Inulin-Type Fructans Application in Gluten-Free Products: Functionality and Health Benefits

  • Natalia DrabińskaEmail author
  • Cristina M. Rosell
  • Urszula Krupa-Kozak
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


The increasing demand on a high-quality gluten-free (GF) products and an increasing prevalence of GF consumers favors the development of research aimed to improve the overall quality of GF products. To obtain a functional GF product providing the additional health benefits, the fortification of GF food is applied. Recently, inulin-type fructans (ITFs) were proposed as multi-task ingredients of GF products, improving their nutritional and health-related properties. In this chapter, the most recent studies on GF products in which ITFs were applied as valuable ingredients affecting the rheological and technological parameters of GF products are presented. The literature data with the successful applications of ITFs in the GF products and with their health beneficial properties, as presented in this chapter, points to a great potential of ITFs in the GF technology. The promising evidences of beneficial impact of ITFs on characteristic of GF goods may contribute to further development and intensified research on new GF products of superior quality that will be dedicated to people suffering from gluten-related disorders.


Inulin-type fructans Inulin Fructooligosaccharides Gluten-free diet Gluten-free products Prebiotic 

List of Abbreviations




Autistic spectrum disorders


Amylase and trypsin inhibitor


Body mass index


Celiac disease


Anti-deaminated gliadin


Degree of polymerization




Fermentable oligo-, di-, and mono-saccharides and polyols






Gluten-free diet


Human leucocyte antigen


Irritable bowel disease


Irritable bowel syndrome


Immunoglobulin G


The International Scientific Association of Probitics and Prebiotics


Inulin-type fructans




Messenger RNA


Molecular weight


Non-celiac gluten sensitivity


Quantitative descriptive analysis


Recommended daily allowances


Short-chain fatty acids


Toll-like receptor


Anti-tissue transglutaminase


Wheat allergy


Wheat-dependent, exercise-induced anaphylaxis


  1. 1.
    Siró I, Kápolna E, Kápolna B, Lugasi A (2008) Functional food. Product development, marketing and consumer acceptance – a review. Appetite 51(3):456–467CrossRefGoogle Scholar
  2. 2.
    Martorell R, Ascencio M, Tascan L, Alfaro T, Young MF, Addo OY, Dary O, Flores-Ayala R (2015) Effectiveness evaluation of the food fortification program of Costa Rica: impact on anemia prevalence and hemoglobin concentration in women and children. Am J Clin Nutr 101:201–217CrossRefGoogle Scholar
  3. 3.
    Sicherer SH, Sampson HA (2014) Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol Pract 133:291–307CrossRefGoogle Scholar
  4. 4.
    Saturni L, Ferretti G, Bacchetti T (2010) The gluten-free diet: safety and nutritional quality. Forum Nutr 2:16–34Google Scholar
  5. 5.
    Ilus T, Kaukinen K, Virta LJ, Pukkala E, Collin P (2014) Incidence of malignancies in diagnosed celiac patients: a population-based estimate. Am J Gastroenterol 109(9):1471–1477CrossRefGoogle Scholar
  6. 6.
    Matos ME, Rosell CM (2011) Chemical composition and starch digestibility of different gluten free breads. Plant Foods Hum Nutr 66:224–230CrossRefGoogle Scholar
  7. 7.
    Gallagher E, Gormley TR, Arendt EK (2004) Recent advances in the formulation of gluten-free cereal-based products. Trends Food Sci Technol 15:143–152CrossRefGoogle Scholar
  8. 8.
    Giménez-Bastida JA, Piskuła MK, Zieliński H (2015) Recent advances in development of gluten-free buckwheat products. Trends Food Sci Technol 44:58–65CrossRefGoogle Scholar
  9. 9.
    Drabińska N, Zieliński H, Krupa-Kozak U (2016) Technological benefits of inulin-type fructans application in gluten-free products – a review. Trends Food Sci Technol 56:149–157CrossRefGoogle Scholar
  10. 10.
    Van Laere A, Van Den Ende W (2002) Inulin metabolism in dicots: chicory as a model system. Plant Cell Environ 25:803–813CrossRefGoogle Scholar
  11. 11.
    Shoaib M, Shehzad A, Omar M, Rakha A, Raza H, Sharif HR, Shakeel A, Ansari A, Niazi S (2016) Inulin: properties, health benefits and food applications. Carbohydr Polym 147:444–454CrossRefGoogle Scholar
  12. 12.
    Kelly G (2008) Inulin-type prebiotics: a review: part 1. Altern Med Rev 13(4):315–329Google Scholar
  13. 13.
    Bosscher D (2009) Fructan prebiotics derived from inulin. In: Charalampopoulos D, Rastall A (eds) Prebiotics and probiotics science and technology. Springer, New YorkGoogle Scholar
  14. 14.
    Barclay T, Ginic-Markovic M, Cooper P, Petrovsky N (2010) Inulin – a versatile polysaccharide with multiple pharmaceutical and food chemical uses. J Excipients Food Chem 1(3):27–50Google Scholar
  15. 15.
    Ronkart SN, Blecker CS, Fourmanoir H, Fougnies C, Deroanne C, Van Herck JC, Paquot M (2007) Isolation and identification of inulooligosaccharides resulting from inulin hydrolysis. Anal Chim Acta 604(1):81–87CrossRefGoogle Scholar
  16. 16.
    Ozimek LK, Kralj S, Van der Maarel MJ, Dijkhuizen L (2006) The levansucrase and inulosucrase enzymes of lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions. Microbiology 152:1187–1196CrossRefGoogle Scholar
  17. 17.
    Mensink MA, Frijlink HW, Maarschalk KV, Hinrichs WLJ (2015) Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics. Carbohydr Polym 130:405–419CrossRefGoogle Scholar
  18. 18.
    Apolinario AC, Damasceno BPGD, Beltrao NED, Pessoa A, Converti A, da Silva JA (2014) Inulin-type fructans: a review on different aspects of biochemical and pharmaceutical technology. Carbohydr Polym 101:368–378CrossRefGoogle Scholar
  19. 19.
    Livingston DP, Hincha DK, Heyer AG (2009) Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci 66(13):2007–2023CrossRefGoogle Scholar
  20. 20.
    Tarrega A, Rocafull A, Costell E (2010) Effect of blends of short and long-chain inulin on the rheological and sensory properties of prebiotic low-fat custards. LWT-Food Sci Technol 43(3):556–562CrossRefGoogle Scholar
  21. 21.
    Lopez-Molina D, Navarro-Martinez MD, Melgarejo FR, Hiner ANP, Chazarra S, Rodriguez-Lopez JN (2005) Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara Scolymus L.) Phytochemistry 66(12):1476–1484CrossRefGoogle Scholar
  22. 22.
