Antidiabetic Functional Foods with Antiglycation Properties

  • Mutiu Idowu KazeemEmail author
  • Habeeb Adebodun Bankole
  • Azeez Ayomide Fatai
  • Abiola Fatimah Adenowo
  • Theophilus Clavell Davies
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Diabetes mellitus is a disease that requires long-term management and sometimes last throughout the lifetime of the patient. Persistent hyperglycemia experienced in diabetes over long period results in diabetic complications, such as nephropathy, neuropathy, retinopathy and cardiovascular diseases. One of the mechanisms involved in the development of diabetic complications is glycation which caused the production of advanced glycation end products (AGEs). Therefore, any agent that prevents the formation of AGEs may be suitable for the management of diabetes and its complications. There is a plethora of studies on the antiglycation properties of many foods and their products, but there is no repository of their information. This is an attempt to review the available information on the role of antiglycation agents from functional foods in the management of diabetic complications. We hope this information will assist diabetic patients in the choice of their diets and stimulate further research on these foods.


Glycation Advanced glycation end products Functional foods Diabetes Diabetic complications 

List of Abbreviations


Advanced glycation end products


Bovine serum albumin


Glyoxal-lysine dimer


Methyglyoxal-lysine dimer


Receptor for advanced glycation endproduct



The support of Lagos State University, Ojo, Lagos, Nigeria, is gracefully acknowledged.


  1. 1.
    Harris M (2004) Definition and classification of diabetes mellitus and the criteria for diagnosis. Diabetes mellitus: a fundamental and clinical. Text 3:457–467Google Scholar
  2. 2.
    Altan V (2003) The pharmacology of diabetic complications. Curr Med Chem 10(15):1317–1327CrossRefGoogle Scholar
  3. 3.
    Federation ID (2013) IDF Diabetes Atlas. International Diabetes Federation, BrussellsGoogle Scholar
  4. 4.
    Harding J, Ganea E (2006) Protection against glycation and similar post-translational modifications of proteins. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1764(9):1436–1446CrossRefGoogle Scholar
  5. 5.
    Rojas A, Morales M (2004) Advanced glycation and endothelial functions: a link towards vascular complications in diabetes. Life Sci 76(7):715–730CrossRefGoogle Scholar
  6. 6.
    Peyroux J, Sternberg M (2006) Advanced glycation endproducts (AGEs): pharmacological inhibition in diabetes. Pathol Biol 54(7):405–419CrossRefGoogle Scholar
  7. 7.
    Monnier V, Mustata G, Biemel K, Reihl O, Lederer M, Zhenyu D et al (2005) Cross-linking of the extracellular matrix by the maillard reaction in aging and diabetes: an update on “a puzzle nearing resolution”. Ann N Y Acad Sci 1043(1):533–544CrossRefGoogle Scholar
  8. 8.
    Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44(2):129–146CrossRefGoogle Scholar
  9. 9.
    Ahmed N (2005) Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract 67(1):3–21CrossRefGoogle Scholar
  10. 10.
    Daroux M, Prevost G, Maillard-Lefebvre H, Gaxatte C, D’agati V, Schmidt A et al (2010) Advanced glycation end-products: implications for diabetic and non-diabetic nephropathies. Diabetes Metab 36(1):1–10CrossRefGoogle Scholar
  11. 11.
    Rahbar S, Figarola J (2003) Novel inhibitors of advanced glycation endproducts. Arch Biochem Biophys 419(1):63–79CrossRefGoogle Scholar
  12. 12.
    Jagtap A, Patil P (2010) Antihyperglycemic activity and inhibition of advanced glycation end product formation by Cuminum cyminum in streptozotocin induced diabetic rats. Food Chem Toxicol 48(8):2030–2036Google Scholar
  13. 13.
    Nishikawa T, Edelstein D, Brownlee M (2000) The missing link: a single unifying mechanism for diabetic complications. Kidney Int 58:S26–S30CrossRefGoogle Scholar
  14. 14.
    Prathapan A, Krishna M, Nisha V, Sundaresan A, Raghu K (2012) Polyphenol rich fruit pulp of Aegle marmelos (L.) Correa exhibits nutraceutical properties to down regulate diabetic complications – an in vitro study. Food Res Int 48(2):690–695CrossRefGoogle Scholar
  15. 15.
