Skip to main content

A Novel Delivering Agent for Bioactive Compounds: Chewing Gum

  • Living reference work entry
  • First Online:
Bioactive Molecules in Food

Abstract

Functional food concept is one of the hot topics in the food industry. In recent years, people want to consume food products having health beneficial effect as well as nutritive characteristics. Regarding functional food development, foods have also advantages and disadvantages in terms of delivering bioactive compounds due to formulation (interaction of the bioactive compound with other ingredients, calorie value provided) and production process (mechanical and thermal processes applied during production). When considering the factors restricting usage of the food products as a delivery system, chewing gum is one of the most up-and-coming products in many aspects: (i) simplicity of the formulation prevents the activity of bioactive compound by interaction, (ii) level of mechanical and thermal stresses applied during production, (iii) enabling the release of targeted molecule in a controlled and sustained manner, (iv) different consumption behavior abolishing calorie intake concern since it is only chewed without swallowing, and (v) holding time in mouth. Usage of encapsulated bioactive compounds can improve the release behavior of the functional ingredient. Mastication process and the formed matrix/structure of the chewing gum also influence the release of the bioactive compounds. The researches about improving functionality of chewing gum have indicated that chewing gum can be used as a delivery system for transportation of the desired bioactive compound to body/targeted site. However, during functional chewing gum development, formulation, production process, mastication process, and type/form of bioactive compounds should be considered to achieve the product with required functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CMG:

Chios mastic gum

EC:

Epicatechin

ECG:

Epicatechin gallate

EGC:

Epigallocatechin

EGCG:

Epigallocatechin gallate

FDA:

Food and Drug Administration

FM:

Fusion method

HPMC:

Hydroxypropyl methylcellulose

MCG:

Medicated chewing gum

MCGs:

Membrane coating granules

MS:

Mutans streptococci

NRT:

Nicotine replacement therapy

ODF:

Oral disintegrating film

PVAc:

Polyvinyl acetates

Qt:

Quercetin

TP:

Tea polyphenols

UGTs:

UDP-glucuronosyltransferases enzymes

References

  1. EPHAC (2010) Towards a healthier, more sustainable CAP (The European Agriculture and Public Health Consortiums position paper). http://eurohealthnet.eu/sites/eurohealthnet.eu/files/publications/EPHAC-Position

  2. Granato D, Nunes DS, Barba FJ (2017) An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statics in the development of functional foods: a proposal. Trends Food Sci Technol 62:13–22

    Article  CAS  Google Scholar 

  3. Mark-Herbert C (2004) Innovation of a new product category-functional foods. Technovation 24:713–719

    Article  Google Scholar 

  4. Menrad K (2003) Market and marketing of functional food in Europe. J Food Eng 56:181–188

    Article  Google Scholar 

  5. Simões LDS, Madalena DA, Pinheiro AC, Teixeira JA, Vicente AA, Ramos LÓ (2017) Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Adv Colloid Interf Sci 243:23–45

    Article  CAS  Google Scholar 

  6. Hooper L, Cassidy A (2006) A review of the health care potential of bioactive compounds. J Sci Food Agric 86:1805–1813

    Article  CAS  Google Scholar 

  7. Halliwell B (1995) How to characterize an antioxidant: an update. Biochem Soc Symp 61:73–101

    Article  CAS  Google Scholar 

  8. Santos MG, Carpinteiro DA, Thomazini M, Rocha-Selmi GA, da Cruz AG, Rodrigues CEC, Favaro-Trindade CS (2014) Coencapsulation of xylitol and menthol by double emulsion followed by complex coacervation and microcapsule application in chewin gum. Food Res Int 66:454–462

    Article  CAS  Google Scholar 

  9. Abbasi S, Rahimi S, Azizi MH (2009) Influence of microwave-microencapsulated citric acid on some sensory properties of chewing gum. J Microencapsul 26:90–96

    Article  CAS  Google Scholar 

  10. Yang X, Wang G, Zhangi X (2004) Release kinetics of catechins from chewing gum. J Pharm Sci 93:293–299

    Article  CAS  Google Scholar 

  11. Valduga E, Lazzari MR, Xardanega R, Di Luccio M (2012) Evaluation of sugar inversion in chewing gum added of sodium lactate. J Food Process Eng 35:37–53