    Garcia ML, Caceres E, Selgas MD (2006) Effect of inulin on the textural and sensory properties of mortadella, a Spanish cooked meat product. Int J Food Sci Technol 41(10):1207–1215CrossRefGoogle Scholar
  23. 23.
    Capriles VD, Soares RAM, Silva MEMPE, Areas JAG (2009) Effect of fructans-based fat replacer on chemical composition, starch digestibility and sensory acceptability of corn snacks. Int J Food Sci Technol 44(10):1895–1901CrossRefGoogle Scholar
  24. 24.
    Zahn S, Pepke F, Rohm H (2010) Effect of inulin as a fat replacer on texture and sensory properties of muffins. Int J Food Sci Technol 45(12):2531–2537CrossRefGoogle Scholar
  25. 25.
    Beriain MJ, Gomez I, Petri E, Insausti K, Sarries MV (2011) The effects of olive oil emulsified alginate on the physico-chemical, sensory, microbial, and fatty acid profiles of low-salt, inulin-enriched sausages. Meat Sci 88(1):189–197CrossRefGoogle Scholar
  26. 26.
    Hinrichs WLJ, Prinsen MG, Frijlink HW (2001) Inulin glasses for the stabilization of therapeutic proteins. Int J Pharm 215(1–2):163–174CrossRefGoogle Scholar
  27. 27.
    Imran S, Gillis RB, Kok MS, Harding SE, Adams GG (2012) Application and use of inulin as a tool for therapeutic drug delivery. Biotechnol Genet Eng Rev 28:33–45CrossRefGoogle Scholar
  28. 28.
    Roberfroid MB (2007) Inulin-type fructans: functional food ingredients. J Nutr 137(11):2493–2502Google Scholar
  29. 29.
    Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412Google Scholar
  30. 30.
    Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G (2017) Expert consensus document: the international scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14(8):491–502Google Scholar
  31. 31.
    Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Forum Nutr 5:1417–1435Google Scholar
  32. 32.
    Madrigal L, Sangronis E (2007) Inulin and derivates as key ingredients in functional foods. Arch Latinoam Nutr 57(4):387–396Google Scholar
  33. 33.
    Langlands SJ, Hopkins MJ, Coleman N, Cummings JH (2004) Prebiotic carbohydrates modify the mucosa associated microflora of the human large bowel. Gut 53(11):1610–1616CrossRefGoogle Scholar
  34. 34.
    Krupa-Kozak U, Markiewicz L, Lamparski G, Juśkiewicz J (2017) Administration of inulin-supplemented gluten-free diet modified calcium absorption and caecal microbiota in rats in a calcium-dependent manner. Forum Nutr 9(7):702Google Scholar
  35. 35.
    Zhu L, Qin S, Zhai S, Gao Y, Li L (2017) Inulin with different degrees of polymerization modulates composition of intestinal microbiota in mice. FEMS Microbiol Lett 364(10):fnx075Google Scholar
  36. 36.
    Gibson GR, Beatty ER, Wang X, Cummings JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108(4):975–982CrossRefGoogle Scholar
  37. 37.
    Buddington RK, Williams CH, Chen SC, Witherly SA (1996) Dietary supplement of neosugar alters the fecal flora and decreases activities of some reductive enzymes in human subjects. Am J Clin Nutr 63:709–716Google Scholar
  38. 38.
    Rao VA (2001) The prebiotic properties of oligofructose at low intake levels. Nutr Res 21:843–848CrossRefGoogle Scholar
  39. 39.
    Tuohy KM, Finlay RK, Wynne AG, Gibson GR (2001) A human volunteer study on the prebiotic effects of HP-inulin – faecal bacteria enumerated using fluorescent in situ hybridization (FISH). Anaerobe 7:113–118CrossRefGoogle Scholar
  40. 40.
    Salazar N, Dewulf EM, Neyrinck AM, Bindels LB, Cani PD, Mahillon J, de Vos WM, Thissen JP, Gueimonde M, de Los Reyes-Gavilán CG, Delzenne NM (2015) Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin Nutr 34(3):501–507CrossRefGoogle Scholar
  41. 41.
    Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, Hardt PD (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18(1):190–195CrossRefGoogle Scholar
  42. 42.
    Bouhnik Y, Raskine L, Champion K, Andrieux C, Penven S, Jacobs H, Simoneau G (2007) Prolonged administration of low-dose inulin stimulates the growth of bifidobacteria in humans. Nutr Res 27:187–193CrossRefGoogle Scholar
  43. 43.
    Kleessen B, Schwarz S, Boehm A, Fuhrmann H, Richter A, Henle T, Krueger M (2007) Jerusalem artichoke and chicory inulin in bakery products affect faecal microbiota of healthy volunteers. Br J Nutr 98:540–549CrossRefGoogle Scholar
  44. 44.
    Institute of Medicine, Food and Nutrition Board (2002) Dietary reference intakes: energy, carbohydrates, fiber, fat, fatty acids, cholesterol, protein and amino acids. National Academies Press, Washington, DCGoogle Scholar
  45. 45.
    Turner ND, Lupton JR (2011) Dietary fiber. Adv Nutr 2(2):151–152CrossRefGoogle Scholar
  46. 46.
    Anderson JW, Baird P, Davis RH, Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205CrossRefGoogle Scholar
  47. 47.
    Romo C, Mize K, Warfel K (2008) Addition of hi-maize, natural dietary fiber, to a commercial cake mix. J Am Diet Assoc 108:76–77CrossRefGoogle Scholar
  48. 48.
    Roberfroid M, Slavin J (2000) Nondigestible oligosaccharides. Crit Rev Food Sci Nutr 40(6):461–480CrossRefGoogle Scholar
  49. 49.
    Cherbut C (2002) Inulin and oligofructose in the dietary fibre concept. Br J Nutr 87(Suppl 2):S159–S162CrossRefGoogle Scholar
  50. 50.
    Kleessen B, Hartmann L, Blaut M (2003) Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats. Br J Nutr 89(5):597–606CrossRefGoogle Scholar
  51. 51.
    Strugala V, Allen A, Dettmar PW, Pearson JP (2003) Colonic mucin: methods of measuring mucus thickness. Proc Nutr Soc 62(1):237–243CrossRefGoogle Scholar
  52. 52.
    Liu TW, Cephas KD, Holscher HD, Kerr KR, Mangian HF, Tappenden KA, Swanson KS (2016) Nondigestible fructans alter gastrointestinal barrier function, gene expression, histomorphology, and the microbiota profiles of diet-induced obese C57BL/6J mice. J Nutr 146(5):949–956CrossRefGoogle Scholar
  53. 53.
    Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, Van der Meer R (2003) Dietary fructo-oligosaccharides dose-dependently increase translocation of salmonella in rats. J Nutr 133:2313–2318Google Scholar
  54. 54.
    Bovee-Oudenhoven IM, ten Bruggencate SJ, Lettink-Wissink ML, van der Meer R (2003) Dietary fructo-oligosaccharides and lactulose inhibit intestinal colonisation but stimulate translocation of salmonella in rats. Gut 52:1572–1578CrossRefGoogle Scholar
  55. 55.