    Lavelli V, Corey M, Kerr W, Vantaggi C (2011) Stability and anti-glycation properties of intermediate moisture apple products fortified with green tea. Food Chem 127(2):589–595CrossRefGoogle Scholar
  16. 16.
    Nisha P, Mini S (2014) Vitro antioxidant and Antiglycation properties of methanol extract and its different solvent fractions of Musa paradisiaca L.(Cv. Nendran) inflorescence. Int J Food Prop 17(2):399–409Google Scholar
  17. 17.
    Ramu R, Shirahatti P, Zameer F, Ranganatha L, Prasad M (2014) Inhibitory effect of banana (Musa sp. var. Nanjangud rasa bale) flower extract and its constituents Umbelliferone and Lupeol on α-glucosidase, aldose reductase and glycation at multiple stages. S Afr J Bot 95:54–63Google Scholar
  18. 18.
    Bhaskar J, Shobha M, Sambaiah K, Salimath P (2011) Beneficial effects of banana (Musa sp. var. elakki bale) flower and pseudostem on hyperglycemia and advanced glycation end-products (AGEs) in streptozotocin-induced diabetic rats. J Physiol Biochem 67(3):415–425Google Scholar
  19. 19.
    Ratnasooriya W, Abeysekera W, Muthunayake T, Ratnasooriya C (2014) Vitro Antiglycation and cross-link breaking activities of Sri Lankan low-grown orthodox Orange pekoe grade black tea (Camellia sinensis L.) Trop J Pharm Res 13(4):567–571CrossRefGoogle Scholar
  20. 20.
    Zielinska D, Szawara-Nowak D, Zielinski H (2013) Antioxidative and anti-glycation activity of buckwheat hull tea infusion. Int J Food Prop 16(1):228–239CrossRefGoogle Scholar
  21. 21.
    Lee C-C, Lee B-H, Lai Y-J (2015) Antioxidation and antiglycation of Fagopyrum tataricum ethanol extract. J Food Sci Technol 52(2):1110–1116Google Scholar
  22. 22.
    Caengprasath N, Ngamukote S, Mäkynen K, Adisakwattana S (2013) The protective effects of pomelo extract (Citrus Grandis L. Osbeck) against fructose-mediated protein oxidation and glycation. EXCLI J 12:491Google Scholar
  23. 23.
    Park C, Tanaka T, Kim H, Park J, Yokozawa T (2012) Protective effects of Corni fructus against advanced glycation endproducts and radical scavenging. Evid Based Complement Alternat Med 2012:1–7Google Scholar
  24. 24.
    Yamabe N, Kang K, Goto E, Tanaka T, Yokozawa T (2007) Beneficial effect of Corni fructus, a constituent of Hachimi-jio-gan, on advanced glycation end-product-mediated renal injury in streptozotocin-treated diabetic rats. Biol Pharm Bull 30(3):520–526Google Scholar
  25. 25.
    Yamabe N, Kang K, Matsuo Y, Tanaka T, Yokozawa T (2007) Identification of antidiabetic effect of iridoid glycosides and low molecular weight polyphenol fractions of Corni fructus, a constituent of Hachimi-jio-gan, in streptozotocin-induced diabetic rats. Biol Pharm Bull 30(7):1289–1296Google Scholar
  26. 26.
    Yokozawa T, Yamabe N, Kim H, Kang K, Hur J, Park C et al (2008) Protective effects of morroniside isolated from Corni fructus against renal damage in streptozotocin-induced diabetic rats. Biol Pharm Bull 31(7):1422–1428Google Scholar
  27. 27.
    Kumar P, Reddy P, Srinivas P, Reddy G (2009) Delay of diabetic cataract in rats by the antiglycating potential of cumin through modulation of α-crystallin chaperone activity. J Nutr Biochem 20(7):553–562CrossRefGoogle Scholar
  28. 28.
    Joglekar M, Panaskar S, Arvindekar A (2014) Inhibition of advanced glycation end product formation by cymene–A common food constituent. J Funct Foods 6:107–115CrossRefGoogle Scholar
  29. 29.
    Li X-L, Xiao J-J, Zha X-Q, Pan L-H, Asghar M-N, Luo J-P (2014) Structural identification and sulfated modification of an antiglycation Dendrobium huoshanense polysaccharide. Carbohydr Polym 106:247–254Google Scholar
  30. 30.