    Article  CAS  Google Scholar 

  12. Potineni RV, Peterson DG (2008) Influence of flavor solvent on flavor release and perception in sugar-free chewing gum. J Agric Food Chem 56:3254–3259

    Article  CAS  Google Scholar 

  13. Fritz D (2008) Formulation and production of chewing gum and bubble gum. Kennedy’s Books Ltd, Essex

    Google Scholar 

  14. Konar N, Palabiyik I, Toker OS, Sagdic O (2016) Chewing gum: production, quality parameters and opportunities for delivering bioactive compounds. Trends Food Sci Technol 55:29–38

    Article  CAS  Google Scholar 

  15. Potineni RV, Peterson DG (2008) Mechanisms of flavor release in chewing gum: Cinnamaldehyde. J Agricultural Food Chem 56:3260–3267

    Article  CAS  Google Scholar 

  16. Cherukuri RS, Marschall-helman E, Hriscisce FT (1985) Non-adhesive chewing gum base composition. New York, Warner-Lambert Company

    Google Scholar 

  17. Pratik S, Asif K, Ramana MV, Mitul P, Mahesh K (2011) Chewing gum: a modern era of drug delivery. Int Res J Pharm 2:7–12

    Google Scholar 

  18. Gadhavi AG, Patel BN, Patel DM, Patel CN (2011) Medicated chewing gum a 21st century drug delivery system. Int J Pharm Sci Res 2:1961–1974

    CAS  Google Scholar 

  19. Ingole B, Daga AS, Joshi UM, Biyani KR (2012) Chewing gum: a mobile drug delivery system. Int J Pharm Sci Rev Res 14:106–114

    CAS  Google Scholar 

  20. Niederer B, Le A, Cantergiani E (2003) Thermodynamic study of two different chewing-gum bases by inverse gas chromatography. J Chromatogr A 996:189–194

    Article  CAS  Google Scholar 

  21. Aslani A, Ghannadi A, Raddanipour R (2015) Design, formulation and evaluation of aloe vera chewing gum. Adv Biomed Res 4:175

    Google Scholar 

  22. Sameja K, Raval V, Asodiya H, Patadiya D (2011) Chewing gum: a modern approach to oral mucosal drug delivery. Int J Pharm Res Dev 4:001–016

    Google Scholar 

  23. Rose K, Steinbüchel A (2005) Biodegradation of natural rubber and related compounds: recent insights into a hardly understood catabolic capability of microorganisms. App Environ Microbiol 71:2803–2812

    Article  CAS  Google Scholar 

  24. Farber TM, Clewell AE, Endres JR, Hauswirth J (2010) Safety assesment of a novel ingredient for removable chewing gum. Food Chem Toxico l48:831–838

    Article  CAS  Google Scholar 

  25. Cook RB (1996) Confections comprising a proteinaceous chewable base. US patent 5,482,722

    Google Scholar 

  26. Mcgowan BA, Padua GW, Lee S-Y (2005) Formulation of corn zein chewing gum and evaluation of sensory properties by the time-intensity method. J Food Sci 70:475–481

    Article  Google Scholar 

  27. Mehta FF, Triverdi P (2015) Formulation and characterization of Biodegredable medicated chewing gum delivery system for motion sickness using corn Zein as gum former. Trop J Pharm Res 14(5):753–760

    Article  CAS  Google Scholar 

  28. Mehta F, Rajagopalan R, Trivedi P (2013) Formulation and texture characterization of environment friendly chewing gum. Int J of Pharm Tech Res 5(1):222–232

    CAS  Google Scholar 

  29. Palabiyik I, Toker OS, Konar N, Öner B, Demirci AS (2017) Development of a natural chewing gum from plant based polymer. J Polym Environ. https://doi.org/10.1007/s10924-017-1094-2

  30. Nagasamy VD, Toprani PS, Mukherejee S, Tulasi K (2014) Medicated chewing gums – a review. Int. J Pharm Sci 4:581–586

    Google Scholar 

  31. Asija R, Patel S, Asija S (2012) Oral dosages forms: medicine containing chewing gum: a review. J Drug Deliv Ther 2:90–95