    Barrat E, Michel C, Poupeau G, David-Sochard A, Rival M, Pagniez A, Champ M, Darmaun D (2008) Supplementation with galactooligosaccharides and inulin increases bacterial translocation in artificially reared newborn rats. Pediatr Res 64(1):34–39CrossRefGoogle Scholar
  56. 56.
    Jain PK, McNaught CE, Anderson AD, MacFie J, Mitchell CJ (2004) Influence of synbiotic containing Lactobacillus acidophilus La5, Bifidobacterium lactis Bb 12, Streptococcus thermophilus, Lactobacillus bulgaricus and oligofructose on gut barrier function and sepsis in critically ill patients: a randomised controlled trial. Clin Nutr 23:467–475CrossRefGoogle Scholar
  57. 57.
    Olguin F, Araya M, Hirsch S, Brunser O, Ayala V, Rivera R, Gotteland M (2005) Prebiotic ingestion does not improve gastrointestinal barrier function in burn patients. Burns 31:482–488CrossRefGoogle Scholar
  58. 58.
    Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, Katan MB, van der Meer R (2006) Dietary fructooligosaccharides affect intestinal barrier function in healthy men. J Nutr 136:70–74Google Scholar
  59. 59.
    Russo F, Linsalata M, Clemente C, Chiloiro M, Orlando A, Marconi E, Chimienti G, Riezzo G (2012) Inulin-enriched pasta improves intestinal permeability and modifies the circulating levels of zonulin and glucagon-like peptide 2 in healthy young volunteers. Nutr Res 32(12):940–946CrossRefGoogle Scholar
  60. 60.
    Duggan C, Penny ME, Hibberd P, Gil A, Huapaya A, Cooper A, Coletta F, Emenhiser C, Kleinman RE (2003) Oligofructose-supplemented infant cereal: 2 randomized, blinded, community-based trials in Peruvian infants. Am J Clin Nutr 77:937–942Google Scholar
  61. 61.
    Kleessen B, Sykura B, Zunft HJ, Blaut M (1997) Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. Am J Clin Nutr 65:1397–1402Google Scholar
  62. 62.
    Moore N, Chao C, Yang L, Storm H, Oliva-Hemker M, Saavedra JM (2003) Effects of fructo-oligosaccharide-supplemented infant cereal: a double-blind, randomized trial. Br J Nutr 90:581–587CrossRefGoogle Scholar
  63. 63.
    Cani PD, Joly E, Horsmans Y, Delzenne NM (2006) Oligofructose promotes satiety in healthy human: a pilot study. Eur J Clin Nutr 60(5):567–572CrossRefGoogle Scholar
  64. 64.
    Genta S, Cabrera W, Habib N, Pons J, Carillo IM, Grau A, Sánchez S (2009) Yacon syrup: beneficial effects on obesity and insulin resistance in humans. Clin Nutr 28(2):182–187CrossRefGoogle Scholar
  65. 65.
    Parnell JA, Reimer RA (2009) Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 89(6):1751–1759CrossRefGoogle Scholar
  66. 66.
    Verhoef SP, Meyer D, Westerterp KR (2011) Effects of oligofructose on appetite profile, glucagon-like peptide 1 and peptide YY3-36 concentrations and energy intake. Br J Nutr 106(11):1757–1762CrossRefGoogle Scholar
  67. 67.
    Hume MP, Nicolucci AC, Reimer RA (2017) Prebiotic supplementation improves appetite control in children with overweight and obesity: a randomized controlled trial. Am J Clin Nutr 105(4):790–799. CrossRefGoogle Scholar
  68. 68.
    Archer BJ, Johnson SK, Devereux HM, Baxter AL (2004) Effect of fat replacement by inulin or lupin-kernel fibre on sausage patty acceptability, post-meal perceptions of satiety and food intake in men. Br J Nutr 91(4):591–599CrossRefGoogle Scholar
  69. 69.
    Hess JR, Birkett AM, Thomas W, Slavin JL (2011) Effects of short-chain fructooligosaccharides on satiety responses in healthy men and women. Appetite 56(1):128–134CrossRefGoogle Scholar
  70. 70.
    Karalus M, Clark M, Greaves KA, Thomas W, Vickers Z, Kuyama M, Slavin J (2012) Fermentable fibers do not affect satiety or food intake by women who do not practice restrained eating. J Acad Nutr Diet 112(9):1356–1362CrossRefGoogle Scholar
  71. 71.
    Mozaffarian D, Ludwig DS (2015) Dietary cholesterol and blood cholesterol concentrations-reply. JAMA 314(19):2084–2085CrossRefGoogle Scholar
  72. 72.
    Letexier D, Diraison F, Beylot M (2003) Addition of inulin to a moderately high-carbohydrate diet reduces hepatic lipogenesis and plasma triacylglycerol concentrations in humans. Am J Clin Nutr 77:559–564Google Scholar
  73. 73.
    Balcazar-Munoz BR, Martinez-Abundis E, Gonzalez-Ortiz M (2003) Effect of oral inulin administration on lipid profile and insulin sensitivity in subjects with obesity and dyslipidemia. Rev Med Chil 131:597–604CrossRefGoogle Scholar
  74. 74.
    Russo F, Chimienti G, Riezzo G, Pepe G, Petrosillo G, Chiloiro M, Marconi E (2008) Inulin-enriched pasta affects lipid profile and Lp(a) concentrations in Italian young healthy male volunteers. Eur J Nutr 47(8):453–459CrossRefGoogle Scholar
  75. 75.
    Yamashita K, Kawai K, Itakura M (1984) Effects of fructooligosaccharides on blood glucose and serum lipids in diabetic subjects. Nutr Res 4:961–966CrossRefGoogle Scholar
  76. 76.
    Luo J, Rizkalla SW, Alamowitch C, Boussairi A, Blayo A, Barry JL, Laffitte A, Guyon F, Bornet FR, Slama G (1996) Chronic consumption of short-chain fructooligosaccharides by healthy subjects decreased basal hepatic glucose production but had no effect on insulin-stimulated glucose metabolism. Am J Clin Nutr 63:939–945Google Scholar
  77. 77.
    Pedersen A, Sandstrom B, van Amelsvoort JM (1997) The effect of ingestion of inulin on blood lipids and gastrointestinal symptoms in healthy females. Br J Nutr 78:215–222CrossRefGoogle Scholar
  78. 78.
    van Dokkum W, Wezendonk B, Srikumar TS, van den Heuvel EG (1999) Effect of nondigestible oligosaccharides on large-bowel functions, blood lipid concentrations and glucose absorption in young healthy male subjects. Eur J Clin Nutr 53:1–7CrossRefGoogle Scholar
  79. 79.
    Liu F, Prabhakar M, Ju J, Long H, Zhou HW (2017) Effect of inulin-type fructans on blood lipid profile and glucose level: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 71(1):9–20CrossRefGoogle Scholar
  80. 80.
    Krupa-Kozak U, Świątecka D, Bączek N, Brzóska MM (2016) Inulin and fructooligosaccharide affect in vitro calcium uptake and absorption from calcium-enriched gluten-free bread. Food Funct 7:1950–1958CrossRefGoogle Scholar
  81. 81.
    Coudray C, Tressol JC, Gueux E, Rayssiguier Y (2003) Effects of inulin-type fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats. Eur J Nutr 42:91–98CrossRefGoogle Scholar
  82. 82.
    Griffin IJ, Davila PM, Abrams SA (2002) Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr 87(Suppl 2):S187–S191CrossRefGoogle Scholar
