Chemistry, Biological, and Pharmacological Properties of Gum Arabic

  • Hassan Hussein MusaEmail author
  • Abdelkareem Abdall Ahmed
  • Taha Hussein Musa
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Gum Arabic (GA) is a natural branched-chain multifunctional hydrocolloid with a highly neutral or slightly acidic, arabino-galactan-protein complex containing calcium, magnesium, and potassium. Gum Arabic is dried exudate obtained from the stem and branches of Acacia trees manly Acacia senegal and Acacia seyal. GA was used by the Ancient Egyptians as an adhesive when wrapping mummies and in mineral paints when making hieroglyphs since the second millennium BC. In modern times, GA is used in foods, pharmaceutical, and many other industries. In this chapter, we describe the structure, chemical, and physical properties of Gum Arabic. In addition, biological properties include antioxidant properties of Gum Arabic, an effect of GA on renal function, blood glucose concentration, intestinal absorption, degradation of GA in the intestine, lipid metabolism, tooth mineralization, and hepatic macrophages. Similarly, pharmaceutical, food, and cosmetic properties of Gum Arabic are discussed.


Gum Arabic Chemical Biological Pharmacological Food Cosmetic Properties 





Arabinogalactan protein


Adipose triglyceride lipase




Chenodeoxycholic acid


Chronic renal failure


Gum Arabic




Glutathione peroxidase


High-density lipoprotein


Hormone-sensitive lipase


Low-density lipoprotein




Monoacylglycerol lipase


Reactive oxygen species


Superoxide dismutase




Total cholesterol


Very low density lipoprotein



Authors acknowledge all researchers whom conducted studies on Gum Arabic.