    Hou T-H, Chung J-P, Chen S-S, Chang T-L (2013) Antioxidation and antiglycation of 95% ethanolic extracts prepared from the leaves of black nightshade (Solanum nigrum). Food Sci Biotechnol 22(3):839–844Google Scholar
  31. 31.
    Rani M, Krishna M, Padmakumari K, Raghu K, Sundaresan A (2012) Zingiber officinale extract exhibits antidiabetic potential via modulating glucose uptake, protein glycation and inhibiting adipocyte differentiation: an in vitro study. J Sci Food Agric 92(9):1948–1955Google Scholar
  32. 32.
    Kazeem M, Akanji M, Hafizur R, Choudhary M (2012) Antiglycation, antioxidant and toxicological potential of polyphenol extracts of alligator pepper, ginger and nutmeg from Nigeria. Asian Pacific J Trop Biomed 2(9):727–732CrossRefGoogle Scholar
  33. 33.
    Kazeem M, Akanji M, Yakubu M, Ashafa A (2015) Antiglycation and hypolipidemic effects of polyphenols from Zingiber officinale Roscoe (Zingiberaceae) in streptozotocin-induced diabetic rats. Trop J Pharm Res 14(1):55–61Google Scholar
  34. 34.
    Wu J-W, Hsieh C-L, Wang H-Y, Chen H-Y (2009) Inhibitory effects of guava (Psidium guajava L.) leaf extracts and its active compounds on the glycation process of protein. Food Chem 113(1):78–84CrossRefGoogle Scholar
  35. 35.
    Hsieh C-L, Lin Y-C, Yen G-C, Chen H-Y (2007) Preventive effects of guava (Psidium guajava L.) leaves and its active compounds against α-dicarbonyl compounds-induced blood coagulation. Food Chem 103(2):528–535CrossRefGoogle Scholar
  36. 36.
    Soman S, Rauf A, Indira M, Rajamanickam C (2010) Antioxidant and antiglycative potential of ethyl acetate fraction of Psidium guajavaleaf extract in streptozotocin-induced diabetic rats. Plant Foods Hum Nutr 65(4):386–391Google Scholar
  37. 37.
    Soman S, Rajamanickam C, Rauf A, Indira M (2013) Beneficial effects of Psidium guajava leaf extract on diabetic myocardium. Exp Toxicol Pathol 65(1):91–95Google Scholar
  38. 38.
    Lunceford N, Gugliucci A (2005) Ilex paraguariensis extracts inhibit AGE formation more efficiently than green tea. Fitoterapia 76(5):419–427Google Scholar
  39. 39.
    Emami S, Asgary S, Naderi G, Ardekani M, Aslani S, Airin A et al (2012) Investigation of antioxidant and anti-glycation properties of essential oils from fruits and branchlets of Juniperus oblonga. Rev Bras 22(5):985–993Google Scholar
  40. 40.
    Asgary S, Naderi G, Ardekani M, Sahebkar A, Airin A, Aslani S et al (2014) Inhibition of protein glycation by essential oils of branchlets and fruits of Juniperus Communis subsp. hemisphaerica. Res Pharmaceut Sci 9(3):179Google Scholar
  41. 41.
    Yang B, Zhao M, Jiang Y (2009) Anti-glycated activity of polysaccharides of longan (Dimocarpus longan Lour.) fruit pericarp treated by ultrasonic wave. Food Chem 114(2):629–633Google Scholar
  42. 42.
    Jung H, Jung Y, Yoon N, Jeong D, Bae H, Kim D-W et al (2008) Inhibitory effects of Nelumbo nuciferaleaves on rat lens aldose reductase, advanced glycation endproducts formation, and oxidative stress. Food Chem Toxicol 46(12):3818–3826Google Scholar
  43. 43.
    Al-Musayeib N, Perveen S, Fatima I, Nasir M, Hussain A (2011) Antioxidant, anti-glycation and anti-inflammatory activities of phenolic constituents from Cordia sinensis. Molecules 16(12):10214–10226Google Scholar
  44. 44.