  83. 83.
    Griffin IJ, Hicks PMD, Heaney RP, Abrams SA (2003) Enriched chicory inulin increases calcium absorption mainly in girls with lower calcium absorption. Nutr Res 23:901–909CrossRefGoogle Scholar
  84. 84.
    Yasuda K, Roneker KR, Miller DD, Welch RM, Lei XG (2006) Supplemental dietary inulin affects the bioavailability of iron in corn and soybean meal to young pigs. J Nutr 136(12):3033–3038Google Scholar
  85. 85.
    Yap KW, Mohamed S, Yazid AM, Maznah I, Meyer DM (2005) Dose response effects of inulin on fecal short-chain fatty acids content and mineral absorption of formula fed infants. Nutr Food Sci 35:208–219CrossRefGoogle Scholar
  86. 86.
    van den Heuvel EG, Muys T, van Dokkum W, Schaafsma G (1999) Oligofructose stimulates calcium absorption in adolescents. Am J Clin Nutr 69:544–548Google Scholar
  87. 87.
    Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, Ellis KJ (2005) A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr 82:471–476Google Scholar
  88. 88.
    Legette LL, Lee WH, Martin BR, Story JA, Campbell JK, Weaver CM (2012) Prebiotics enhance magnesium absorption and inulin-based fibres exert chronic effects on calcium utilization in a postmenopausal rodent model. J Food Sci 77(4):H88–H94CrossRefGoogle Scholar
  89. 89.
    Holloway L, Moynihan S, Abrams SA, Kent K, Hsu AR, Friedlander AL (2007) Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br J Nutr 97:365–372CrossRefGoogle Scholar
  90. 90.
    Wieser H (2007) Chemistry of gluten proteins. Food Microbiol 24(2):115–119CrossRefGoogle Scholar
  91. 91.
    Kucek LK, Veenstra LD, Amnuaycheewa P, Sorrells ME (2015) A grounded guide to gluten: how modern genotypes and processing impact wheat sensitivity. Compr Rev Food Sci Food Saf 14:285–302CrossRefGoogle Scholar
  92. 92.
    Elli L, Villalta D, Roncoroni L, Barisani D, Ferrero S, Pellegrini N, Bardella MT, Valiante F, Tomba C, Carroccio A, Bellini M, Soncini M, Cannizzaro R, Leandro G (2017) Nomenclature and diagnosis of gluten-related disorders: a position statement by the Italian Association of Hospital Gastroenterologists and Endoscopists (AIGO). Dig Liver Dis 49(2):138–146CrossRefGoogle Scholar
  93. 93.
    Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Raia V, Auricchio S, Picard J, Osman M, Quaratino S, Londei M (2003) Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet 362:30–37CrossRefGoogle Scholar
  94. 94.
    Wieser H, Bushuk W, MacRitchie F (2006) The polymeric glutenins. In: Wrigley C, Bekes F, Bushuk W (eds) Gliadin and glutenin: the unique balance of wheat quality. American Association of Cereal Chemistry, St. PaulGoogle Scholar
  95. 95.
    Jansens KJA, Lagrain B, Rombouts I, Brijs K, Smet M, Delcour JA (2011) Effect of temperature, time and wheat gluten moisture content on wheat gluten network formation during thermomolding. J Cereal Sci 54(3):434–441CrossRefGoogle Scholar
  96. 96.
    Malalagoda M, Simsek S (2017) Celiac disease and cereal proteins. Food Hydrocoll 68:108–113CrossRefGoogle Scholar
  97. 97.
    Arranz E, Fernandez-Bañares F, Rosell CM, Rodrigo L, Peña AS (2015) Advances in the understanding of gluten related pathology and the evolution of gluten-free foods. OmniaScience, Barcelona.
  98. 98.
    Ludvigsson JF, Card TR, Kaukinen K, Bai J, Zingone F, Sanders DS, Murray JA (2015) Screening for celiac disease in the general population and in high-risk groups. United European Gastroenterol J 3(2):106–120CrossRefGoogle Scholar
  99. 99.
    Fasano A, Berti I, Gerarduzzi T, Not T, Colletti RB, Drago S, Elitsur Y, Green PH, Guandalini S, Hill ID, Pietzak M, Ventura A, Thorpe M, Kryszak D, Fornaroli F, Wasserman SS, Murray JA, Horvath K (2003) Prevalence of coeliac disease in at-risk and not-at-risk groups in the United States: a large multicenter study. Arch Intern Med 163:286–292CrossRefGoogle Scholar
  100. 100.
    Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PHR, Hadjivassiliou M, Kaukinen K, Rostami K, Sanders DS, Schumann M, Ullrich R, Villalta D, Volta U, Catassi C, Fasano A (2012) Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med 10:13CrossRefGoogle Scholar
  101. 101.
    Megiorni F, Mora B, Bonamico M, Barbato M, Montuori M, Viola F, Trabace S, Mazzilli MC (2008) HLA-DQ and susceptibility to celiac disease: evidence for gender differences and parent-of-origin effects. Am J Gastroenterol 103(4):997–1003CrossRefGoogle Scholar
  102. 102.
    Grzymisławski M, Stankowiak-Kulpa H, Włochal M (2010) Celiakia – standardy diagnostyczne i terapeutyczne 2010 roku. Forum Zaburzeń Metabolicznych 1(1):12–21Google Scholar
  103. 103.
    Troncone R, Ivarsson A, Szajewska H, Mearin ML (2008) Review article: future research on coeliac disease – a position report from the European multistakeholder platform on coeliac disease (CDEUSSA). Aliment Pharmacol Ther 27(11):1030–1043CrossRefGoogle Scholar
  104. 104.
    Johnson TC, Diamond B, Memeo L, Negulescu H, Hovhanissyan Z, Verkarre V, Rotterdam H, Fasano A, Caillat-Zucman S, Grosdidier E, Winchester R, Cellier C, Jabri B, Green PH (2004) Relationship of HLA-DQ8 and severity of celiac disease: comparison of New York and Parisian cohorts. Clin Gastroenterol Hepatol 2:888–894CrossRefGoogle Scholar
  105. 105.
    Akobeng AK, Ramanan AV, Buchan I, Heller RF (2006) Effect of breast feeding on risk of coeliac disease: a systematic review and meta-analysis of observational studies. Arch Dis Child 91:39–43CrossRefGoogle Scholar
  106. 106.
    Plot L, Amital H (2009) Infectious associations of coeliac disease. Autoimmun Rev 8:316–319CrossRefGoogle Scholar
  107. 107.
    Cammarota G, Cuoco L, Cianci R, Pandolfi F, Gasbarrini G (2000) Onset of coeliac disease during treatment with interferon for chronic hepatitis C. Lancet 356:1494–1545CrossRefGoogle Scholar
  108. 108.
    Vazquez H, Smecuol E, Flores D, Mazure R, Pedreira S, Niveloni S, Mauriño E, Bai JC (2001) Relation between cigarette smoking and coeliac disease: evidence from a case-control study. Am J Gastroenterol 96:798–802CrossRefGoogle Scholar
  109. 109.
    Mention JJ, Ben Ahmed M, Bègue B, Barbe U, Verkarre V, Asnafi V, Colombel JF, Cugnenc PH, Ruemmele FM, McIntyre E, Brousse N, Cellier C, Cerf-Bensussan N (2003) Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology 125(3):730–745CrossRefGoogle Scholar
