood M, Almada A (2002) Effects of conjugated linoleic acid (CLA) supplementation during resistance training on body composition, bone density, strength and selected hematological markers. J Strength Conditioning Res 16:325–334

    Google Scholar 

  117. Silveira MB, Carraro R, Monerero S, Tébar J (2007) Conjugated linoleic acid (CLA) and obesity. Public Health Nutr 10(10A):1181–1186

    Article  Google Scholar 

  118. Moloney F, Toomey S, Noone E, Nugent A, Allan B, Loscher C., Roche, HM (2007) Antidiabetic effects of cis-9, trans-11-conjugated linoleic acid maybe mediated via anti-inflammatory effects in white adipose tissue. Diabetes 56:574–582

    Google Scholar 

  119. Marcolla CS, Holanda DM, Ferreira SV, Rocha GC, Serão NVL, Duarte MS, Abreu MLT, Saraiva A (2017) Chromium, CLA, and ractopamine for finishing pigs. J Anim Sci https://doi.org/10.2527/jas.2017.1753

  120. Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, Kim H-J, Tange T, Okuyama H, Kasai M, Ikemoto S, Ezaki O (2000) Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49:1534–1542

    Article  CAS  Google Scholar 

  121. Medina EA, Horn WF, Keim NL, Havel PJ, Benito P, Kelley DS, Nelson GJ, Erickson KL (2000) Conjugated linoleic acid supplementation in humans: effects on circulating leptin concentrations and appetite. Lipids 35:783–788

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Polidori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Polidori, P., Vincenzetti, S., Pucciarelli, S., Polzonetti, V. (2018). CLAs in Animal Source Foods: Healthy Benefits for Consumers. In: Mérillon, JM., Ramawat, K. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54528-8_51-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54528-8_51-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54528-8

  • Online ISBN: 978-3-319-54528-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    CLAs in Animal Source Foods: Healthy Benefits for Consumers
    Published:
    01 February 2018

    DOI: https://doi.org/10.1007/978-3-319-54528-8_51-2

  2. Original

    CLAs in Animal Source Foods: Healthy Benefits for Consumers
    Published:
    24 October 2017

    DOI: https://doi.org/10.1007/978-3-319-54528-8_51-1