    Peng X, Zheng Z, Cheng K-W, Shan F, Ren G-X, Chen F et al (2008) Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem 106(2):475–481CrossRefGoogle Scholar
  45. 45.
    da Silva Morrone M, de Assis A, da Rocha R, Gasparotto J, Gazola A, Costa G et al (2013) Passiflora manicata (Juss.) aqueous leaf extract protects against reactive oxygen species and protein glycation in vitro and ex vivo models. Food Chem Toxicol 60:45–51Google Scholar
  46. 46.
    Rout S, Banerjee R (2007) Free radical scavenging, anti-glycation and tyrosinase inhibition properties of a polysaccharide fraction isolated from the rind from Punica granatum. Bioresour Technol 98(16):3159–3163Google Scholar
  47. 47.
    Jariyapamornkoon N, Yibchok-anun S, Adisakwattana S (2013) Inhibition of advanced glycation end products by red grape skin extract and its antioxidant activity. BMC Complement Altern Med 13(171):1–9Google Scholar
  48. 48.
    Manaharan T, Appleton D, Cheng H, Palanisamy U (2012) Flavonoids isolated from Syzygium aqueum leaf extract as potential antihyperglycaemic agents. Food Chem 132(4):1802–1807Google Scholar
  49. 49.
    Lekshmi P, Arimboor R, Nisha V, Menon A, Raghu K (2014) In vitro antidiabetic and inhibitory potential of turmeric (Curcuma longa L) rhizome against cellular and LDL oxidation and angiotensin converting enzyme. J Food Sci Technol 51(12):3910–3917CrossRefGoogle Scholar
  50. 50.
    Beaulieu LP, Harris C, Saleem A, Cuerrier A, Haddad P, Martineau L et al (2010) Inhibitory effect of the Cree traditional medicine wiishichimanaanh (Vaccinium vitis - idaea) on advanced glycation endproduct formation: identification of active principles. Phytother Res 24(5):741–747Google Scholar
  51. 51.
    Trakoon-osot W, Sotanaphun U, Phanachet P, Porasuphatana S, Udomsubpayakul U, Komindr S (2013) Pilot study: hypoglycemic and antiglycation activities of bitter melon (Momordica charantia L.) in type 2 diabetic patients. J Pharm Res 6(8):859–864Google Scholar
  52. 52.
    Babu P, Sabitha K, Shyamaladevi C (2006) Green tea impedes dyslipidemia, lipid peroxidation, protein glycation and ameliorates Ca 2+−ATPase and Na+/K+−ATPase activity in the heart of streptozotocin-diabetic rats. Chem Biol Interact 162(2):157–164CrossRefGoogle Scholar
  53. 53.
    Palanisamy U, Manaharan T, Teng L, Radhakrishnan A, Subramaniam T, Masilamani T (2011) Rambutan rind in the management of hyperglycemia. Food Res Int 44(7):2278–2282CrossRefGoogle Scholar
  54. 54.
    Palanisamy U, Ling L, Manaharan T, Appleton D (2011) Rapid isolation of geraniin from Nephelium lappaceum rind waste and its anti-hyperglycemic activity. Food Chem 127(1):21–27Google Scholar
  55. 55.
    Lee G, Jang D, Lee Y, Kim J, Kim J (2006) Naphthopyrone glucosides from the seeds of Cassia torawith inhibitory activity on advanced glycation end products (AGEs) formation. Arch Pharm Res 29(7):587–590Google Scholar
  56. 56.
    Jang D, Lee G, Kim Y, Lee Y, Kim C-S, Yoo J et al (2007) Anthraquinones from the seeds of Cassia torawith inhibitory activity on protein glycation and aldose reductase. Biol Pharm Bull 30(11):2207–2210Google Scholar
  57. 57.
    Yamaguchi F, Ariga T, Yoshimura Y, Nakazawa H (2000) Antioxidative and anti-glycation activity of garcinol from Garcinia indica fruit rind. J Agric Food Chem 48(2):180–185Google Scholar
  58. 58.
    Yokozawa T, Nakagawa T (2004) Inhibitory effects of Luobuma tea and its components against glucose-mediated protein damage. Food Chem Toxicol 42(6):975–981CrossRefGoogle Scholar
  59. 59.
    Lee Y, Kang Y-H, Jung J-Y, Lee S, Ohuchi K, Shin K et al (2008) Protein glycation inhibitors from the fruiting body of Phellinus linteus. Biol Pharm Bull 31(10):1968–1972Google Scholar
  60. 60.