  110. 110.
    Di Sabatino A, Corraza GR (2009) Coeliac disease. Lancet 373:1480–1493CrossRefGoogle Scholar
  111. 111.
    Bai JC, Fried M, Corazza GR, Schuppan D, Farthing M, Catassi C, Greco L, Cohen H, Ciacci C, Fasano A, González A, Krabshuis JH, LeMair A (2013) World Gastroenterology Organisation global guidelines on celiac disease. J Clin Gastroenterol 47:121–126CrossRefGoogle Scholar
  112. 112.
    Rajalahti T, Repo M, Kivelä L, Huhtala H, Mäki M, Kaukinen K, Lindfors K, Kurppa K (2017) Anemia in pediatric celiac disease: association with clinical and histological features and response to gluten-free diet. J Pediatr Gastroenterol Nutr 64(1):e1–e6CrossRefGoogle Scholar
  113. 113.
    Smith D, Gerdes L (2012) Meta-analysis on anxiety and depression in adult celiac disease. Acta Psychiatr Scand 125:183–193CrossRefGoogle Scholar
  114. 114.
    Krupa-Kozak U (2014) Pathologic bone alterations in celiac disease: etiology, epidemiology, and treatment. Nutrition 30:16–24CrossRefGoogle Scholar
  115. 115.
    Iwańczak F, Iwańczak B (2012) Nowe wytyczne dotyczące diagnostyki i leczenia choroby trzewnej u dzieci i młodzieży. Prz Gastroenterol 7(4):85–191Google Scholar
  116. 116.
    Zuidmeer L, Goldhahn K, Rona RJ, Gislason D, Madsen C, Summers C, Sodergren E, Dahlstrom J, Lindner T, Sigurdardottir ST, McBride D, Keil T (2008) The prevalence of plant food allergies: a systematic review. J Allergy Clin Immunol 121(5):1210–1218CrossRefGoogle Scholar
  117. 117.
    Matricardi PM, Bockelbrink A, Beyer K, Keil T, Niggemann B, Grüber C, Wahn U, Lau S (2008) Primary versus secondary immunoglobulin E sensitization to soy and wheat in the multi-centre allergy study cohort. Clin Exp Allergy 38:493–500CrossRefGoogle Scholar
  118. 118.
    Hischenhuber C, Crevel R, Jarry B, M̈aki M, Moneret-Vautrin DA, Romano A, Troncone R, Ward R (2006) Review article: safe amounts of gluten for patients with wheat allergy or coeliac disease. Aliment Pharmacol Ther 23:559–575CrossRefGoogle Scholar
  119. 119.
    Morita E, Matsuo H, Chinuki Y, Takahashi H, Dahlstrom J, Tanaka A (2009) Food-dependent exercise-induced anaphylaxis importance of omega-5 gliadin and HMW-glutenin as causative antigens for wheat-dependent exercise-induced anaphylaxis. Allergol Int 58:493–498CrossRefGoogle Scholar
  120. 120.
    Tanabe S (2004) IgE-binding abilities of pentapeptides, QQPFP and PQQPF, in wheat gliadin. J Nutr Sci Vitaminol 50:367–370CrossRefGoogle Scholar
  121. 121.
    Sandiford CP, Tatham AS, Fido R, Welch JA, Jones MG, Tee RD, Shewry PR, Newman Taylor AJ (1997) Identification of the major water/salt insoluble wheat proteins involved in cereal hypersensitivity. Clin Exp Allergy 27:1120–1129CrossRefGoogle Scholar
  122. 122.
    Matuszewska E, Kaczmarski M (1999) Próby prowokacji pokarmowej w diagnostyce alergii/nietolerancji pokarmowej u dzieci. Alergia Astma Immunologia 4:245–249Google Scholar
  123. 123.
    Gibert A, Espadaler M, Angel Camela M, Sanches A, Vague C, Refecas M (2006) Consumption of gluten free products: should be the threshold value for traces amounts of gluten be at 20, 100 czy 200 p.p.m? Eur J Gastroenterol Hepatol 18:1187–1195CrossRefGoogle Scholar
  124. 124.
    Stępień M, Bogdański P (2013) Nadwrażliwość na gluten – fakty i kontrowersje. Forum Zaburzeń Metabolicznych 4(4):183–191Google Scholar
  125. 125.
    Massari S, Liso M, De Santis L, Mazzei F, Carlone A, Mauro S, Musca F, Bozzetti MP, Minelli M (2011) Occurrence of nonceliac gluten sensitivity in patients with allergic disease. Int Arch Allergy Immunol 155:389–394CrossRefGoogle Scholar
  126. 126.
    Mastrototaro L, Castellaneta S, Gentile A (2012) Gluten sensitivity in children: clinical, serological, genetic and histological description of the first pediatric series. Dig Liver Dis 44:254–255CrossRefGoogle Scholar
  127. 127.
    Volta U, de Gorgio R (2012) New understanding of gluten sensitivity. Nat Rev Gastroenterol Hepatol 9:295–299CrossRefGoogle Scholar
  128. 128.
    Junker Y, Zeissig S, Kim SJ, Barisani D, Wieser H, Leffler DA, Zevallos V, Libermann TA, Dillon S, Freitag TL, Kelly CP, Schuppan D (2012) Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor. J Exp Med 209(13):2395–2408CrossRefGoogle Scholar
  129. 129.
    Vazquez-Roque MI, Camilleri M, Smyrk T, Murray JA, Marietta E, O’Neill J, Carlson P, Lamsam J, Janzow D, Eckert D, Burton D, Zinsmeister AR (2013) A controlled trial of gluten-free diet in patients with irritable bowel syndrome-diarrhea: effects on bowel frequency and intestinal function. Gastroenterology 144(5):903–911CrossRefGoogle Scholar
  130. 130.
    Wahnschaffe U, Schulzke JD, Zeitz M, Ullrich R (2007) Predictors of clinical response to gluten-free diet in patients diagnosed with diarrhea-predominant irritable bowel syndrome. Clin Gastroenterol Hepatol 5(7):844–850CrossRefGoogle Scholar
  131. 131.
    Herfarth HH, Martin CF, Sandler RS, Kappelman MD, Long MD (2014) Prevalence of a gluten free diet and improvement of clinical symptoms in patients with inflammatory bowel diseases. Inflamm Bowel Dis 20(7):1194–1197CrossRefGoogle Scholar
  132. 132.
    Rodrigo L, Blanco I, Bobes J, de Serres FJ (2014) Effect of one year of a gluten-free diet on the clinical evolution of irritable bowel syndrome plus fibromyalgia in patients with associated lymphocytic enteritis: a case-control study. Arthritis Res Ther 16(4):421CrossRefGoogle Scholar
  133. 133.
    Rodrigo L, Blanco I, Bobes J, de Serres FJ (2013) Clinical impact of a gluten-free diet on health-related quality of life in seven fibromyalgia syndrome patients with associated celiac disease. BMC Gastroenterol 13:157CrossRefGoogle Scholar
  134. 134.
    Mulloy A, Lang R, O’Reilly M, Sigafoos J, Lancioni G, Rispoli M (2010) Gluten-free and casein-free diets in the treatment of autism spectrum disorders: a systematic review. Res Autism Spectr Disord 4(3):328–339CrossRefGoogle Scholar
  135. 135.
    Knivsberg AM, Reichelt KL, Høien T, Nødland M (2002) A randomised, controlled study of dietary intervention in autistic syndromes. Nutr Neurosci 5(4):251–261CrossRefGoogle Scholar
  136. 136.
    Knivsberg AM, Reichelt KL, Høien T, Nødland M (2003) Effect of a dietary intervention on autistic behavior. Focus Autism Other Dev Disabl 18(4):248–257CrossRefGoogle Scholar