  1. 1.
    Renard D, Lavenant-Gourgeon L, Ralet MC, Sanchez C (2006) Acacia Senegal gum: continuum of molecular species differing by their protein to sugar ratio, molecular weight, and charges. Biomacromolecules 11(7):2637–2649. CrossRefGoogle Scholar
  2. 2.
    Phillips GO, Williams P (2001) Tree exudate gums: natural and versatile food additives and ingredients. Food Ingred Anal Int 23:26–28Google Scholar
  3. 3.
    Abuarra A, Hashim R, Bauk S, Kandaiya S, Tousi ET (2014) Fabrication and characterization of gum Arabic bonded Rhizophora spp. particleboards. Mater Des 60:108–115. CrossRefGoogle Scholar
  4. 4.
    Egadu SP, Mucunguzi P, Obua J (2007) Uses of tree species producing gum arabic in Karamoja, Uganda. Afr J Ecol 45:17–21. CrossRefGoogle Scholar
  5. 5.
    Ibrahim OB, Osman ME, Hassan EA (2013) Characterization and simple fractionation of Acacia senegal. J Chem Acta 2:11–17Google Scholar
  6. 6.
    Hadi AH, Elderbi MA, Mohamed AW (2010) Effect of gum arabic on coagulation system of albino rats. Int J PharmTech Res 2:1762–1766Google Scholar
  7. 7.
    Wyasu G, Okereke NZ-J (2012) Improving the film forming ability of gum arabic. J. Nat. Prod. Plant Resour 2:314–317Google Scholar
  8. 8.
    Vanloot P, Dupuy N, Guiliano M, Artaud J (2012) Characterisation and authentication of A. senegal and A. seyal exudates by infrared spectroscopy and chemometrics. Food Chem 135:2554–2560. CrossRefGoogle Scholar
  9. 9.
    Verbeken D, Dierckx S, Dewettinck K (2003) Exudate gums: occurrence, production, and applications. Appl Microbiol Biotechnol 63:10–21CrossRefGoogle Scholar
  10. 10.
    Glicksman M, Line Back DR, Ingett JE (eds) (1982) Food carbohydrates. Avi, CO., West port, CTGoogle Scholar
  11. 11.
    Walker B (1984) In: Phillips GO, Wedlock DJ, Williams TA (eds) Gum and stabilizers for the food industry, vol 2. Tergamon Press, OxfordGoogle Scholar
  12. 12.
    FAO (1996) A review of production, markets and quality control of gum Arabic in Africa. FAO, Rome. Forestry Dept, 191 pGoogle Scholar
  13. 13.
    Rodge AB, Sonkamble SM, Salve RV, Hashmi SI (2012) Effect of hydrocolloid (guar gum) incorporation on the quality characteristics of bread. J Food Process Technol 3:136Google Scholar
  14. 14.
    Islam AM, Phillips GO, Sljivo A, Snowden MJ, Williams PA (1997) A review of recent developments on the regulatory, structural and functional aspects of gum arabic. Food Hydrocolloids 11:493–505. (97)80048-3 CrossRefGoogle Scholar
  15. 15.
    Desplanques S, Renou F, Grisel M, Malhiac C (2012) Impact of chemical composition of xanthan and acacia gums on the emulsification and stability of oil-in-water emulsions. Food Hydrocoll 27:401–410. CrossRefGoogle Scholar
  16. 16.
    Ray AK, Bird PB, Iacobucci GA, Clark BC (1995) Functionality of gum arabic. Fractionation, characterization and evaluation of gum fractions in citrus oil emulsions and model beverages. Food Hydrocoll 9:123–131. (09)80274-9 CrossRefGoogle Scholar
  17. 17.
    Castellani O, Guibert D, Al-Assaf S, Axelos M, Phillips GO, Anton M (2010) Hydrocolloids with emulsifying capacity. Part 1–emulsifying properties and interfacial characteristics of conventional (Acacia senegal (L.) Willd. var. senegal) and matured (Acacia (sen) SUPER GUM™) Acacia senegal. Food Hydrocoll 24:193–199. CrossRefGoogle Scholar
  18. 18.
    Randall RC, Phillips GO, Williams PA (1989) Fractionation and characterization of gum from Acacia senegal. Food Hydrocoll 3:65–75. CrossRefGoogle Scholar
  19. 19.
    Al-Assaf S, Phillips GO, Aoki H, Sasaki Y (2007) Characterization and properties of Acacia senegal (L.) Wild. Var. senegal with enhanced properties (Acacia (sen) SUPER GUM™): part 1-controlled maturation of Acacia senegal var. senegal to increase viscoelasticity, produce a hydrogel form and convert a poor into a good emulsifier. Food Hydrocoll 21:319–328. CrossRefGoogle Scholar
  20. 20.