    Suantawee T, Wesarachanon K, Anantsuphasak K, Daenphetploy T, Thien-Ngern S, Thilavech T et al (2015) Protein glycation inhibitory activity and antioxidant capacity of clove extract. J Food Sci Technol 52(6):3843–3850Google Scholar
  61. 61.
    Joshi S (2000) Eugenia Jambolana L, Musa paradisiaca L. In: Medicinal Plants, Joshi, S. (Ed.). Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, pp 286–294Google Scholar
  62. 62.
    Pari L, Umamaheswari J (2000) Antihyperglycaemic activity of Musa sapientum flowers: effect on lipid peroxidation in alloxan diabetic rats. Phytother Res 14(2):136–138Google Scholar
  63. 63.
    Bhaskar J, Salimath P, Nandini C (2011) Stimulation of glucose uptake by Musa sp.(cv. elakki bale) flower and pseudostem extracts in Ehrlich ascites tumor cells. J Sci Food Agric 91(8):1482–1487Google Scholar
  64. 64.
    Begum S, Hassan S, Siddiqui B (2002) Two new triterpenoids from the fresh leaves of Psidium guajava. Planta Med 68(12):1149–1152Google Scholar
  65. 65.
    Vrhovsek U, Rigo A, Tonon D, Mattivi F (2004) Quantitation of polyphenols in different apple varieties. J Agric Food Chem 52(21):6532–6538CrossRefGoogle Scholar
  66. 66.
    Lambole VB, Krishna M, Upendra K, Bhatt S, Vipul G (2010) Phytopharmacological properties of Aegle marmelos as a potential medicinal tree: an overview. Int J Pharmaceut Rev Res 5(2):67–71Google Scholar
  67. 67.
    Maity P, Hansda D, Bandyopadhyay U, Mishra D (2009) Biological activities of crude extracts and chemical constituents of Bael, Aegle marmelos (L.) Corr. Indian J Exp Biol 47:849–861Google Scholar
  68. 68.
    Baliga M, Bhat H, Joseph N, Fazal F (2011) Phytochemistry and medicinal uses of the bael fruit (Aegle marmelos Correa): a concise review. Food Res Int 44(7):1768–1775Google Scholar
  69. 69.
    Grover J, Yadav S (2004) Pharmacological actions and potential uses of Momordica charantia: A review. J Ethnopharmacol 93(1):123–132Google Scholar
  70. 70.
    Leung L, Birtwhistle R, Kotecha J, Hannah S, Cuthbertson S (2009) Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): a mini review. Br J Nutr 102(12):1703–1708Google Scholar
  71. 71.
    Miceli N, Trovato A, Dugo P, Cacciola F, Donato P, Marino A et al (2009) Comparative analysis of flavonoid profile, antioxidant and antimicrobial activity of the berries of Juniperus communis L. var. communis and Juniperus communis L. var. saxatilis Pall. from Turkey. J Agric Food Chem 57(15):6570–6577CrossRefGoogle Scholar
  72. 72.
    Jayaprakasha G, Singh R, Sakariah K (2001) Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem 73(3):285–290Google Scholar
  73. 73.
    Ek S, Kartimo H, Mattila S, Tolonen A (2006) Characterization of phenolic compounds from lingonberry (Vaccinium vitis - idaea). J Agric Food Chem 54(26):9834–9842Google Scholar
  74. 74.
    Leduc C, Coonishish J, Haddad P, Cuerrier A (2006) Plants used by the Cree Nation of Eeyou Istchee (Quebec, Canada) for the treatment of diabetes: a novel approach in quantitative ethnobotany. J Ethnopharmacol 105(1):55–63CrossRefGoogle Scholar
  75. 75.
    Jiang Y, Zhang Z, Joyce D, Ketsa S (2002) Postharvest biology and handling of longan fruit (Dimocarpus longan Lour.) Postharvest Biol Technol 26(3):241–252Google Scholar
  76. 76.
    Zheng G, Xu L, Wu P, Xie H, Jiang Y, Chen F et al (2009) Polyphenols from longan seeds and their radical-scavenging activity. Food Chem 116(2):433–436CrossRefGoogle Scholar
  77. 77.
    Rangkadilok N, Sitthimonchai S, Worasuttayangkurn L, Mahidol C, Ruchirawat M, Satayavivad J (2007) Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food Chem Toxicol 45(2):328–336CrossRefGoogle Scholar
  78. 78.
    Zucolotto S, Fagundes C, Reginatto F, Ramos A, Castellanos L, Duque C et al (2012) Analysis of C-glycosyl flavonoids from south American Passiflora species by HPLC-DAD and HPLC-MS. Phytochem Anal 23(3):232–239CrossRefGoogle Scholar
  79. 79.
    Lansky E, Newman R (2007) Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J Ethnopharmacol 109(2):177–206Google Scholar
  80. 80.
    Mäkynen K, Jitsaardkul S, Tachasamran P, Sakai N, Puranachoti S, Nirojsinlapachai N et al (2013) Cultivar variations in antioxidant and antihyperlipidemic properties of pomelo pulp (Citrus grandis [L.] Osbeck) in Thailand. Food Chem 139(1):735–743CrossRefGoogle Scholar
  81. 81.
    Xu G, Liu D, Chen J, Ye X, Ma Y, Shi J (2008) Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chem 106(2):545–551CrossRefGoogle Scholar
  82. 82.
    Ong P, Acree T, Lavin E (1998) Characterization of volatiles in rambutan fruit (Nephelium lappaceum L.) J Agric Food Chem 46(2):611–615CrossRefGoogle Scholar
  83. 83.
    Thitilertdecha N, Teerawutgulrag A, Kilburn J, Rakariyatham N (2010) Identification of major phenolic compounds from Nephelium lappaceum L. and their antioxidant activities. Molecules 15(3):1453–1465CrossRefGoogle Scholar
  84. 84.
    Manaharan T, Ming C, Palanisamy U (2013) Syzygium aqueum leaf extract and its bioactive compounds enhances pre-adipocyte differentiation and 2-NBDG uptake in 3T3-L1 cells. Food Chem 136(2):354–363Google Scholar
  85. 85.
    Nayak C, Rastogi N, Raghavarao K (2010) Bioactive constituents present in Garcinia indica Choisy and its potential food applications: a review. Int J Food Prop 13(3):441–453Google Scholar
  86. 86.
    Crespy V, Williamson G (2004) A review of the health effects of green tea catechins in in vivo animal models. J Nutr 134(12):3431S–3440SGoogle Scholar
  87. 87.
    Gardner E, Ruxton C, Leeds A (2007) Black tea-helpful or harmful? A review of the evidence. Eur J Clin Nutr 61(1):3–18CrossRefGoogle Scholar
  88. 88.
    Xie W, Zhang X, Wang T, Hu J (2012) Botany, traditional uses, phytochemistry and pharmacology of Apocynum venetum L.(Luobuma): a review. J Ethnopharmacol 141(1):1–8CrossRefGoogle Scholar
  89. 89.
    Heck C, De Mejia E (2007) Yerba mate tea (Ilex paraguariensis): A comprehensive review on chemistry, health implications, and technological considerations. J Food Sci 72(9):R138–RR51Google Scholar
  90. 90.
    Bracesco N, Sanchez A, Contreras V, Menini T, Gugliucci A (2011) Recent advances on Ilex paraguariensis research: minireview. J Ethnopharmacol 136(3):378–384Google Scholar
  91. 91.
    Luo J-P, Deng Y-Y, Zha X-Q (2008) Mechanism of polysaccharides from Dendrobium huoshanense. On Streptozotocin-induced diabetic cataract. Pharm Biol 46(4):243–249Google Scholar
  92. 92.
    Chang C-C, Ku A, Tseng Y-Y, Yang W-B, Fang J-M, Wong C-H (2010) 6, 8-Di-C-glycosyl flavonoids from Dendrobium huoshanense. J Nat Prod 73(2):229–232Google Scholar
  93. 93.
    Liu C-L, Chen Y-S, Yang J-H, Chiang B-H (2007) Antioxidant activity of tartary (Fagopyrum tataricum (L.) Gaertn.) and common (Fagopyrum esculentum Moench) buckwheat sprouts. J Agric Food Chem 56(1):173–178CrossRefGoogle Scholar
  94. 94.
    Kim S-J, Zaidul I, Suzuki T, Mukasa Y, Hashimoto N, Takigawa S et al (2008) Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts. Food Chem 110(4):814–820Google Scholar
  95. 95.
    Jain S, Patil U (2010) Phytochemical and pharmacological profile of Cassia tora Linn – an overview. Indian J Nat Prod Resour 1:430–437Google Scholar
  96. 96.
    Akubugwo I, Obasi A, Ginika S (2007) Nutritional potential of the leaves and seeds of black nightshade-Solanum nigrum L. Var virginicum from Afikpo-Nigeria. Pak J Nutr 6(4):323–326Google Scholar
  97. 97.
    Ikeda T, Tsumagari H, Nohara T (2000) Steroidal oligoglycosides from Solanum nigrum. Chem Pharm Bull 48(7):1062–1064Google Scholar
  98. 98.
    Zhu T, Kim S-H, Chen C-Y (2008) A medicinal mushroom: Phellinus linteus. Curr Med Chem 15(13):1330–1335Google Scholar
  99. 99.
    Jayaprakasha G, Jena BS, Negi PS, Sakariah K (2002) Evaluation of antioxidant activities and antimutagenicity of turmeric oil: a byproduct from curcumin production. Zeitschrift für Naturforschung C 57(9–10):828–835Google Scholar
  100. 100.
    Miquel J, Bernd A, Sempere J, Dıaz-Alperi J, Ramırez A (2002) The curcuma antioxidants: pharmacological effects and prospects for future clinical use. A review. Arch Gerontol Geriatr 34(1):37–46CrossRefGoogle Scholar
  101. 101.
    Kuroda M, Mimaki Y, Nishiyama T, Mae T, Kishida H, Tsukagawa M et al (2005) Hypoglycemic effects of turmeric (Curcuma longaL. rhizomes) on genetically diabetic KK-Ay mice. Biol Pharm Bull 28(5):937–939Google Scholar
  102. 102.
    Sridhar K, Bhat R (2007) Lotus – A potential nutraceutical source. J Agricult Technol 3(1):143–155Google Scholar
  103. 103.
    Huang B, Ban X, He J, Tong J, Tian J, Wang Y (2010) Hepatoprotective and antioxidant activity of ethanolic extracts of edible lotus (Nelumbo nucifera Gaertn.) leaves. Food Chem 120(3):873–878Google Scholar
  104. 104.
    Mukherjee P, Mukherjee D, Maji A, Rai S, Heinrich M (2009) The sacred lotus (Nelumbo nucifera)–phytochemical and therapeutic profile. J Pharm Pharmacol 61(4):407–422Google Scholar
  105. 105.
    Rong X, Peng G, Suzuki T, Yang Q, Yamahara J, Li Y (2009) A 35-day gavage safety assessment of ginger in rats. Regul Toxicol Pharmacol 54(2):118–123CrossRefGoogle Scholar
  106. 106.
    Ali B, Blunden G, Tanira M, Nemmar A (2008) Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol 46(2):409–420Google Scholar
  107. 107.
    Ani V, Varadaraj M, Naidu K (2006) Antioxidant and antibacterial activities of polyphenolic compounds from bitter cumin (Cuminum nigrum L.) Eur Food Res Technol 224(1):109–115CrossRefGoogle Scholar
  108. 108.
    Johri R (2011) Cuminum cyminum and Carum carvi: An update. Pharmacogn Rev 5(9):63–72Google Scholar
  109. 109.
    Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med 27(1):1–93CrossRefGoogle Scholar
  110. 110.
    Jirovetz L, Buchbauer G, Stoilova I, Stoyanova A, Krastanov A, Schmidt E (2006) Chemical composition and antioxidant properties of clove leaf essential oil. J Agric Food Chem 54(17):6303–6307CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mutiu Idowu Kazeem
    • 1
    Email author
  • Habeeb Adebodun Bankole
    • 1
  • Azeez Ayomide Fatai
    • 1
  • Abiola Fatimah Adenowo
    • 2
  • Theophilus Clavell Davies
    • 3
  1. 1.Department of Biochemistry, Faculty of ScienceLagos State UniversityOjoNigeria
  2. 2.Department of Biochemistry and MicrobiologyUniversity of ZululandKwadlangezwaSouth Africa
  3. 3.Department of GeologyUniversity of NigeriaNsukkaNigeria

Personalised recommendations