  137. 137.
    Elder JH, Shankar M, Shuster J, Theriaque D, Burns S, Sherrill L (2006) The gluten-free, casein-free diet in autism: results of a preliminary double blind clinical trial. J Autism Dev Disord 36(3):413–420CrossRefGoogle Scholar
  138. 138.
    Seung H, Rogalski Y, Shankar M, Elder J (2007) The gluten- and casein-free diet and autism: communication outcomes from a preliminary double-blind clinical trial. J Med Speech-Lang Pathol 15(4):337–345Google Scholar
  139. 139.
    Millward C, Ferriter M, Calver SJ, Connell-Jones GG (2008) Gluten- and casein-free diets for autistic spectrum disorder. Cochrane Database Syst Rev 2:CD003498Google Scholar
  140. 140.
    Transparency Market Research (2015) Gluten free food market – global industry analysis, size, share, growth, trends, and forecast, 2015–2021. Published Date 21.10.2015. Accessed 22 July 2016
  141. 141.
    Kim HS, Patel KG, Orosz E, Kothari N, Demyen MF, Pyrsopoulos N, Ahlawat SK (2016) Time trends in the prevalence of celiac disease and gluten-free diet in the US population: results from the National Health and Nutrition Examination Surveys 2009–2014. JAMA Intern Med 176(11):1716–1717CrossRefGoogle Scholar
  142. 142.
    Digiacomo DV, Tennyson CA, Green PH, Demmer RT (2013) Prevalence of gluten-free diet adherence among individuals without celiac disease in the USA: results from the continuous National Health and Nutrition Examination Survey 2009–2010. Scand J Gastroenterol 48:921–925CrossRefGoogle Scholar
  143. 143.
    Lebwohl B, Cao Y, Zong G, Hu FB, Green PHR, Neugut AI, Rimm EB, Sampson L, Dougherty LW, Giovannucci E, Willett WC, Sun Q, Chan AT (2017) Long term gluten consumption in adults without celiac disease and risk of coronary heart disease: prospective cohort study. BMJ 357:j1892CrossRefGoogle Scholar
  144. 144.
    Zuccotti G, Fabiano V, Dilillo D, Picca M, Cravidi C, Brambilla P (2012) Intakes of nutrients in Italian children with celiac disease and the role of commercially available gluten-free products. J Hum Nutr Diet 26:436–444CrossRefGoogle Scholar
  145. 145.
    Alvarez-Jubete L, Auty M, Arendt EK, Gallagher E (2010) Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. Eur Food Res Technol 230(3):437–445CrossRefGoogle Scholar
  146. 146.
    Krupa-Kozak U, Wronkowska M, Soral-Śmietana M (2011) Effect of buckwheat flour on microelements and proteins contents in gluten-free bread. Czech J Food Sci 29(2):103–108Google Scholar
  147. 147.
    Krupa-Kozak U, Altamirano-Fortoul R, Wronkowska M, Rosell CM (2012) Breadmaking performance and technological characteristicof gluten-free bread with inulin supplemented with calcium salts. Eur Food Res Technol 235(3):545–554CrossRefGoogle Scholar
  148. 148.
    Brito IL, de Souza EL, Felex SSS, Madruga MS, Yamashita F, Magnani M (2015) Nutritional and sensory characteristics of gluten-free quinoa (Chenopodium quinoa Willd)-based cookies development using an experimental mixture design. J Food Sci Technol 52(9):5866–5873CrossRefGoogle Scholar
  149. 149.
    Elli L, Rossi V, Conte D, Ronchi A, Tomba C, Passoni M, Bardella MT, Roncoroni L, Guzzi G (2015) Increased mercury levels in patients with celiac disease following a gluten-free regimen. Gastroenterol Res Pract 2015:953042CrossRefGoogle Scholar
  150. 150.
    Sanfeliu C, Sebastià J, Kim SU (2001) Methylmercury neurotoxicity in cultures of human neurons, astrocytes, neuroblastoma cells. Neurotoxicology 22(3):317–327CrossRefGoogle Scholar
  151. 151.
    Lai PY, Cottingham KL, Steinmaus C, Karagas MR, Miller MD (2015) Arsenic and rice: translating research to address health care providers’ needs. J Pediatr 167:797–803CrossRefGoogle Scholar
  152. 152.
    Reilly NR (2016) The gluten-free diet: recognizing fact, fiction, and fad. J Pediatr 175:206–210CrossRefGoogle Scholar
  153. 153.
    Delcour JA, Joye IJ, Pareyt B, Wilderjans E, Brijs K, Lagrain B (2011) Wheat gluten functionality as a quality determinant in cereal-based food products. Annu Rev Food Sci Technol 3:469–492CrossRefGoogle Scholar
  154. 154.
    Moore MM, Schober TJ, Dockery P, Arendt EK (2004) Textural comparisons of gluten-free and wheat-based doughs, batters, and breads. Cereal Chem 81(5):567–575CrossRefGoogle Scholar
  155. 155.
    Houben A, Hochstotter A, Becker T (2012) Possibilities to increase the quality in gluten-free bread production: an overview. Eur Food Res Technol 235(2):195–208CrossRefGoogle Scholar
  156. 156.
    Marco C, Rosell CM (2008) Breadmaking performance of protein enriched, gluten-free breads. Eur Food Res Technol 227(4):1205–1213CrossRefGoogle Scholar
  157. 157.
    Gallagher E, Gormley TR, Arendt EK (2003) Crust and crumb characteristics of gluten free breads. J Food Eng 56:153–161CrossRefGoogle Scholar
  158. 158.
    Primo-Martin C, de Pijpekamp AV, van Vliet T, de Jongh HHJ, Plijter JJ, Hamer RJ (2006) The role of the gluten network in the crispness of bread crust. J Cereal Sci 43(3):342–352CrossRefGoogle Scholar
  159. 159.
    Marti A, Pagani MA (2013) What can play the role of gluten in gluten free pasta? Trends Food Sci Technol 31(1):63–71CrossRefGoogle Scholar
  160. 160.
    Lazaridou A, Duta D, Papageorgiou M, Belc N, Biliaderis CG (2007) Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. J Food Eng 79:1033–1047CrossRefGoogle Scholar
  161. 161.
    Hager AS, Arendt EK (2013) Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breads based on rice, maize, teff and buckwheat. Food Hydrocoll 32(1):195–203CrossRefGoogle Scholar
  162. 162.
    Renzetti S, Rosell CM (2016) Role of enzymes in improving the functionality of proteins in non-wheat dough systems. J Cereal Sci 67:35–45CrossRefGoogle Scholar
  163. 163.
    Moroni AV, Dal Bello F, Arendt EK (2009) Sourdough in gluten-free bread-making: an ancient technology to solve a novel issue? Food Microbiol 26(7):676–684CrossRefGoogle Scholar
  164. 164.
    Padalino L, Mastromatteo M, Lecce L, Cozzolino F, Del Nobile MA (2013) Manufacture and characterization of gluten-free spaghetti enriched with vegetable flour. J Cereal Sci 57(3):333–342CrossRefGoogle Scholar
  165. 165.
    Susanna S, Prabhasankar P (2013) A study on development of gluten free pasta and its biochemical and immunological validation. LWT-Food Sci Technol 50(2):613–621CrossRefGoogle Scholar
  166. 166.
    Schober TJ, Messerschmidt M, Bean SR, Park SH, Arendt EK (2005) Gluten-free bread from sorghum: quality differences among hybrids. Cereal Chem 82:394–404CrossRefGoogle Scholar
  167. 167.
    Gawlik-Dziki U, Dziki D, Swieca M, Seczyk L, Rozylo R, Szymanowska U (2015) Bread enriched with Chenopodium quinoa leaves powder – the procedures for assessing the fortification efficiency. LWT-Food Sci Technol 62(2):1226–1234CrossRefGoogle Scholar
  168. 168.
    Ouazib M, Garzón R, Zaidi F, Rosell CM (2016) Germinated, toasted and cooked chickpea as ingredients for breadmaking. J Food Sci Technol 53(6):2664–2672CrossRefGoogle Scholar
  169. 169.
    Tsatsaragkou K, Kara T, Ritzoulis C, Mandala I, Rosell CM (2017) Improving carob flour performance for making gluten-free breads by particle size fractionation and jet milling. Food Bioprocess Technol 10:831–841CrossRefGoogle Scholar
  170. 170.
    Gallagher E, Kenny S, Arendt EK (2005) Impact of dairy protein powders on biscuit quality. Eur Food Res Technol 221:237–243CrossRefGoogle Scholar
  171. 171.
    Schober TJ, Bean SR, Boyle DL, Park SH (2008) Improved viscoelastic zein-starch doughs for leavened gluten-free breads: their rheology and microstructure. J Cereal Sci 48:755–767CrossRefGoogle Scholar
  172. 172.
    Krupa-Kozak U, Bączek N, Rosell C (2013) Application of dairy proteins as technological and nutritional improvers of calcium-supplemented gluten-free bread. Forum Nutr 5(11):4503–4520Google Scholar
  173. 173.
    Ziobro R, Juszczak L, Witczak M, Korus J (2016) Non-gluten proteins as structure forming agent in gluten-free bread. J Food Sci Technol 53(1):571–580CrossRefGoogle Scholar
  174. 174.
    Praznik W, Cieslik E, Filipiak-Florkiewicz A (2002) Soluble dietary fibres in Jerusalem artichoke powders: composition and application in bread. Nahrung/Food 46(3):151–157CrossRefGoogle Scholar
  175. 175.
    Wang J, Rosell CM, de Barber CB (2002) Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chem 79(2):221–226CrossRefGoogle Scholar
  176. 176.
    Peressini D, Sensidoni A (2009) Effect of soluble dietary fibre addition on rheological and breadmaking properties of wheat doughs. J Cereal Sci 49:190–201CrossRefGoogle Scholar
  177. 177.
    Skara N, Novotni D, Cukelj N, Smerdel B, Curi D (2013) Combined effects of inulin, pectin and guar gum on the quality and stability of partially baked frozen bread. Food Hydrocoll 30:428–436CrossRefGoogle Scholar
  178. 178.
    Ronda F, Quilez J, Pando V, Roos YH (2014) Fermentation time and fiber effects on recrystallization of starch components and staling of bread from frozen part-baked bread. J Food Eng 131:116–123CrossRefGoogle Scholar
  179. 179.
    Arufe S, Chiron H, Dore J, Savary-Auzeloux I, Saulnier L, Della Valle G (2017) Processing & rheological properties of wheat flour dough and bread containing high levels of soluble dietary fibres blends. Food Res Int 97:123–132CrossRefGoogle Scholar
  180. 180.
    Rößle C, Ktenioudaki A, Gallagher E (2011) Inulin and oligofructose as fat and sugar substitutes in quick breads (scones): a mixture design approach. Eur Food Res Technol 233:167CrossRefGoogle Scholar
  181. 181.
    Bustos MC, Pérez GT, León AE (2011) Effect of four types of dietary fiber on the technological quality of pasta. Food Sci Technol Int 17(3):213–221CrossRefGoogle Scholar
  182. 182.
    Padalino L, Costa C, Conte A, Melilli MG, Sillitti C, Bognanni R, Raccuia SA, Del Nobile MA (2017) The quality of functional whole-meal durum wheat spaghetti as affected by inulin polymerization degree. Carbohydr Polym 173:84–90CrossRefGoogle Scholar
  183. 183.
    Volpini-Rapina LF, Sokei FR, Conti-Silva AC (2012) Sensory profile and preference mapping of orange cakes with addition of prebiotics inulin and oligofructose. LWT-Food Sci Technol 48:37–42CrossRefGoogle Scholar
  184. 184.
    Celik I, Isik F, Gursoy O, Yilmaz Y (2012) Use of Jerusalem artichoke (Helianthus tuberosus) tubers as a natural source of inulin in cakes. J Food Process Preserv 37:483–488Google Scholar
  185. 185.
    Zbikowska A, Marciniak-Lukasiak K, Kowalska M, Onacik-Gür S (2017) Multivariate study of inulin addition on the quality of sponge cakes. Pol J Food Nutr Sci 67(3):201–210Google Scholar
  186. 186.
    Serial MR, Blanco Canalis MS, Carpinella M, Valentinuzzi MC, León AE, Ribotta PD, Acosta RH (2016) Influence of the incorporation of fibers in biscuit dough on proton mobility characterized by time domain NMR. Food Chem 192:950–957CrossRefGoogle Scholar
  187. 187.
    Peressini D, Foschia M, Tubaro F, Sensidoni A (2015) Impact of soluble dietary fibre on the characteristics of extruded snacks. Food Hydrocoll 43:73–81CrossRefGoogle Scholar
  188. 188.
    Morris C, Morris GA (2012) The effect of inulin and fructo-oligosaccharide supplementation on the textural, rheological and sensory properties of bread and their role in weight management: a review. Food Chem 133(2):237–248CrossRefGoogle Scholar
  189. 189.
    Rodríguez-García J, Puig A, Salvador A, Hernando I (2012) Optimization of a sponge cake formulation with inulin as fat replacer: structure, physicochemical, and sensory properties. J Food Sci 77(2):C189–C197CrossRefGoogle Scholar
  190. 190.
    Aravind N, Sissons MJ, Fellows CM, Blazek J, Gilbert EP (2012) Effect of inulin soluble dietary fibre addition on technological, sensory, and structural properties of durum wheat spaghetti. Food Chem 132(2):993–1002CrossRefGoogle Scholar
  191. 191.
    Korus J, Grzelak K, Achremowicz K, Sabat R (2006) Influence of prebiotic additions on the quality of gluten-free bread and on the content of inulin and fructooligosaccharides. Food Sci Technol Int 12(6):489–495CrossRefGoogle Scholar
  192. 192.
    Hager AS, Liam AM, Schwab C, Gänzle MG, O’Doherty AEK (2011) Influence of the soluble fibres inulin and oat b-glucan on quality of dough and bread. Eur Food Res Technol 232:405–413CrossRefGoogle Scholar
  193. 193.
    Juszczak L, Witczak T, Ziobro R, Korus J, Cieslik E, Witczak M (2012) Effect of inulin on rheological and thermal properties of gluten-free dough. Carbohydr Polym 90(1):353–360CrossRefGoogle Scholar
  194. 194.
    Rodriguez Furlan LT, Padilla AP, Campderrós ME (2015) Improvement of gluten-free bread properties by the incorporation of bovine plasma proteins and different saccharides into the matrix. Food Chem 170:257–264CrossRefGoogle Scholar