    Google Scholar 

  32. Smith AP, Woods M (2012) Effects of chewing gum on the stress and work of university students. Appetite 58:1037–1040

    Article  Google Scholar 

  33. Nabors LO (2001) Alternatives sweeteners. Marcel Dekker, New York

    Google Scholar 

  34. Lakkis JM (2016) Encapsulation and controlled release technologies in food systems. Wiley Blackwell, UK

    Google Scholar 

  35. Bahoshy BJ, Klose RE, Nordstrom HA (1976) Chewing gums of longer lasting sweetness and flavor. General Foods Corp US 3:943,258

    Google Scholar 

  36. Bunczek MT, Urensis P (1993) Aspartame stability in chewing gum using an acid gelatin system. US Patent 5,192,561

    Google Scholar 

  37. Sharma SC, Yang KY (1986) Chewing gum compositions containing novel sweetener delivery systems and method of preparation. US Patent 4,597,970

    Google Scholar 

  38. Haahr AM, Pilsgaard CF, Stahnke LH, Bredie WLP, Refsgaard HHF (2003) Effect of sweetener on release of flavor compounds from chewing gum. In: Le Quere JL, Etievant PX (eds) Flavor research at the Dawn of the twenty-first century, proceedings of the 10th Weurman flavor research symposium. Intercept LLC, Paris

    Google Scholar 

  39. Tanzer JM, Freedman ML, Fitzgerald RJ (1984) Virulence of mutants defective in glucosyltransferase, dextranmediated aggregation, or dextran activity. In: Magenhagen S, Rosan B (eds) Molecular basis of oral microbial adhesion. American Society for Microbiology, Washington

    Google Scholar 

  40. Edwardson S, Birkhed D, Majare B (1977) Acid production from lycasin, maltitol, sorbitol and xylitol by oral streptococci and lactobacilli. Acta Odontol Scand 35:257–263

    Article  Google Scholar 

  41. Thaweboon S, Thaweboon B, Soo-Ampon S (2004) The effect of xylitol chewing gum on mutans streptococci in saliva and dental plaque. Southeast Asian J Trop Med Public Health 35:1024–1027

    Google Scholar 

  42. Kleber CJ, Milleman JL, Putt MS, Nelson BJ, Proskin HM (1998) Clinical effects of baking soda chewing gum on plaque and gingivitis. J Dent Res 77:A290

    Google Scholar 

  43. Çaglar E, Kavaloglu SC, Kuscu OO, Sandalli N, Holgerson PL, Twetman S (2007) Effect of chewing gums containing xylitol or probiotic bacteria on salivary mutans streptococci and lactobacilli. Clin Oral Invest 11:425–429

    Article  Google Scholar 

  44. Aslani A, Rostami F (2015) Medicated chewing gum, a novel drug delivery system. J Res Med Sci 20:403–411

    Google Scholar 

  45. Surana AS (2010) Chewing gum: a friendly oral mucosal drug delivery system. Int J Pharm Sci Rev Res 4:68–71

    CAS  Google Scholar 

  46. Semwal R, Semwal DK, Badoni R (2010) Chewing gum: a novel approach for drug delivery. J Appl Res 10:115–123

    Google Scholar 

  47. Rassing MR (1994) Chewing gum as a drug delivery system. Adv Drug Deliv Rev 13:89–121

    Article  CAS  Google Scholar 

  48. Imfeld T (2006) Chlorhexidine-containing chewing gum. Schweiz Monatsschrz 116:476–483

    Google Scholar 

  49. Bijella MFTB, Brighenti FL, Bijella MFB, Buzalaf MAR (2005) Fluoride kinetics in saliva after the use of a fluoride containing chewing gum. Braz Oral Res 19:25–260

    Article  Google Scholar 

  50. Aslani L, Ghannadi A, Mortazavi S, Torabi M (2013) Design, formulation and evaluation of medicinal chewing gum by the extract of Salvadora Persica. Life Sci J 10:47–55

    Google Scholar 

  51. Kralikova E, Kozak JT, Rasmussen T, Gustavsson G, Houezec JL (2009) Smoking cessation or reduction with nicotine replacement therapy: a placebo-controlled double blind trial with nicotine gum and inhaler. BMC Public Health 9:433

