Advertisement

Capsicum annuum Bioactive Compounds: Health Promotion Perspectives

  • Muhammad Imran
  • Masood Sadiq Butt
  • Hafiz Ansar Rasul Suleria
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Capsicum annum L. commonly known as bell pepper exhibits proven health as well as medicinal significance. It can be consumed either in fresh or processed form and is rich source of vitamin C, provitamin A, and calcium. Array of bioactive compounds especially antioxidants in its phytochemical profile make it an ideal choice for preventing cell damage, cancer insurgence, diabetes prevalence, cardiovascular disorders, cataracts, Alzheimer’s, and Parkinson’s disease. Major antioxidant compounds in capsicum are carotenoids, tocopherols, and capsaicinoids (capsacicin). Their anticancer role is attributed to their ability to act as scavengers of singlet molecular oxygen, reactive oxygen species (ROS), peroxyl radicals, and reactive nitrogen species (RNS). Capsaicinoids intake effectively reduced the triacyclglycerols, plasma total cholesterol (PTC), and non-high-density lipoprotein cholesterol, and thereby helps in the prevention of cardiovascular ailments. It also exhibit effective and proactive contribution against age-related ailments. Capsaicin exposure expressively repressed the initial adipogenic differentiation, maturation, and lipogenesis of adipocytes. Capsaicin also has ability to target the TRPV1 receptors in the C-fibers lead to their stimulation followed by desensitization that helps to improve the neurogenic bladder. So, it may serve as a potential emerging treatment for patients who are nonrespondent to conventional therapy especially those with neurogenic bladder.

Keywords

Bell pepper Capsaicinoids Antioxidant Neurogenic bladder 

List of Abbreviations

18α-GA

18 alpha-glycyrrhetinic acid

ABCA1

ATP-binding cassette transporter

ABCG1

ATP-binding cassette transporter-G1

ABCG5

ATP-binding cassette transporter-G-5

AdipoR2

Adiponectin gene/protein and its receptor

ADP

Adenosine diphosphate

ALCAM

Activated leukocyte cell adhesion molecule

AMPK

Activation of activated protein kinase

Apo-A1

Apolipoprotein-A1

apoM

Apolipoprotein M

ATP

Adenosine triphosphate

BAT

Brown adipose tissue

BCC

Basal carcinoma cells

BUN

Blood urea nitrogen

C/EBPα

C-enhancer-binding proteins

Ca2+

Calcium

CaMK-II

Calmodulin-dependent protein kinase II

Capz

Capsazepine

CCMSs

Capsaicin-chitosan microspheres

CD36

Cluster of differentiation-36

COX-2

Cyclooxygenase-2

CRP

C-reactive protein levels

CRT

Calreticulin

Cx43

Connexin 43

DCs

Dendritic cells

DHC

Dihydrocapsaicin

DNA

Deoxyribonucleic acid

EC-LPS

Lipopolysaccharide from Escherichia coli

EMT

Epithelial mesenchymal transition

eNOS

Endothelial nitric oxide synthase

ERK

Extracellular signal-regulated kinases

FABP4

Fatty acid binding protein-4

FADD

Fas-associated protein with death domain

FAK

Focal adhesion kinase

GC

Gastric cancer

GDM

Gestational diabetes mellitus

Glu

Glutamate

GSH

Glutathione

GSSG

Oxidized glutathione

HDL-C

High density lipoprotein

HMGCR

3-hydroxy-3-methylglutaryl-CoA reductase

HO-1

Heme oxygenase-1

HSL

Hormone sensitive lipase

HUVECs

Human umbilical vein endothelial cells

ICD

Immunogenic cell death

IL-1β

Interleukin-1 beta

IL-6

Interleukin-6

KA

Kainic acid

Klf2

Kruppel-like factor 2

LDL-C

Low-density lipoprotein-cholesterol

LDL-R

Low-density lipoprotein receptor

LPS

Lipopolysaccharide

MDA

Malondialdehyde

MS–MS

Mass spectrometry

NDO

Eurogenic detrusor overactive

NET

Neuroendocrine tumor cells

NF-κB

Nuclear factor-kappa B

NOD/SCID

Nonobese diabetic/severe combined immunodeficiency

NPC1

Niemann-Pick C1 protein

OH

Hydroxyl

PC-3

Pancreatic cancer

p-CaM

Adhesion molecule

PCR

Polymerase chain reaction

PPARdelta

Peroxisome proliferator-activated receptor delta

PPARgamma

Peroxisome proliferator-activated receptor gamma

PPARα

Peroxisome proliferator-activated receptor-alpha

PPARγ

Peroxisome proliferator-activated receptor gamma

PPARγ

Peroxisome proliferator-activated receptor-gamma

PTPϵ

Protein-tyrosine phosphatase ϵ

RNS

Reactive nitrogen species

ROS

Reactive oxygen species

SOD

Superoxide dismutase

SRA-1

Steroid receptor RNA activator 1

SRB1

Scavenger receptor class B member 1

TG

Triglycerides

TIMP-1

Tissue inhibitors of metalloproteinases-1

TNF-α

Tumor necrosis factor-alpha

TRP

Transient receptor potential

TRPV1

Transient receptor potential vanilloid subtype 1

UCP2

Uncoupling protein 2

UV

Ultraviolet

VEGFA

Vascular endothelial growth factor-A

VLDL-C

Very low-density lipoprotein- cholesterol

WT

Wild-type

Notes

Acknowledgments

The authors are thankful to Functional and Nutraceutical Food Research Section, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan. The project was partially supported by Higher Education Commission, Pakistan, under Pak-US Science and Technology Cooperation Program Phase IV with a project entitled “Establishment of Functional and Nutraceutical Food Research Section at the National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.”