    Al Assaf S, Phillips GO, Williams PA (2005) Studies on acacia exudate gums. Part I: the molecular weight of Acacia senegal gum exudate. Food Hydrocoll 9:647–660CrossRefGoogle Scholar
  21. 21.
    Flindt C, Al-Assaf S, Phillips GO, Williams PA (2005) Studies on acacia exudate gums. Part V. Structural features of Acacia seyal. Food Hydrocoll 9:687–701CrossRefGoogle Scholar
  22. 22.
    Hassan EA, Al-Assaf S, Phillips GO, Williams PA (2005) Studies on acacia gums: part III molecular weight characteristics of Acacia seyal var. seyal and Acacia seyal var fistula. Food Hydrocoll 19:669–677CrossRefGoogle Scholar
  23. 23.
    Siddig NE, Osman ME, Al-Assaf S, Phillips GO, Williams PA (2005) Studies on acacia exudate gums, part IV. Distribution of molecular components in Acacia seyal in relation to Acacia senegal. Food Hydrocoll 19:679–686CrossRefGoogle Scholar
  24. 24.
    Osman ME, Williams PA, Menzies AR, Phillips GO (1993) Characterization of commercial samples of gum arabic. J Agric Food Chem 41:71–77. CrossRefGoogle Scholar
  25. 25.
    Williams PA, Phillips GO (2000) Handbook of Hydrocolloids. CRC Press, Cambridge, pp 155–168Google Scholar
  26. 26.
    Mahendran T, Williams PA, Phillips GO, Al-Assaf S, Baldwin TC (2008) New insights into the structural characteristics of the arabinogalactan − protein (AGP) fraction of gum arabic. J Agric Food Chem 56:9269–9276CrossRefGoogle Scholar
  27. 27.
    Menzies AR, Osman ME, Malik AA, Baldwin TC (1996) A comparison of the physicochemical and immunological properties of the plant gum exudates of Acacia senegal (gum arabic) and Acacia seyal (gum tahla)∗. Food Addit Contam 13:991–999CrossRefGoogle Scholar
  28. 28.
    Idris OH, Haddad GM (2012) Gum Arabic’s (Gum Acacia's) journey from tree to end user. In: Kennedy JF, Phillips GO, Williams PA (eds) Gum Arabic. RSC Publishing, Cambridge, p 3e19Google Scholar
  29. 29.
    Lopez-Torrez L, Nigen M, Williams P, Doco T, Sanchez C (2015) Acacia senegal vs. Acacia seyal gums–part 1: composition and structure of hyperbranched plant exudates. Food Hydrocoll 51:41–53CrossRefGoogle Scholar
  30. 30.
    ITC, International Trade Centre, 2008. Gum Arabic. Market News Service (MNS), Quarterly EditionGoogle Scholar
  31. 31.
    Hassan EA (2000) Characterization and fractionation of Acacia seyal gum. Doctoral dissertation, Ph. D. Thesis, University of Khartoum, KhartoumGoogle Scholar
  32. 32.
    FAO (1990) Specifications for identity and purity of certain food additives. Food and Nutrition Paper, 49. FAO, RomeGoogle Scholar
  33. 33.
    Larson BA, Bromely DW (1991) Natural resources prices, export policies, and deforestation: the case of Sudan. World Dev 19:1289–12897CrossRefGoogle Scholar
  34. 34.
    Karamalla KA (1999) Gum arabic production, chemistry and applications. University of Khartoum, KhartoumGoogle Scholar
  35. 35.
    Dauqan E, Abdullah A (2013) Utilization of gum arabic for industries and human health. Am J Appl Sci 10:1270–1279. CrossRefGoogle Scholar
  36. 36.
    Anderson DM, Weiping W (1990) The characterization of Acacia paolii gum and four commercial Acacia gums from Kenya. Food Hydrocoll 3:475–484. (09)80225-7 CrossRefGoogle Scholar
  37. 37.
    Lelon JK, Jumba IO, Keter JK, Chemuku W, Oduor FD (2010) Assessment of physical properties of gum arabic from Acacia senegal varieties in Baringo District, Kenya. African J Plant Sci 4:95–98Google Scholar
  38. 38.
    Elmqvist B (2003) The vulnerability of traditional agroforestry systems: a comparison of the Gum Arabic livelihood strategy before the 1984 drought to that of the present in Kordofan-Sudan. Paper presented at the Environment, Place and Sustainable Natural Resource Management Conference, UppsalaGoogle Scholar
  39. 39.
    Mocak J, Jurasek P, Phillips GO, Varga S, Casadei E, Chikemai BN (1998) The classification of natural gums. X. Chemometric characterization of exudate gums that conform to the revised specification of the gum arabic for food use, and the identification of adulterants. Food Hydrocoll 12:141–150CrossRefGoogle Scholar