    Article  CAS  Google Scholar 

  52. Aslani A, Rafiei S (2012) Design, formulation and evaluation of nicotine chewing gum. Adv Biomed Res 1:1–6

    Article  CAS  Google Scholar 

  53. Reineccius GA (1993) Controlled release techniques in food industry. In: Risch SJ, Reineccius GA (eds) Encapsulation and controlled release of food ingredients, ACS Symposium Series, vol 590. American Chemical Society, Washington DC

    Google Scholar 

  54. Greenblatt HC, Dombroski M, Klishevich W, Kirkpatrik J, Bajwa I, Garrison W, Redding BK (1993) Encapsulation and controlled release of flavors and fragrances. In: Karsa DR, Stephenson RA (eds) Encapsulation and controlled release. Royal Society of Chemistry (RSC), London

    Google Scholar 

  55. Lew CW (2000) Encapsulation additives. US Patent 6,056,992

    Google Scholar 

  56. Taylor AJ (2002) Release and transport of flavors in vivo: physicochemical, physiological, and perceptual considerations. Comp Rev Food Sci Food Safety 1:45–57

    Article  CAS  Google Scholar 

  57. Sostmann K, Potineni PV, McMillan E, Antenucci RN (2009) In: Hansel A, Dunkl J (eds) 4th international conference on proton transfer reaction mass spectrometry and its applications. Innsbruck, Innsbruck University Press

    Google Scholar 

  58. De Roos KB, Wolswinkel K (1994) Non-equilibrium partition model for predicting flavor release in the mouth, in trends in flavor research, proceedings of the 7th Weurman flavor research symposium, Noordwijkerhout, The Netherlands, 15-18 1993. In: Maarse H, van den Heij DJ (eds). Elsevier, Amsterdam

    Google Scholar 

  59. Harrison M (2000) Mathematical models of release and transport of flavors from foods in the mouth of the olfactory epithelium. In: Roberts DD, Taylor AJ (eds) Flavor Release. Oxford University Press, Washington, DC

    Google Scholar 

  60. Ferrazzano GF, Cantile T, Coda M, Alcidi B, Sangianantoni G, Ingenito A, Stasio MD, Volpe MG (2016) In vivo release kinetics and antibacterial activity of novel polyphenols-enriched chewing gums. Molecules 21:1–11

    Article  CAS  Google Scholar 

  61. Hansson A, Andersson J, Leufven A (2001) The effect of sugars and pectin on flavor release from a soft drink-related model system. Food Chem 72:363–368

    Article  CAS  Google Scholar 

  62. Roberts DD, Elmore JS, Langley KR, Bakker J (1996) Effects of sucrose, guar gum, and carboxy-methylcellulose on the release of volatile flavor compounds under dynamic conditions. J Agric Food Chem 44:1321–1326

    Article  CAS  Google Scholar 

  63. Baek I, Linforth RST, Blake A, Taylor AJ (1999) Sensory perception is related to the rate of change of volatile concentration in-nose during eating of model gels. Chem Senses 24:155–160

    Article  CAS  Google Scholar 

  64. Delarue J, Loescher E (2004) Dynamic of food preferences. A case study with chewing gums. Food Qual Prefer 15:771–779

    Article  Google Scholar 

  65. Chandran S, Ravi S, Vipin KV, Augusthy AR (2014) Formulation and evaluation of medicated chewing gums containing methyl prednisolone IP. Int J ChemTech Res 6:4810–4816

    Google Scholar 

  66. Ko S, Gunasekaran S (2014) Controlled release of food ingredients. In: Nano- and micro-encapsulation for foods. Wiley, Chichester, pp 325–343

    Chapter  Google Scholar 

  67. Peltzer MA, Salvay AG, Delgado JF, Wagner JR (2017) Use of edible films and coatings for functional food developments: a review. In: Functional foods: sources, health effects future perspectives. Nova Science Publishers, New York, pp 1–26

    Google Scholar 

  68. Charanioti C, Nikoloudaki A, Tzia C (2015) Saffron and beetroot extracts encapsulated in maltodextrin, gum arabic, modified starch and chitosan: incorporation in chewing gum system. Carbohyd Polym 127:252–263