References

  1. 1.
    Blanco-Ríos AK, Medina-Juarez LA, González-Aguilar GA, Gamez-Meza N (2013) Antioxidant activity of the phenolic and oily fractions of different sweet bell peppers. J Mex Chem Soc 57:137–143Google Scholar
  2. 2.
    Igbokwe GE, Aniakor GC, Anagonye CO (2013) Determination of β-carotene & vitamin C content of fresh green pepper (Capsicum annum), fresh red pepper (Capsicum annum) and fresh tomatoes (Solanum lycopersicum) fruits. Bioscientist 1:89–93Google Scholar
  3. 3.
    Kehie M, Kumaria S, Tandon P (2014) Manipulation of culture strategies to enhance capsaicin biosynthesis in suspension and immobilized cell cultures of Capsicum Chinense Jacq. cv. Naga King Chili. Bioprocess Biosyst Eng 37:1055–1063CrossRefGoogle Scholar
  4. 4.
    Oboh G, Rocha TBJ (2007) Distribution and antioxidant activity of polyphenols in ripe and unripe tree pepper (Capsicum pubescens). J Food Biochem 31:456–473CrossRefGoogle Scholar
  5. 5.
    Hwang JT, Kim SH, Park HS, Kwon DY, Kim MS (2013) Capsaicin stimulates glucose uptake in C2C12 muscle cells via the reactive oxygen species (ROS)/AMPK/p38 MAPK pathway. Biochem Biophys Res Commun 439(1):66–70.  https://doi.org/10.1016/j.bbrc.2013.08.027. CrossRefGoogle Scholar
  6. 6.
    Büttow MW, Barbieri RL, Neitzke RS, Heiden G, Carvalho FIF (2010) Diversidade genética entre acessos de pimentas e pimentões da Embrapa Clima Temperado. Ciência Rural 40(6):1264–1269.  https://doi.org/10.1590/S0103-84782010000600004 CrossRefGoogle Scholar
  7. 7.
    Alvarez-Parrilla E, De LA, Amarowicz R, Shahidi F (2012) Protective effect of fresh and processed Jalapeño and Serrano peppers against food lipid and human LDL cholesterol oxidation. Food Chem 133(3):827–834.  https://doi.org/10.1016/j. foodchem.2012.01.100 CrossRefGoogle Scholar
  8. 8.
    Shetty AA, Magadum S, Managanvi K (2013) Vegetables as sources of antioxidants. J Food Nutr Disord 2(1):1–5.  https://doi.org/10.4172/2324-9323.1000104. PMid:25328903CrossRefGoogle Scholar
  9. 9.
    Moraes LP, DaPaz MF, Sanjines-Argandoña EJ, Silva LR, Zago TD (2013) Compostos fenólicos e atividade antioxidante de molho de pimenta “Dedo-de-Moça” fermentado. Biochem Biotechnol Rep 1(2):33–38. Retrieved from http://www.uel.br/revistas/uel/index.php/bbr/article/view/14551/12349 CrossRefGoogle Scholar
  10. 10.
    Mateos RM, Jiménez A, Román P, Romojaro F, Bacarizo S, Leterrier M, Gómez M, Sevilla F, Del Río LA, Corpas FJ, Palma JM (2013) Antioxidant systems from pepper (Capsicum annuum L.): involvement in the response to temperature changes in ripe fruits. Int J Mol Sci 14(5):9556–9580.  https://doi.org/10.3390/ijms14059556. PMid:23644886CrossRefGoogle Scholar
  11. 11.
    Prasad NBC, Shrivastava R, Ravishankar GA (2005) Capsaicin as multifaceted drug from Capsicum spp. Evid Based Intern Med 2:147–166CrossRefGoogle Scholar
  12. 12.
    Kim YJ, Kim YAE, Yokozawa T (2009) Protection against oxidative stress, inflammation, and apoptosis of high-glucoseexposed proximal tubular epithelial cells by astaxanthin. J Agric Food Chem 57(19):8793–8797CrossRefGoogle Scholar
  13. 13.
    Fathima SN (2015) A systemic review on phytochemistry and pharmacological activities of Capsicum annuum. Int J Pharm Pharm Res 4(3):51–68Google Scholar
  14. 14.
    Bae H, Jayaprakasha GK, Jifon J, Patil BS (2012) Extraction efficiency and validation of an HPLC method for flavonoid analysis in peppers. Food Chem 130(3):751–758CrossRefGoogle Scholar
  15. 15.
    Sgroppo SC, Pereyra MV (2009) Using mild heat treatment to improve the bioactive related compounds on fresh-cut green bell peppers. Int J Food Sci Technol 44:1793–1801CrossRefGoogle Scholar
  16. 16.
    Lu J, Papp LV, Fang J, Rodriguez NS, Zhivotovsky B, Holmgren A (2006) Inhibition of mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin anticancer activity. Cancer Res 66(8):4410–4418CrossRefGoogle Scholar
  17. 17.
    Tonin FG, Jager AV, Micke GA, Farah JPS, Tavares MFM (2005) Optimization of the separation of flavonoids using solvent-modified micellar electrokinetic chromatography. Electrophoresis 26(17):3387–3396CrossRefGoogle Scholar
  18. 18.
    Wahyuni Y, Ballester AR, Sudarmonowati E, Bino RJ, Bovy AG (2011) Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: variation in health-related compounds and implications for breeding. Phytochemistry 72(11–12):1358–1370Google Scholar
  19. 19.
    Materska M, Perucka I (2005) Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). J Agric Food Chem 53(5):1750–1756CrossRefGoogle Scholar
  20. 20.
    Kris-Etherton PM, Lefevre M, Beecher GR, Gross MD, Keen CI, Etherton TD (2004) Bioactive compounds in nutrition and health-research methodologies for establishing biological function: the antioxidant and anti-inflammatory effects of flavonoid on atherosclerosis. Annu Rev Nutr 24:511–538CrossRefGoogle Scholar
  21. 21.
    Howard LR, Talcott ST, Brenes CH, Villalon B (2000) Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum Species) as influenced by maturity. J Agric Food Chem 48:1713–1720CrossRefGoogle Scholar
  22. 22.
    Zhuang Y, Chen L, Sun L, Cao J (2012) Bioactive characteristics and antioxidant activities of nine peppers. J Funct Foods 4:331–338CrossRefGoogle Scholar
  23. 23.
    Kouassi KC, Koffi-Nevry R, Guillaume LY, Yéssé ZN, Koussémon M, Kablan T, Athanase KK (2012) Profiles of bioactive compounds of some pepper fruit (Capsicum L.) varieties grown in Côte D’ivoire. Innovat Rom Food Biotechnol 11:23–31Google Scholar
  24. 24.
    Shotorbani N, Jamei R, Heidari R (2013) Antioxidant activities of two sweet pepper Capsicum annuum L. varieties phenolics extracts and the effects of thermal treatment. Avicenna J Phytomed 3:25–34Google Scholar
  25. 25.
    Matsufuji H, Nakamuro H, Chino M, Mitsuharo T (1998) Antioxidant activity of capsanthin and the fatty acid esters in paprika (Capsicum annuum). J Agric Food Chem 46:3462–3472CrossRefGoogle Scholar
  26. 26.
    Devasagayam TPA, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD (2004) Free radicals and antioxidants in human health: current status and future prospects. J Assoc Phys India 52:794–804Google Scholar
  27. 27.
    Ha SH, Kim JB, Park JS, Lee SW, Cho KJ (2007) A comparison of the carotenoid accumulation in capsicum varieties that show different ripening colours: deletion of the capsanthin–capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper. J Exp Bot 58:3135–3144CrossRefGoogle Scholar
  28. 28.
    Srinivas CH, Sai Pavan Kumar CHN, China RB, Jayathirtha RV, Naidu VG (2009) First stereoselective total synthesis and anticancer activity of new amide alkaloids of roots of pepper. Bioorg Med Chem Lett 19:5915–5918CrossRefGoogle Scholar
  29. 29.
    Qian K, Wang G, Cao R, Liu T, Qian G, Guan X, Guo Z, Xiao Y, Wang X (2016) Capsaicin suppresses cell proliferation, induces cell cycle arrest and ROS production in bladder cancer cells through FOXO3a-mediated pathways. Molecules 21(10):1406Google Scholar
  30. 30.
    Vendrely V, Peuchant E, Buscail E, Moranvillier I, Rousseau B, Bedel A, Brillac A, de Verneuil H, Moreau-Gaudry F, Dabernat S (2017) Resveratrol and capsaicin used together as food complements reduce tumor growth and rescue full efficiency of low dose gemcitabine in a pancreatic cancer model. Cancer Lett 390:91. pii: S0304-3835(17)30017-4CrossRefGoogle Scholar
  31. 31.
    Hu YW, Ma X, Huang JL, Mao XR, Yang JY, Zhao JY, Li SF, Qiu YR, Yang J, Zheng L, Wang Q (2013) Dihydrocapsaicin attenuates plaque formation through a PPARγ/LXRα pathway in apoE−/− mice fed a high-fat/high-cholesterol diet. PLoS One 8(6):e66876.  https://doi.org/10.1371/journal.pone.0066876 CrossRefGoogle Scholar
  32. 32.
    Persson MS, Fu Y, Bhattacharya A, Goh SL, van Middelkoop M, Bierma-Zeinstra SM, Walsh D, Doherty M, Zhang WO, OA Trial Bank Consortium (2016) Relative efficacy of topical non-steroidal anti-inflammatory drugs and topical capsaicin in osteoarthritis: protocol for an individual patient data meta-analysis. Syst Rev 5(1):165.  https://doi.org/10.1186/s13643-016-0348-8 CrossRefGoogle Scholar
  33. 33.
    Lee JH, Kim C, Baek SH, Ko JH, Lee SG, Yang WM, Um JY, Sethi G, Ahn KS (2016) Capsaezepine inhibits JAK/STAT3 signaling, tumor growth, and cell survival in prostate cancer. Oncotarget. https://doi.org/10.18632/oncotarget.10775
  34. 34.
    Nishino H, Tokuda H, Satomi Y, Masuda M, Bu P, Onozuka M, Yamaguchi S, Okuda Y, Takayasu J, Tsuruta J et al (1999) Cancer prevention by carotenoids. Pure Appl Chem 71:2273–2278CrossRefGoogle Scholar
  35. 35.
    Vendrely V, Peuchant E, Buscail E, Moranvillier I, Rousseau B, Bedel A, Brillac A, de Verneuil H, Moreau-Gaudry F, Dabernat S (2017) Resveratrol and capsaicin used together as food complements reduce tumor growth and rescue full efficiency of low dose gemcitabine in a pancreatic cancer model. Cancer Lett.  https://doi.org/10.1016/j.canlet.2017.01.002. pii: S0304-3835(17)30017-4. Epub ahead of print
  36. 36.
    Amantini C, Morelli MB, Nabissi M, Cardinali C, Santoni M, Gismondi A, Santoni G (2016) Capsaicin triggers autophagic cell survival which drives epithelial mesenchymal transition and chemoresistance in bladder cancer cells in an Hedgehog-dependent manner. Oncotarget. https://doi.org/10.18632/oncotarget.10326. Epub ahead of print
  37. 37.
    Bessler H, Djaldetti M (2017) Capsaicin modulates the immune cross talk between human Mononuclears and cells from two colon carcinoma lines. Nutr Cancer 69(1):14–20.  https://doi.org/10.1080/01635581.2017.1247893. Epub 2016 Nov 30CrossRefGoogle Scholar
  38. 38.
    Liu T, Wang G, Tao H, Yang Z, Wang Y, Meng Z, Cao R, Xiao Y, Wang X, Zhou J (2016) Capsaicin mediates caspases activation and induces apoptosis through P38 and JNK MAPK pathways in human renal carcinoma. BMC Cancer 16(1):790CrossRefGoogle Scholar
  39. 39.
    Wang F, Zhao J, Liu D, Zhao T, Lu Z, Zhu L, Cao L, Yang J, Jin J, Cai Y (2016) Capsaicin reactivates hMOF in gastric cancer cells and induces cell growth inhibition. Cancer Biol Ther 17:1117CrossRefGoogle Scholar
  40. 40.
    Jin T, Wu H, Wang Y, Peng H (2016) Capsaicin induces immunogenic cell death in human osteosarcoma cells. Exp Ther Med 12(2):765–770CrossRefGoogle Scholar
  41. 41.
    Lin MH, Lee YH, Cheng HL, Chen HY, Jhuang FH, Chueh PJ (2016) Capsaicin inhibits multiple bladder cancer cell phenotypes by inhibiting tumor-associated NADH oxidase (tNOX) and Sirtuin1 (SIRT1). Molecules 21(7).  https://doi.org/10.3390/Moleculesules21070849. pii: E849
  42. 42.
    Lee JH, Kim C, Baek SH, Ko JH, Lee SG, Yang WM, Um JY, Sethi G, Ahn KS (2016) Capsazepine inhibits JAK/STAT3 signaling, tumor growth, and cell survival in prostate cancer. Oncotarget. https://doi.org/10.18632/oncotarget.10775
  43. 43.
    Sun F, Xiong S, Zhu Z (2016) Dietary capsaicin protects Cardiometabolic organs from dysfunction. Forum Nutr 8(5).  https://doi.org/10.3390/nu8050174. pii: E174
  44. 44.
    McCarty MF, DiNicolantonio JJ, O’Keefe JH (2015) Capsaicin may have important potential for promoting vascular and metabolic health. Open Heart 2(1):e000262.  https://doi.org/10.1136/openhrt-2015-000262. CrossRefGoogle Scholar
  45. 45.
    Duzhyy DE, Viatchenko-Karpinski VY, Khomula EV, Voitenko NV, Belan PV (2015) Upregulation of T-type Ca2+ channels in long-term diabetes determines increased excitability of a specific type of capsaicin-insensitive DRG neurons. Mol Pain 11:29.  https://doi.org/10.1186/s12990-015-0028-z. CrossRefGoogle Scholar
  46. 46.
    Yuan LJ, Qin Y, Wang L, Zeng Y, Chang H, Wang J, Wang B, Wan J, Chen SH, Zhang QY, Zhu JD, Zhou Y, Mi MT (2016) Capsaicin-containing chili improved postprandial hyperglycemia, hyperinsulinemia, and fasting lipid disorders in women with gestational diabetes mellitus and lowered the incidence of large-for-gestational-age newborns. Clin Nutr 35(2):388–393.  https://doi.org/10.1016/j.clnu.2015.02.011. Epub 2015 Mar 2CrossRefGoogle Scholar
  47. 47.
    Skrzypski M, Sassek M, Abdelmessih S, Mergler S, Grötzinger C, Metzke D, Wojciechowicz T, Nowak KW, Strowski MZ (2014) Capsaicin induces cytotoxicity in pancreatic neuroendocrine tumor cells via mitochondrial action. Cell Signal 26(1):41–48.  https://doi.org/10.1016/j.cellsig.2013.09.014. Epub 2013 Sep 27CrossRefGoogle Scholar
  48. 48.
    Kang JH, Tsuyoshi G, Le Ngoc H, Kim HM, Tu TH, Noh HJ, Kim CS, Choe SY, Kawada T, Yoo H, Yu R (2011) Dietary capsaicin attenuates metabolic dysregulation in genetically obese diabetic mice. J Med Food 14(3):310–315.  https://doi.org/10.1089/jmf.2010.1367 CrossRefGoogle Scholar
  49. 49.
    Zhao WX, Hong ZF, Yin ZY, Xie CR, Xu YP, Chi XQ, Zhang S, Wang XM (2014) Capsaicin enhances the drug sensitivity of cholangiocarcinoma through the inhibition of chemotherapeutic-induced autophagy. PLoS One 10(5):e0121538.  https://doi.org/10.1371/journal.pone.0121538. eCollection 2014Google Scholar
  50. 50.
    Baskaran P, Krishnan V, Ren J, Thyagarajan B (2016) Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br J Pharmacol 173(15):2369–2389.  https://doi.org/10.1111/bph.13514. CrossRefGoogle Scholar
  51. 51.
    Saito M (2015) Capsaicin and related food ingredients reducing body fat through the activation of TRP and Brown fat thermogenesis. Adv Food Nutr Res 76:1–28.  https://doi.org/10.1016/bs.afnr.2015.07.002. CrossRefGoogle Scholar
  52. 52.
    Ibrahim M, Jang M, Park M, Gobianand K, You S, Yeon SH, Park S, Kim MJ, Lee HJ (2015) Capsaicin inhibits the adipogenic differentiation of bone marrow mesenchymal stem cells by regulating cell proliferation, apoptosis, oxidative and nitrosative stress. Food Funct 6(7):2165–2178.  https://doi.org/10.1039/c4fo01069h. CrossRefGoogle Scholar
  53. 53.
    Chen J, Li L, Li Y, Liang X, Sun Q, Yu H, Zhong J, Ni Y, Chen J, Zhao Z, Gao P, Wang B, Liu D, Zhu Z, Yan Z (2015) Activation of TRPV1 channel by dietary capsaicin improves visceral fat remodeling through connexin43-mediated Ca2+ influx. Cardiovasc Diabetol 14:22.  https://doi.org/10.1186/s12933-015-0183-6. CrossRefGoogle Scholar
  54. 54.
    Hong ZF, Zhao WX, Yin ZY, Xie CR, Xu YP, Chi XQ, Zhang S, Wang XM (2015) Capsaicin enhances the drug sensitivity of cholangiocarcinoma through the inhibition of chemotherapeutic-induced autophagy. PLoS One 10(5):e0121538.  https://doi.org/10.1371/journal.pone.0121538. eCollection 2015CrossRefGoogle Scholar
  55. 55.
    Tan S, Gao B, Tao Y, Guo J, Su ZQ (2014) Antiobese effects of capsaicin-chitosan microsphere (CCMS) in obese rats induced by high fat diet. J Agric Food Chem 62(8):1866–1874.  https://doi.org/10.1021/jf4040628 CrossRefGoogle Scholar
  56. 56.
    Lee GR, Shin MK, Yoon DJ, Kim AR, Yu R, Park NH, Han IS (2013) Topical application of capsaicin reduces visceral adipose fat by affecting adipokine levels in high-fat diet-induced obese mice. Obesity (Silver Spring) 21(1):115–122.  https://doi.org/10.1002/oby.20246. CrossRefGoogle Scholar
  57. 57.
    Nicholas S, Yuan SY, Brookes SJ, Spencer NJ, Zagorodnyuk VP (2017) Hydrogen peroxide preferentially activates capsaicin-sensitive high threshold afferents via TRPA1 channels in the guinea pig bladder. Br J Pharmacol 174(2):126–138Google Scholar
  58. 58.
    Pyun CW, Kim JH, Han KH, Hong GE, Lee CH (2014) In vivo protective effects of dietary curcumin and capsaicin against alcohol-induced oxidative stress. Biofactors 40(5):494–500.  https://doi.org/10.1002/biof.1172. CrossRefGoogle Scholar
  59. 59.
    Jung SH, Kim HJ, Oh GS, Shen A, Lee S, Choe SK, Park R, So HS (2014) Capsaicin ameliorates cisplatin-induced renal injury through induction of heme oxygenase-1. Mol Cells 37(3):234–240. https://doi.org/10.14348/molcells.2014.2322 CrossRefGoogle Scholar
  60. 60.
    Pramanik KC, Boreddy SR, Srivastava SK (2011) Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells. PLoS One 6(5):e20151.  https://doi.org/10.1371/journal.pone.0020151. CrossRefGoogle Scholar
  61. 61.
    Gupta RS, Dixit VP, Dobhal MP (2002) Hypocholesterolaemic effect of the oleoresin of Capsicum annum L. in gerbils (Meriones hurrianae Jerdon). Phytother Res 16:273–275CrossRefGoogle Scholar
  62. 62.
    Sambaiah K, Satyanarayana MN (1980) Hypocholesterolemic effect of red pepper & capsaicin. Indian J Exp Biol 18:898–899Google Scholar
  63. 63.
    Kim JS, Ha Y, Kim S, Lee SJ, Ahn J (2017) Red paprika (Capsicum annuum L.) and its main carotenoid capsanthin ameliorate impaired lipid metabolism in the liver and adipose tissue of high-fat diet-induced obese mice. J Funct Foods 31:131–140CrossRefGoogle Scholar
  64. 64.
    Kumar P, Chand S, Chandra P, Maurya PK (2015) Influence of dietary capsaicin on Redox status in red blood cells during human aging. Adv Pharm Bull 5(4):583–586. https://doi.org/10.15171/apb.2015.078 CrossRefGoogle Scholar
  65. 65.
    Jiang X, Jia LW, Li XH, Cheng XS, Xie JZ, Ma ZW, Xu WJ, Liu Y, Yao Y, Du LL, Zhou XW (2013) Capsaicin ameliorates stress-induced Alzheimer’s disease-like pathological and cognitive impairments in rats. J Alzheimers Dis 35(1):91–105.  https://doi.org/10.3233/JAD-121837. Google Scholar
  66. 66.
    Lee JG, Yon JM, Lin C, Jung AY, Jung KY, Nam SY (2012) Combined treatment with capsaicin and resveratrol enhances neuroprotection against glutamate-induced toxicity in mouse cerebral cortical neurons. Food Chem Toxicol 50(11):3877–3885.  https://doi.org/10.1016/j.fct.2012.08.040. CrossRefGoogle Scholar
  67. 67.
    Lee TH, Lee JG, Yon JM, Oh KW, Baek IJ, Nahm SS, Lee BJ, Yun YW, Nam SY (2011) Capsaicin prevents kainic acid-induced epileptogenesis in mice. Neurochem Int 58(6):634–640.  https://doi.org/10.1016/j.neuint.2011.01.027. CrossRefGoogle Scholar
  68. 68.
    Bert J, Mahowald ML, Frizelle S, Dorman CW, Funkenbusch SC and Krug HE (2016). The effect of treatment with Resiniferatoxin and capsaicin on dynamic weight bearing measures and evoked pain responses in a chronic inflammatory arthritis murine model. Intern Med Rev (Wash DC) 16(6). pii: 89Google Scholar
  69. 69.
    Walker J, Ley JP, Schwerzler J, Lieder B, Beltran L, Ziemba PM, Hatt H, Hans J, Widder S, Krammer GE, Somoza V (2017) Nonivamide, a capsaicin analogue, exhibits anti-inflammatory properties in peripheral blood mononuclear cells and U-937 macrophages. Mol Nutr Food Res 1600474Google Scholar
  70. 70.
    Tang J, Luo K, Li Y, Chen Q, Tang D, Wang D, Xiao J (2015) Induced inflammatory cytokine production by upregulation of LXRα. Int Immunopharmacol 28(1):264–269.  https://doi.org/10.1016/j.intimp.2015.06.007. CrossRefGoogle Scholar
  71. 71.
    Foster HE, Lake AG (2014) Use of Vanilloids in urologic disorders. In: Abdel-Salam EOM (ed) Capsaicin as a therapeutic molecules. Springer, Basel, pp 307–317CrossRefGoogle Scholar
  72. 72.
    Haab F (2014) Chapter 1: the conditions of neurogenic detrusor overactivity and overactive bladder. Neurourol Urodyn 33(Suppl S3):S2–S5CrossRefGoogle Scholar
  73. 73.
    Wouters AT, Casagrande RA, Wouters F, Watanabe TT, Boabaid FM, Cruz CE, Driemeier D (2013) An outbreak of aflatoxin poisoning in dogs associated with aflatoxin B1-contaminated maize products. J Vet Diagn Investig 25:282–287CrossRefGoogle Scholar
  74. 74.
    Wadie BS (2015) Management of refractory OAB in the non-neurogenic patient. Curr Urol Rep 15:438CrossRefGoogle Scholar
  75. 75.
    Yamaguchi O, Nishizawa O, Takeda M, Yokoyama O, Homma Y, Kakizaki H, Obara K, Gotoh M, Igawa Y, Seki N (2009) Clinical guidelines for overactive bladder. Int J Urol 16:126–142CrossRefGoogle Scholar
  76. 76.
    MacDonald R, Monga M, Fink HA, Wilt TJ (2008) Neurotoxin treatments for urinary incontinence in subjects with spinal cord injury or multiple sclerosis: a systematic review of effectiveness and adverse effects. J Spinal Cord Med 31:157–165CrossRefGoogle Scholar
  77. 77.
    Everaerts W, Gevaert T, Nilius B, De Ridder D (2008) On the origin of bladder sensing: trips in urology. Neurourol Urodyn 27:264–273CrossRefGoogle Scholar
  78. 78.
    Li M, Sun Y, Simard JM, Chai TC (2011) Increased transient receptor potential vanilloid type 1 (TRPV1) signaling in idiopathic overactive bladder urothelial cells. Neurourol Urodyn 30:606–611CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Muhammad Imran
    • 1
    • 2
  • Masood Sadiq Butt
    • 1
  • Hafiz Ansar Rasul Suleria
    • 3
    • 4
  1. 1.National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
  2. 2.Department of Diet and Nutritional Sciences, Faculty of Health and Allied SciencesImperial College of Business StudiesLahorePakistan
  3. 3.UQ School of Medicine, Translational Research InstituteThe University of QueenslandBrisbaneAustralia
  4. 4.Department of Food, Nutrition, Dietetics & HealthKansas State UniversityManhattanUSA

Personalised recommendations