  40. 40.
    FAO (1996) A review of production, markets and quality control of gum Arabic in Africa. FAO, Forestry Dept, Rome, 191 pGoogle Scholar
  41. 41.
    Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19CrossRefGoogle Scholar
  42. 42.
    Wu Y, Tang L, Chen B (2014) Oxidative stress: implications for the development of diabetic retinopathy and antioxidant therapeutic perspectives. Oxidative Med Cell Longev 10:752387Google Scholar
  43. 43.
    Son SM (2012) Reactive oxygen and nitrogen species in pathogenesis of vascular complications of diabetes. Diabetes Metab J 36:190–198CrossRefGoogle Scholar
  44. 44.
    Zhao Y, Yang K, Wang F, Liang Y, Peng Y, Shen R, Wong T, Wang N (2012) Associations between metabolic syndrome and syndrome components and retinal microvascular signs in a rural Chinese population: the Handan eye study. Graefes Arch Clin Exp Ophthalmol 250:1755–1763CrossRefGoogle Scholar
  45. 45.
    Bondeva T, Wolf G (2014) Reactive oxygen species in diabetic nephropathy: friend or foe? Nephrol Dial Transplant 29:1998–2003. CrossRefGoogle Scholar
  46. 46.
    Borza LR (2014) A review on the cause-effect relationship between oxidative stress and toxic proteins in the pathogenesis of neurodegenerative diseases. Rev Med Chir Soc Med Nat Iasi 118:19–27Google Scholar
  47. 47.
    Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930CrossRefGoogle Scholar
  48. 48.
    Tiedge M, Lortz S, Munday R, Lenzen S (1998) Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Diabetes 47:1578–1585. CrossRefGoogle Scholar
  49. 49.
    Tsai CJ, Hsieh CJ, Tung SC, Kuo MC, Shen FC (2012) Acute blood glucose fluctuations can decrease blood glutathione and adiponectin levels in patients with type 2 diabetes. Diabetes Res Clin Pract 98:257–263CrossRefGoogle Scholar
  50. 50.
    Tiwari BK, Pandey KB, Abidi AB, Rizvi SI (2013) Markers of oxidative stress during diabetes mellitus. J Biomarkers 2013:8 p.
  51. 51.
    Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Botany 24:26. Google Scholar
  52. 52.
    Dinçer Y, Akçay T, Alademir Z, İlkova H (2002) Assessment of DNA base oxidation and glutathione level in patients with type 2 diabetes. Mutat Res 505(1):75–81CrossRefGoogle Scholar
  53. 53.
    Góth L (2000) Lipid and carbohydrate metabolism in acatalasemia. Clin Chem 46:560–576Google Scholar
  54. 54.
    Wang C, Li S, Shang DJ, Wang XL, You ZL, Li HB (2011) Antihyperglycemic and neuroprotective effects of one novel Cu–Zn SOD mimetic. Bioorg Medicinal Chem Lett 21:4320–4324CrossRefGoogle Scholar
  55. 55.
    Nakhjavani M, Morteza A, Khajeali L, Esteghamati A, Khalilzadeh O, Asgarani F, Outeiro TF (2010) Increased serum hsp70 levels are associated with the duration of diabetes. Cell Stress Chaperones 15:959–964CrossRefGoogle Scholar
  56. 56.
    Nakhjavani M, Morteza A, Nargesi AA, Mostafavi E, Esteghamati A (2013) Appearance of leptin–HSP70 correlation, in type 2 diabetes. Meta Gene 1:1–7CrossRefGoogle Scholar
  57. 57.
    Fujita H, Fujishima H, Chida S, Takahashi K, Qi Z, Kanetsuna Y, Breyer MD, Harris RC, Yamada Y, Takahashi T (2009) Reduction of renal superoxide dismutase in progressive diabetic nephropathy. J Am Soc Nephrol 20:1303–1313CrossRefGoogle Scholar
  58. 58.
    Al-Majed AA, Abd-Allah AR, Al-Rikabi AC, Al-Shabanah OA, Mostafa AM (2003) Effect of oral administration of arabic gum on cisplatin-induced nephrotoxicity in rats. J Biochem Mol Toxicol 17:146–153CrossRefGoogle Scholar
  59. 59.
    Al-Majed AA, Mostafa AM, Al-Rikabi AC, Al-Shabanah OA (2002) Protective effects of oral arabic gum administration on gentamicin-induced nephrotoxicity in rats. Pharmacol Res 46:445–451. CrossRefGoogle Scholar
  60. 60.
    Abd-Allah AR, Al-Majed AA, Mostafa AM, Al-Shabanah OA, Din AG, Nagi MN (2002) Protective effect of arabic gum against cardiotoxicity induced by doxorubicin in mice: a possible mechanism of protection. J Biochem Mol Toxicol 16(5):254–259CrossRefGoogle Scholar
  61. 61.