    Article  CAS  Google Scholar 

  69. Arvanitoyannis IS, Varzaka TH (2008) Vegetable waste management: treatment methods and potential uses of treated waste. In: Arvanitoyannis IS (ed) Waste management for the food industries. Elsevier. Academic Press, London

    Google Scholar 

  70. Aguiar J, Estevinho BN, Santos L (2016) Microencapsulation of natural antioxidants for food application – the specific case of coffee antioxidants – a review. Trends Food Sci Technol 58:21–39

    Article  CAS  Google Scholar 

  71. Nakagawa K (2014) Nano- and microencapsulation of flavor in food systems. In: Kwak HS (ed) Nano- and microencapsulation for foods. Wiley, Oxford

    Google Scholar 

  72. Marquez AL, Perez MP, Wagner JR (2017) Double emulsions: potential applications for the elaboration of functional foods. In: Nelson DL (ed) Functional foods: sources, health effects and future perspectives. Nova Science Publishers, New York

    Google Scholar 

  73. Mohos F (2010) Confectionery and chocolate engineering: principles and applications. Willey, Oxford

    Book  Google Scholar 

  74. Minifie BW (1989) Chocolate, cocoa and confectionery: science and technology, 3rd edn. AVI Book, New York

    Book  Google Scholar 

  75. Rey A, Gonzalez R, Martinez-de-Juan JL, Bendito J, Mulet A (2007) EMG assessment of chewing gum behaviour for food evaluation: influence of personality characteristics. Food Qual Prefer 18:585–595

    Article  Google Scholar 

  76. Dawes C, Pedersen AML, Villa A, Ekström J, Proctor GB, Vissink A, Aframian D, McGowan R, Aliko A, Narayana N, Sia YW, Joski RK, Jensen SB, Kerr AR, Wolf A (2015) The functions of human saliva: a review sponsored by the world workshop on oral medicine VI. Arch Oral Bio 60:863–874

    Article  CAS  Google Scholar 

  77. Katschinski M (2000) Nutritional implications of cephalic phase gastrointestinal responses. Appetite 34:89–96

    Article  CAS  Google Scholar 

  78. Engelen L (2004) A rough guide to texture. Oral physiology and texture perception of semi solids. Dissertation, University of Utrecht

    Google Scholar 

  79. Ting Y, Jiang Y, Ho CT, Huang Q (2014) Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals. J Funct Foods 7:112–128

    Article  CAS  Google Scholar 

  80. Yang Y, Yin J, Shao B (2011) Simultaneous determination of five aluminum lake dyes in chewing gum by HPLC with photodiode array detection. Food Addit Contam 28:1159–1167

    Article  CAS  Google Scholar 

  81. Tedesco MP, Monaco-Lourenço CA, Carvalho RA (2017) Characterization of oral disintegrating film of peanut skin extract-potential route for buccal delivery of phenolic compounds. Int J Biol Macromol 97:418–425

    Article  CAS  Google Scholar 

  82. Watanabe S, Dawes C (1988) The effects of different foods and concentrations of citric acid on the flow rate of whole saliva in man. Arch Oral Biol 33:1–5

    Article  CAS  Google Scholar 

  83. Heintze U, Birkhed D, Björn H (1983) Secretion rate and buffer effect of resting and stimulated whole saliva as a function of age and sex. Swed Dent J 7:227–238

    CAS  Google Scholar 

  84. Richardson CT, Feldman M (1986) Salivary response to food in humans and its effect on gastric acid secretion. Am J Phys 250:G85–G91

    CAS  Google Scholar 

  85. Edgar M, Dawes C, O’Mullane D (2004) Saliva and oral health, 3rd edn. BDJ Books, London

    Google Scholar 

  86. Dawes C, Macpherson LMD (1992) Effects of nine different chewing gums and lozenges on salivary flow rate and pH. Caries Res 26:176–182

    Article  CAS  Google Scholar 

  87. De Almeida PDV, Gregio AMT, Machado MAN, De Lima ADS, Azevedo AAS, Azevedo LR (2008) Salvia composition and functions: a comprehensive review. J Comtemp. Dent Pract 9:72–80

    Google Scholar 

  88. Woolnough JW, Bird AR, Monro JA, Brennan CS (2010) The effect of a brief salivary a-amylase exposure during chewing on subsequent in vitro starch digestion curve profiles. Int J Mol Sci 11:2780–2790