  195. 195.
    Rosell CM, Rojas JA, de Barber CB (2001) Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocoll 15:75–81CrossRefGoogle Scholar
  196. 196.
    Sciarini LS, Bustos MC, Vignola MB, Paesani C, Salinas CN, Pérez GT (2017) A study on fibre addition to gluten free bread: its effects on bread quality and in vitro digestibility. J Food Sci Technol 54(1):244–252CrossRefGoogle Scholar
  197. 197.
    Maghaydah S, Abdul-Hussain S, Ajo R, Obeidat B, Tawalbeh Y (2013) Enhancing the nutritional value of gluten-free cookies with inulin. Adv J Food Sci Technol 5(7):866–870CrossRefGoogle Scholar
  198. 198.
    Sharoba AM, El-Salam AM, Hafez HH (2014) Production and evaluation of gluten free biscuits as functional foods for celiac disease patients. J Agroaliment Process Technol 20(3):203–214Google Scholar
  199. 199.
    Gularte MA, de la Hera E, Gomez M, Rosell CM (2012) Effect of different fibers on batter and gluten-free layer cake properties. LWT-Food Sci Technol 48(2):209–214CrossRefGoogle Scholar
  200. 200.
    Fardet A, Leenhardt F, Lioger D, Scalbert A, Remesy C (2006) Parameters controlling the glycaemic response to breads. Nutr Res Rev 19(1):18–25CrossRefGoogle Scholar
  201. 201.
    Alvarez MD, Cuesta FJ, Herranz B, Canet W (2017) Rheometric non-isothermal gelatinization kinetics of chickpea flour-based gluten-free muffin batters with added biopolymers. Foods 6(1):3CrossRefGoogle Scholar
  202. 202.
    Brennan CS, Kuri V, Tudorica CM (2004) Inulin-enriched pasta: effects on textural properties and starch degradation. Food Chem 86(2):189–193CrossRefGoogle Scholar
  203. 203.
    Mastromatteo M, Iannetti M, Civica V, Sepielli G, Del Nobile MA (2012) Effect of the inulin addition on the properties of gluten free pasta. Food Nutr Sci 3:22–27CrossRefGoogle Scholar
  204. 204.
    Hoover R, Hughes T, Chung HJ, Liu Q (2010) Composition molecular structure, properties, and modification of pulse starches: a review. Food Res Int 43:399–413CrossRefGoogle Scholar
  205. 205.
    Lian XJ, Guo JJ, Wang DL, Lin L, Zhu JR (2014) Effects of protein in wheat flour on retrogradation of wheat starch. J Food Sci 79:C1505–C1511CrossRefGoogle Scholar
  206. 206.
    Guardeño LM, Puig A, Hernando I, Quiles A (2013) Effect of different corn starches on microstructural, physical and sensory properties of gluten-free white sauces formulated with soy protein and inulin. J Food Process Eng 36(4):535–543CrossRefGoogle Scholar
  207. 207.
    Guardeño LM, Vazquez-Gutierrez JL, Hernando I, Quiles A (2013) Effect of different rice starches, inulin, and soy protein on microstructural, physical, and sensory properties of low-fat, gluten, and lactose free white sauces. Czech J Food Sci 31(6):575–580Google Scholar
  208. 208.
    Gonzalez-Tomas L, Bayarri S, Costell E (2009) Inulin-enriched dairy desserts: physicochemical and sensory aspects. J Dairy Sci 92(9):4188–4199CrossRefGoogle Scholar
  209. 209.
    Gonzalez-Tomas L, Bayarri S, Coll-Marques J, Costell E (2009) Flow behaviour of inulin-enriched dairy desserts: influence of inulin average chain length. Int J Food Sci Tech 44(6):1214–1222CrossRefGoogle Scholar
  210. 210.
    de Morais EC (2016) Prebiotic addition in dairy products: processing and health benefits. In: Watson RR, Preevdy VR (eds) Probiotics, prebiotics, and synbiotics: bioactive foods in health promotion, 1st edn. Elsevier Int, AmsrerdamGoogle Scholar
  211. 211.
    Solowiej B, Glibowski P, Muszynski S, Wydrych J, Gawron A, Jelinski T (2015) The effect of fat replacement by inulin on the physicochemical properties and microstructure of acid casein processed cheese analogues with added whey protein polymers. Food Hydrocoll 44:1–11CrossRefGoogle Scholar
  212. 212.
    Fadaei V, Poursharif K, Daneshi M, Honarvar M (2012) Chemical characteristics of low-fat wheyless cream cheese containing inulin as fat replacer. Eur J Exp Biol 2:690–694Google Scholar
  213. 213.
    Dave P (2012) Rheological properties of low-fat processed cheese spread made with inulin as a fat replacer. University of Wisconsin-StoutGoogle Scholar
  214. 214.
    Cardarelli HR, Saad SMI, Gibson GR, Vulevic J (2007) Functional petit-suisse cheese: measure of the prebiotic effect. Anaerobe 13:200–207CrossRefGoogle Scholar
  215. 215.
    Debon J, Prudencio ES, Petrus JCC (2010) Rheological and physico-chemical characterization of prebiotic microfiltered fermented milk. J Food Eng 99:128–135CrossRefGoogle Scholar
  216. 216.
    Ziobro R, Korus J, Juszczak L, Witczak T (2013) Influence of inulin on physical characteristics and staling rate of gluten-free bread. J Food Eng 116(1):21–27CrossRefGoogle Scholar
  217. 217.
    Morais EC, Cruz AG, Faria JAF, Bolini HMA (2014) Prebiotic gluten-free bread: sensory profiling and drivers of liking. LWT-Food Sci Technol 55(1):248–254CrossRefGoogle Scholar
  218. 218.
    Rodriguez-Sandoval E, Franco CML, Manjarres-Pinzon K (2014) Effect of fructooligosaccharides on the physicochemical properties of sour cassava starch and baking quality of gluten-free cheese bread. Starch-Starke 66(7–8):678–684CrossRefGoogle Scholar
  219. 219.
    Cruz AG, Cavalcanti RN, Guerreiro LMR, Sant’Ana AS, Nogueira LC, Oliveira CAF, Deliza R, Cunha RL, Faria JAF, Bolini HMA (2013) Developing a prebiotic yogurt: rheological, physico-chemical and microbiological aspects and adequacy of survival analysis methodology. J Food Eng 114:323–330CrossRefGoogle Scholar
  220. 220.
    Capriles VD, Areas JAG (2013) Effects of prebiotic inulin-type fructans on structure, quality, sensory acceptance and glycemic response of gluten-free breads. Food Funct 4(1):104–110CrossRefGoogle Scholar
  221. 221.
    Morais EC, Morais AR, Cruz AG, Bolini HMA (2014) Development of chocolate dairy dessert with addition of prebiotics and replacement of sucrose with different high-intensity sweeteners. J Dairy Sci 97:2600–2609CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Natalia Drabińska
    • 1
    Email author
  • Cristina M. Rosell
    • 2
  • Urszula Krupa-Kozak
    • 1
  1. 1.Department of Chemistry and Biodynamics of FoodInstitute of Animal Reproduction and Food Research of Polish Academy of SciencesOlsztynPoland
  2. 2.Food Science DepartmentInstitute of Agrochemistry and Food Technology (IATA-CSIC)PaternaSpain

Personalised recommendations