    Trommer H, Neubert RH (2005) The examination of polysaccharides as potential antioxidative compounds for topical administration using a lipid model system. Int J Pharm 298:153–163. CrossRefGoogle Scholar
  62. 62.
    Ali BH (2004) Does gum Arabic have an antioxidant action in rat kidney. Ren Fail 26:1–3. CrossRefGoogle Scholar
  63. 63.
    Marcuse R (1960) Antioxidative effect of amino-acids. Nature 186:886–887CrossRefGoogle Scholar
  64. 64.
    Park EY, Murakami H, Matsumura Y (2005) Effects of the addition of amino acids and peptides on lipid oxidation in a powdery model system. J Agric Food Chem 53:8334–8341. CrossRefGoogle Scholar
  65. 65.
    Ali BH, Ziada A, Blunden G (2009) Biological effects of gum arabic: a review of some recent research. Food Chem Toxicol 47:1–8CrossRefGoogle Scholar
  66. 66.
    Liu Y, Hou Z, Yang J, Gao Y (2015) Effects of antioxidants on the stability of β-carotene in O/W emulsions stabilized by Gum Arabic. J Food Sci Technol 52:3300–3311Google Scholar
  67. 67.
    Ali BH, Al-Qarawi AA, Haroun EM, Mousa HM (2003) The effect of treatment with Gum Arabic on gentamicin nephrotoxicity in rats: a preliminary study. Ren Fail 25:15–20. CrossRefGoogle Scholar
  68. 68.
    Gado AM, Aldahmash BA (2013) Antioxidant effect of Arabic gum against mercuric chloride-induced nephrotoxicity. Drug Des Dev Ther 7:1245CrossRefGoogle Scholar
  69. 69.
    Nasir O, Babiker S, Salim AM (2016) Protective Effect of Gum Arabic Supplementation for Type 2 Diabetes Mellitus and its Complications. Int. J. Multidiscip Curr Res 4:288–294Google Scholar
  70. 70.
    Musa HH, Ahmed AA, Fedail JS, Musa TH, Sifaldin AZ (2016) Gum Arabic attenuates the development of nephropathy in type 1 diabetes rat. In: Gums and stabilisers for the food industry. Royal Society of Chemistry, Cambridge, pp 245–255Google Scholar
  71. 71.
    Othman RB, Ibrahim H, Mankai A, Abid N, Othmani N, Jenhani N, Tertek H, Trabelsi N, Trimesh A, Mami FB (2013) Use of hypoglycemic plants by Tunisian diabetic patients. Alexandria J Med 49:261–264CrossRefGoogle Scholar
  72. 72.
    Nasir O, Artunc F, Wang K, Rexhepaj R, Föller M, Ebrahim A, Kempe DS, Biswas R, Bhandaru M, Walter M, Mohebbi N (2010) Downregulation of mouse intestinal Na+-coupled glucose transporter SGLT1 by Gum Arabic (Acacia senegal). Cell Physiol Biochem 25:203–210CrossRefGoogle Scholar
  73. 73.
    Teichberg S, Wingertzahn MA, Moyse J, Wapnir RA (1999) Effect of gum arabic in an oral rehydration solution on recovery from diarrhea in rats. J Pediatr Gastroenterol Nutr 29:411–417CrossRefGoogle Scholar
  74. 74.
    Rehman KU, Wingertzahn MA, Teichberg S, Harper RG, Wapnir RA (2003) Gum arabic (GA) modifies paracellular water and electrolyte transport in the small intestine. Dig Dis Sci 48:755–760CrossRefGoogle Scholar
  75. 75.
    Codipilly CN, Wapnir RA (2004) Proabsorptive action of gum arabic in isotonic solutions orally administered to rats. II. Effects on solutes under normal and secretory conditions. Dig Dis Sci 49:1473–1478CrossRefGoogle Scholar
  76. 76.
    Wapnir RA, Wingertzahn MA, Moyse JE, Teichberg SA (1997) Gum arabic promotes rat jejunal sodium and water absorption from oral rehydration solutions in two models of diarrhea. Gastroenterology 112:1979–1985CrossRefGoogle Scholar
  77. 77.
    Wapnir RA, Teichberg S, Go JT, Wingertzahn MA, Harper RG (1996) Oral rehydration solutions: enhanced sodium absorption with gum arabic. J Am Coll Nutr 15:377–382CrossRefGoogle Scholar
  78. 78.
    Turvill JL, Wapnir RA, Wingertzahn MA, Teichberg S, Farthing MJ (2000) Cholera toxin-induced secretion in rats is reduced by a soluble fiber, gum arabic. Dig Dis Sci 45:946–951CrossRefGoogle Scholar
  79. 79.
    Phillips GO (1998) Acacia gum (gum arabic): a nutritional fibre; metabolism and calorific value. Food Addit Contam 15:251–264CrossRefGoogle Scholar
  80. 80.
    Kishimoto A, Ushida K, Phillips GO, Ogasawara T, Sasaki Y (2006) Identification of intestinal bacteria responsible for fermentation of gum arabic in pig model. Curr Microbiol 53:173–177CrossRefGoogle Scholar
  81. 81.
    Babiker R, Merghani TH, Elmusharaf K, Badi RM, Lang F, Saeed AM (2012) Effects of gum Arabic ingestion on body mass index and body fat percentage in healthy adult females: two-arm randomized, placebo controlled, double-blind trial. Nutr J 11:111CrossRefGoogle Scholar
  82. 82.
    Schneeman BO (1987) Dietary fiber: comments on interpreting recent research. J Am Diet Assoc 87:1163Google Scholar
  83. 83.
    Ahmed AA, Musa HH, Fedail JS, Sifaldin AZ, Musa TH (2016) Gum arabic suppressed diet-induced obesity by alteration the expression of mRNA levels of genes involved in lipid metabolism in mouse liver. Bioact Carbohydr Diet Fibre 7:15–20CrossRefGoogle Scholar
  84. 84.
    Ushida K (2011) Gum arabic and its anti-obese effect. In: Gum Arabic, pp 285–290CrossRefGoogle Scholar
  85. 85.
    Ahmed AA, Fedail JS, Musa HH, Kamboh AA, Sifaldin AZ, Musa TH (2015) Gum Arabic extracts protect against hepatic oxidative stress in alloxan induced diabetes in rats. Pathophysiology 22:189–194CrossRefGoogle Scholar
  86. 86.
    Mohamed RE, Gadour MO, Adam I (2015) The lowering effect of gum Arabic on hyperlipidemia in Sudanese patients. Front Physiol 6:160CrossRefGoogle Scholar
  87. 87.
    Dvir I, Stark AH, Chayoth R, Madar Z, Arad SM (2009) Hypocholesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats. Forum Nutr 1:156–167Google Scholar
  88. 88.
    Lattimer JM, Haub MD (2010) Effects of dietary fiber and its components on metabolic health. Forum Nutr 2:1266–1289Google Scholar
  89. 89.
    Parnell JA, Reimer RA (2010) Effect of prebiotic fibre supplementation on hepatic gene expression and serum lipids: a dose–response study in JCR: LA-cp rats. Br J Nutr 103:1577–1584CrossRefGoogle Scholar
  90. 90.
    Brockman DA, Chen X, Gallaher DD (2014) High-viscosity dietary fibers reduce adiposity and decrease hepatic steatosis in rats fed a high-fat diet. J Nutr 144:1415–1422CrossRefGoogle Scholar
  91. 91.
    Park JA, Tirupathi Pichiah PB, JJ Y, SH O, Daily JW, Cha YS (2012) Anti-obesity effect of kimchi fermented with Weissella koreensis OK1-6 as starter in high-fat diet-induced obese C57BL/6J mice. J Appl Microbiol 113:1507–1516CrossRefGoogle Scholar
  92. 92.
    Kishida T, Nogami H, Ogawa H, Ebihara K (2002) The hypocholesterolemic effect of high amylose cornstarch in rats is mediated by an enlarged bile acid pool and increased fecal bile acid excretion, not by cecal fermented products. J Nutr 132:2519–2524Google Scholar
  93. 93.
    Rideout TC, Harding SV, Jones PJ, Fan MZ (2008) Guar gum and similar soluble fibers in the regulation of cholesterol metabolism: current understandings and future research priorities. Vasc Health Risk Manag 4:1023CrossRefGoogle Scholar
  94. 94.
    Nielsen TS, Jessen N, Jørgensen JO, Møller N, Lund S (2014) Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol Endocrinol 52:R199–R222CrossRefGoogle Scholar
  95. 95.
    Aoba T (2004) Solubility properties of human tooth mineral and pathogenesis of dental caries. Oral Dis 10:249–257CrossRefGoogle Scholar
  96. 96.
    Cheng KK, Chalmers I, Sheldon TA (2007) Adding fluoride to water supplies. BMJ 335:699–702CrossRefGoogle Scholar
  97. 97.
    Onishi T, Umemura S, Yanagawa M, Matsumura M, Sasaki Y, Ogasawara T, Ooshima T (2008) Remineralization effects of Gum Arabic on caries-like enamel lesions. Arch Oral Biol 53:257–260CrossRefGoogle Scholar
  98. 98.
    Clark DT, Gazi MI, Cox SW, Eley BM, Tinsley GF (1993) The effects of Acacia arabica Gum on the in vitro growth and protease activities of periodontopathic bacteria. J Clin Periodontol 4:238–243. ISSN: 0303-6979CrossRefGoogle Scholar
  99. 99.
    Mochida S, Ohno A, Arai M, Tamatani T, Miyasaka M, Fujiwara K (1996) Role of adhesion molecules in the development of massive hepatic necrosis in rats. Hepatology 23:320–328CrossRefGoogle Scholar
  100. 100.
    Mochida S, Ogata I, Hirata K, Ohta Y, Yamada S, Fujiwara K (1990) Provocation of massive hepatic necrosis by endotoxin after partial hepatectomy in rats. Gastroenterology 99:771–777CrossRefGoogle Scholar
  101. 101.
    Fujiwara K, Mochida S, Nagoshi S, Iijima O, Matsuzaki Y, Takeda S, Aburada M (1995) Regulation of hepatic macrophage function by oral administration of xiao-chai-hu-tang (sho-saiko-to, TJ-9) in rats. J Ethnopharmacol 46:107–114CrossRefGoogle Scholar
  102. 102.
    Ali AA, Ali KE, Fadlalla A, Khalid KE (2008) The effects of GA oral treatment on the metabolic profile of chronic renal failure patients under regular haemodialysis in Central Sudan. Nat Prod Res 22:12–21CrossRefGoogle Scholar
  103. 103.
    Zatz JL, Kushla GP (1989) In: Reiger MM, Banker GS (eds) Pharmaceutical dosage forms: Disperse systems. Marcel Dekker Inc., New York, p 508Google Scholar
  104. 104.
    Hinson JA, Reid AB, McCullough SS, James LP (2004) Acetaminophen-induced hepatotoxicity: role of metabolic activation, reactive oxygen/nitrogen species, and mitochondrial permeability transition. Drug Metab Rev 36(3–4):805–822CrossRefGoogle Scholar
  105. 105.
    Ali BH, Al Moundhri MS (2006) Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol 44:1173–1183CrossRefGoogle Scholar
  106. 106.
    Evans AJ, Hood RL, Oaken full DG, Sidhu GS (1992) Relationship between structure and function of dietary fibre: a comparative study of the effects of three galactomannans on cholesterol metabolism in the rat. Br J Nutr 68:217–229CrossRefGoogle Scholar
  107. 107.
    Tiss A, Carrière F, Verger R (2001) Effects of gum Arabic on lipase interfacial binding and activity. Anal Biochem 294(1):36–43CrossRefGoogle Scholar
  108. 108.
    Matsumoto N, Riley S, Fraser D, Al-Assaf S, Ishimura E, Wolever T, Phillips GO, Phillips AO (2006) Butyrate modulates TGF-beta1 generation and function: potential renal benefit for Acacia (sen) SUPERGUM (G.A.)? Kidney Int 69:257–265CrossRefGoogle Scholar
  109. 109.
    Glover DA, Ushida K, Phillips AO, Riley SG (2009) Acacia (sen) SUPERGUMTM (Gum Arabic): an evaluation of potential health benefits in human subjects. Food Hydrocoll 23:2410–2415CrossRefGoogle Scholar
  110. 110.
    Wapnir RA, Sherry B, Codipilly CN, Goodwin LO, Vancurova I (2008) Modulation of rat intestinal nuclear factor NF-kappaB by Gum Arabic. Dig Dis Sci 53:80–87CrossRefGoogle Scholar
  111. 111.
    Adiotomre J, Eastwood MA, Edwards CA, Brydon WG (1990) Dietary fiber: in vitro methods that anticipate nutrition and metabolic activity in humans. Am J Clin Nutr 52:128–134Google Scholar
  112. 112.
    Annison G, Trimble RP, Topping DL (1995) Feeding Australian acacia gums and gum Arabic leads to non-starch polysaccharide accumulation in the cecum of rats. J Nutr 125(2):283–292Google Scholar
  113. 113.
    Ross AH, Eastwood MA, Brydon WG, Anderson JR, Anderson DM (1983) A study of the effects of dietary Gum Arabic in humans. Am J Clin Nutr 37:368–375Google Scholar
  114. 114.
    Sharma RD (1985) Hypocholesterolaemic effect of Gum acacia in men. Nutr Res 5(12):1321–1326CrossRefGoogle Scholar
  115. 115.
    Jani GK, Shah DP, Prajapati VD, Jain VC (2009) Gums and mucilages: versatile excipients for pharmaceutical formulations. Asian J Pharm Sci 4:309–323Google Scholar
  116. 116.
    Elmanan M, Al-Assaf S, Phillips GO, Williams PA (2008) Studies on Acacia exudate gums: part VI. Interfacial rheology of Acacia senegal and Acacia seyal. Food Hydrocoll 22:682e–6689CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Hassan Hussein Musa
    • 1
    Email author
  • Abdelkareem Abdall Ahmed
    • 2
  • Taha Hussein Musa
    • 3
  1. 1.Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of KhartoumKhartoumSudan
  2. 2.Department of Physiology and Biochemistry, Faculty of Veterinary Sciences, University of NyalaNyalaSudan
  3. 3.Key Laboratory of Environmental Medicine, Ministry of Education, School of Public HealthSoutheast UniversityNanjingChina

Personalised recommendations