    Article  CAS  Google Scholar 

  89. Neyraud E, Palicki O, Schwartz C, Nicklaus S, Feron G (2012) Variability of human saliva composition: possible relationships with fat perception and liking. Arch Oral Biol 57:556–566

    Article  CAS  Google Scholar 

  90. WL X, Lewis D, Broundloud JE, Morgenstern MP (2008) Mechanism, design and motion control of a linkage chewing device for food evaluation. Mech Mach Theory 43:376–389

    Article  Google Scholar 

  91. Lucas PW (2004) The structure of the mammalian mouth. In: Dental functional morphology: How teeth work. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  92. Lucas PW (2004) How the mouth operates. In: Dental functional morphology: How teeth work. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  93. Mongini F, Tempia-Valenti G, Benvegnu G (1986) Computer-based assessment of habitual mastication. J Prosthet Dent 55:638–649

    Article  CAS  Google Scholar 

  94. Blee N, Linforth R, Yang N, Brown K, Taylor A (2011) Variation in aroma release between panelists consuming different types of confectionary. Flavour Fragr J 26:186–191

    Article  CAS  Google Scholar 

  95. Lucas PW (2004) Tooth shape. In: Dental functional morphology: How teeth Work. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  96. Krause AJ (2010) Real-time release of volatile and non-volatile components from chewing gum using a mechanical chewing device. Dissertation, University of Minnesota

    Google Scholar 

  97. Anderson K, Throckmorton GS, Buschang BH, Hayasaki H (2002) The effects of bolus hardness on the masticatory kinematics. J Oral Rehabil 29:689–696

    Article  CAS  Google Scholar 

  98. Peyron MA, Lassauzay C, Woda A (2002) Effects of increased hardness on jaw movement and muscle activity during chewing of visco-elastic model foods. Exp Brain Res 142:41–51

    Article  CAS  Google Scholar 

  99. Foster K, Woda A, Peyron M-A (2006) Effect of texture of plastic and elastic model foods on the parameters of mastication. J Neurophysiol 95:3469–3479

    Article  CAS  Google Scholar 

  100. Wu B, Kulkarni K, Basu S, Zhang S, Hu M (2011) First-pass metabolism via UDP-glucuronosyltransferase: a barrier to oral bioavailability of phenolics. J Pharm Sci 100:3655–3681

    Article  CAS  Google Scholar 

  101. Mallery SR, Budendorf DE, Larsen MP, Pei P, Tong M, Holpuch AS, Larsen PE, Stoner GD, Fields HW, Chan KK, Ling Y, Liu Z (2011) Effects of human oral mucosal tissue, saliva, and oral microflora on intraoral metabolism and bioactivation of black raspberry anthocyanins. Cancer Prev Res 4:1209–1221

    Article  CAS  Google Scholar 

  102. Satheesh Madhav NV, Shakya AK, Shakya P, Singh K (2009) Orotransmucosal drug delivery systems: a review. J Control Release 140:2–11

    Article  CAS  Google Scholar 

  103. Mizrahi B, Domb AJ (2008) Mucoadhesive polymers for delivery of drugs to the oral cavity. Rec Pat Drug Deliv Formul 2:108–119

    Article  CAS  Google Scholar 

  104. Martins ICF, Raposo NRB, Mockdeci HR, Polonini HC, de Oliveira FA, Fabri GMC, das Graças AMCM (2017) Delivering resveratrol on the buccal mucosa using mucoadhesive tablets: a potential treatment strategy for inflammatory oral lesions. Curr Drug Deliv. https://doi.org/10.2174/1567201814666170726102558

  105. Wang ST, Chou CT, Su NW (2017) A food-grade self-nanoemulsifying delivery system for enhancing oral bioavailability of ellagic acid. J Funct Foods 34:207–215

    Article  CAS  Google Scholar 

  106. Pagare PK, Satpute CS, Jadhav VM, Kadam V (2012) Medicated chewing gum: a novel drug delivery system. J Appl Pharm Sci 2:40–54

    Google Scholar 

  107. Ginsburg I, Koren E, Shalish M, Kanner J, Kohen R (2012) Saliva increases the availability of lipophilic polyphenols as antioxidants and enhances their retention in the oral cavity. Archives Oral Biol 57:1327–1334

    Article  CAS  Google Scholar 

  108. Trivedi H, Xu T, Worrell C, Panaligan K (2005) US Patent 11/256,861

    Google Scholar 

  109. Jacobsen J, Bjerregaard S, Pedersen M (1999) Cyclodextrin inclusion complexes of antimycotics intended to act in the oral cavity–drug supersaturation, toxicity on TR146 cells and release from a delivery system. Eur J Pharm Biopharm 48:217–224

    Article  CAS  Google Scholar 

  110. Kamonpatana K, Failla ML, Kumar PS, Giusti MM (2014) Anthocyanin structure determines susceptibility to microbial degradation and bioavailability to the buccal mucosa. J Agri Food Chem 62:6903–6910

    Article  CAS  Google Scholar 

  111. Smith AJ, Moran J, Dangler LV, Leight RS, Addy M (1996) The efficacy of an antigingivitis chewing gum. J Clin Periodontol 23:19–21

    Article  CAS  Google Scholar 

  112. Blumenthal G (2005) US Patent 11/166,543

    Google Scholar 

  113. Ooshima T, Minami T, Aono W, Tamura Y, Hamada S (1994) Reduction of dental plaque deposition in humans by oolong tea extract. Caries Res 28:146–149

    Article  CAS  Google Scholar 

  114. Edgar KJ, Buchanan CM, Debenham JS (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688

    Article  CAS  Google Scholar 

  115. Greenberg M, Urnezis P, Tian M (2007) Compressed mints and chewing gum containing magnolia bark extract are effective against bacteria responsible for oral malodour. J Agric Food Chem 55:9465–9469

    Article  CAS  Google Scholar 

  116. Gelski J (2006) Tea’s weight loss potential cited as additional benefits. Food business News 28:38–40

    Google Scholar 

  117. Lee MJ, Lambert JD, Prabhu S, Meng X, Lu H, Maliakal P, Ho CT, Yang CS (2004) Delivery of tea polyphenols to the oral cavity by green tea leaves and black tea extract. Cancer Epidemiol Biomark Prev 13:132–137

    Article  CAS  Google Scholar 

  118. Blair DW (2010) Use of starch inclusion complexes for improved delivery of dietary polyphenols to the oral cavity by chewing gum. Dissertation, the Pennsylvania State University

    Google Scholar 

  119. Aslani A, Ghannadi A, Rostami F (2016) Design, formulation and evaluation of ginger medicated chewing gum. Adv Biomed Res 5:130

    Article  Google Scholar 

  120. Kehayoglou A, Doxastakis G, Kiosseoglou V (1994) Compressional properties of Chios mastic. In: Charalambous G (ed) Food flavors, ingredients and composition, proceedings of the 7th international flavor conference Samos, Greece, 1993. Elsevier, Amsterdam

    Google Scholar 

  121. Paraskevopoulou A, Kiosseoglou V (2016) Chios mastic gum and its food applications. In: Kristbergsson K, Otles S (eds) Functional properties of traditional foods. Springer, New York

    Google Scholar 

  122. Gluskin AE, Qazi MW (2006) US Patent 11/887,284

    Google Scholar 

  123. Mostafavi SA, Varshosaz J, Arabian S (2014) Formulation development and evaluation of metformin chewing gum with bitter taste masking. Adv Biomed Res 3:92

    Article  CAS  Google Scholar 

  124. Porsgaard TK (2005) US Patent 12/159,524. https://www.google.com/patents/US20080299250

  125. Liping L, Xihui Z (2009) Chinese Patent CN 200810114357. http://www.google.com/patents/CN101595935A?cl=en

  126. Si H (2016) Chinese Patent CN 201610642022. https://www.google.com/patents/CN106260468A?cl=en&hl=tr

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Palabiyik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Palabiyik, I., Pirouzian, H.R., Konar, N., Toker, O.S. (2018). A Novel Delivering Agent for Bioactive Compounds: Chewing Gum. In: Mérillon, JM., Ramawat, K. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54528-8_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54528-8_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54528-8

  • Online ISBN: 978-3-319-54528-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics