Skip to main content

Educational Opportunities for Augmented Reality

  • Living reference work entry
  • First Online:

Part of the book series: Springer International Handbooks of Education ((SIHE))

Abstract

This chapter provides an overview of immersive virtual environments (IVEs) in education with an emphasis on augmented reality (AR). A related chapter “Educational Opportunities for Immersive Virtual Reality” focuses on the other main branch of IVE. The chapter begins with an attempt to clarify and define terms. Then, a review of research is presented for AR that highlights the current and potential impact in PreK-12, higher education, and professional development settings. Findings suggest that use of AR can lead to increased engagement. However, the synthesis also points mostly to theoretical argumentation for AR’s PreK-12 implementation.

This is a preview of subscription content, log in via an institution.

References

  • Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1–11.

    Article  Google Scholar 

  • Akçayır, M., Akçayır, G., Pektas, H. M., & Ocak, M. A. (2016). Augmented reality in science laboratories: The effects of augmented reality on university students’ laboratory skills and attitudes toward science laboratories. Computers in Human Behavior, 57, 334–342.

    Article  Google Scholar 

  • Alaker, M., Wynn, G. R., & Arulampalam, T. (2016). Virtual reality training in laparoscopic surgery: A systematic review & meta-analysis. International Journal of Surgery, 29, 85–94.

    Article  Google Scholar 

  • Althoff, T., White, R. W., & Horvitz, E. (2016). Influence of pokémon go on physical activity: Study and implications. Eprint arXiv:1610.02085. Available at: https://arxiv.org/abs/1610.02085.

  • Antonioli, M., Blake, C., & Sparks, K. (2014). Augmented reality applications in education. The Journal of Technology Studies, 40(2), 96–107.

    Article  Google Scholar 

  • Arth, C. et al. (2015) .The history of mobile augmented reality. Technical Report ICG{TR{2015-001).

    Google Scholar 

  • Bacca, J., et al. (2014). Augmented reality trends in education: A systematic review of research and applications. Educational Technology & Society, 17(4), 133–149.

    Google Scholar 

  • Bostanci, E. Kanwal, N., & Clark, A. F. (2015). Augmented reality applications for cultural heritage using Kinect. Human-centric Computing and Information Sciences, 5(20). https://doi.org/10.1186/s13673-015-0040-3.

  • Chan, S., Conti, F., Salisbury, K., & Blevins, N. H. (2013). Virtual reality simulation in neurosurgery: Technologies and evolution. Neurosurgery, 72(51), A154–A164.

    Article  Google Scholar 

  • Chang, H. Y., Wu, H. K., & Hsu, Y. S. (2013). Integrating a mobile augmented reality activity to contextualize student learning of a socioscientific issue. British Journal of Educational Technology, 44(3), 95–99.

    Article  Google Scholar 

  • Chang, Y. L., Hou, H. T., Pan, C. Y., Sung, Y. T., & Chang, K. E. (2015). Apply an augmented reality in a mobile guidance to increase sense of place for heritage places. Educational Technology & Society, 18(2), 166–178.

    Google Scholar 

  • Chen, C. H., Ho, C. H., & Lin, J. B. (2015). The development of an augmented reality game-based learning environment. Procedia – Social and Behavioral Sciences, 174, 216–220.

    Article  Google Scholar 

  • Cheng, H. K., & Tsai, C. C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22, 449–462.

    Article  Google Scholar 

  • Chiang, T. H. C., Yang, S. J. H., & Hwang, G. J. (2014a). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Educational Technology & Society, 17(4), 352–365.

    Google Scholar 

  • Chiang, T. H. C., Yang, S. J. H., Hwang, G. J., Su, A., & Y. S. (2014b). Cooperative learning by location-based augmented reality for an inquiry learning course. In AA. VV. (Ed.), Proceedings of international conference of educational innovation through technology (pp. 75–78). Piscataway: IEEE.

    Google Scholar 

  • Clark, A. M., & Clark, M. T. G. (2016). Pokemon go and research: Qualitative, ‘mixed methods research, and the supercomplexity of interventions. International Journal of Qualitative Methods, 15(1). https://doi.org/10.1177/16094069166677651.

  • Cuendet, S., Bonnard, Q., Do-Lenh, S., & Dillenbourg, P. (2013). Designing augmented reality for the classroom. Computers & Education, 68, 557–569.

    Article  Google Scholar 

  • D’Angelo, C., et al. (2013). Review of computer-based simulations for STEM learning in PreK-12 education. Menlo Park: SRI International.

    Google Scholar 

  • Di Serio, A., Ibáñez, M. B., & Kloos, C. D. (2013). Impact of an augmented reality system on students’ motivation for a visual art course. Computers & Education, 68, 586–596.

    Article  Google Scholar 

  • Djebbari, E., Ailincai, A., & Boissarie, X. (2014). Mobilearn : Augmented reality in the service of informal learning. In IFLA, Lyon, pp. 1–11.

    Google Scholar 

  • Dunleavy, M., & Dede, C. (2014). Augmented reality teaching and learning. In J. M. Spector et al. (Eds.), Handbook of research on educational communications and technology (pp. 735–745). New York: Springer.

    Chapter  Google Scholar 

  • Echeverría, A., Gil, F., & Nussbaum, M. (2016). Classroom augmented reality games: A model for the creation of immersive collaborative games in the classroom. Available at: http://www.ceppe.cl/images/stories/articulos/tic/2.2-Nussbaum-Classroom-Augmented-Reality-Games-A-model-for-the-creation-of-immersive-collaborative-games-in-the-classroom.pdf.

  • Ferdig, E. R. (2006). Assessing technologies for teaching and learning: Understanding the importance of technological pedagogical content knowledge. British Journal of Educational Technology, 37(5), 749–760.

    Article  Google Scholar 

  • Ferdig, R. E., Gandolfi, E., & Immel, Z. (2018). Educational opportunities for immersive virtual reality. In J. Voogt, G. Knezek, R. Christensen, & K.-W. Lai (Eds.), Handbook of information technology in primary and secondary education, Springer International Handbooks of Education. Cham: Springer International Publishing.

    Google Scholar 

  • Fleck, S., Hachet, M., & Bastien, C. J. M. (2015). Marker-based augmented reality: Instructional-design to improve children interactions with astronomical concepts. Medford: IDC 2015.

    Book  Google Scholar 

  • Freina, L., & Ott, M. (2015). A literature review on immersive virtual reality in education: State of the art and perspectives. In Proceedings of eLearning and software for education (eLSE). Bucharest, 23–24 Apr 2015.

    Google Scholar 

  • Furio, et al. (2015). Mobile learning vs. traditional classroom lessons: A comparative study. Journal of Computer Assisted Learning, 31(3), 189–201.

    Article  Google Scholar 

  • Gallagher, S., & Lindgren, R. (2015). Enactive metaphors: Learning through full-body engagement. Educational Psychology Review, 27(3), 391–404.

    Article  Google Scholar 

  • Gordon, T., Walters, L., & Michlowitz, R. (2016). An augmented reality mobile application for intergenerational learning and critical connection. In V.V. A.A. (Eds.), Digital humanities – 2016 (pp. 1–6). Amsterdam: ADHO.

    Google Scholar 

  • Harley, et al. (2016). Comparing virtual and location-based augmented reality mobile learning: Emotions and learning outcomes. Educational Technology Research and Development, 64, 359–388.

    Article  Google Scholar 

  • Huang, T. C., Chen, C. C., & Chou, W. Y. (2016). Animating eco-education: To see, feel, and discover in an augmented reality-based experiential learning environment. Computers & Education, 96, 72–82.

    Article  Google Scholar 

  • Jamali, S. S., Shiratuddin, M. F., Wong, K. W., & Oskam, C. L. (2015). Utilising mobile-augmented reality for learning human anatomy. Procedia – Social and Behavioral Sciences, 197, 659–668.

    Article  Google Scholar 

  • Jung, T., Chung, N., & Leue, M. C. (2015). The determinants of recommendations to use augmented reality technologies: The case of a Korean theme park. Tourism Management, 49, 75–86.

    Article  Google Scholar 

  • Kamarainen, et al. (2013). EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. Computers & Education, 68, 545–556.

    Article  Google Scholar 

  • Karutz, C. O., & Bailenson, J. N. (2015). Immersive virtual environments and the classrooms of tomorrow. In S. Shyam Sundar (Ed.), The handbook of the psychology of communication technology (pp. 290–310). Hoboken: Wiley-Blackwell.

    Google Scholar 

  • Kelling, N., & Kelling, A. (2014). Zooar: Zoo based augmented reality signage. In V.V. A.A. (Eds.), Proceedings of the human factors and ergonomics society 58th annual meeting (pp. 1099–1103). Santa Monica: HFES.

    Google Scholar 

  • Kidd, S. H., & Crompton, H. (2015). Augmented learning with augmented reality. In D. Churchill et al. (Eds.), Mobile learning design, lecture notes in educational technology (pp. 97–108). New York: Springer.

    Google Scholar 

  • Kincaid, J. P., & Westerlund, K. K. (2009). Simulation in education and training. In M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, & R. G. Ingalls (Eds.), Proceedings of the 2009 winter simulation conference (pp. 273–280). IEEE.

    Google Scholar 

  • Kysela, J., & Štorková, P. (2015). Using augmented reality as a medium for teaching history and tourism. Procedia – Social and Behavioral Sciences, 174, 926–931.

    Article  Google Scholar 

  • Laine, T. H., Nygren, E., Dirin, A., & Suk, H. J. (2016). Science spots AR: A platform for science learning games with augmented reality. Educational Technology Research and Development, 64, 507–531.

    Article  Google Scholar 

  • Leue, C. M., Jung, T., & Dieck, D. T. (2015). Google glass augmented reality: Generic learning outcomes for art galleries. In I. Tussyadiah & A. Inversini (Eds.), Information and communication technologies in tourism (pp. 463–476). New York: Springer.

    Google Scholar 

  • Liao, T., & Humphreys, L. (2015). Layar-ed places: Using mobile augmented reality to tactically reengage, reproduce, and reappropriate public space. New Media & Society, 17(9), 1418–1435.

    Article  Google Scholar 

  • Lindgren, R., Tscholl, M., Wang, S., & Johnson, E. (2016). Enhancing learning and engagement through embodied interaction within a mixed reality simulation. Computers & Education, 95, 174–187.

    Article  Google Scholar 

  • Majorek, M., & du Vall, M. (2016). Ingress: An example of a new dimension in entertainment. Games and Culture, 11(7–8), 667–689.

    Article  Google Scholar 

  • Martínez-Graña, A. M., et al. (2016). Augmented reality in a hiking tour of the Miocene Geoheritage of the Central Algarve cliffs (Portugal). Geoheritage. https://doi.org/10.1007/s12371-016-0182-3.

  • Martín-Gutiérrez, J., Fabiani, P., Benesova, W., Meneses, M. D., & Mora, C. E. (2015). Augmented reality to promote collaborative and autonomous learning in higher education. Computers in Human Behavior, 51, 752–761.

    Article  Google Scholar 

  • Mason, M. (2016). The MIT museum glassware prototype: Visitor experience exploration for designing smart glasses. Journal on Computing and Cultural Heritage, 9(3), 12–28.

    Article  Google Scholar 

  • Merchant, Z., et al. (2014). Effectiveness of virtual reality-based instruction on students’ learning outcomes in PreK-12 and higher education: A meta-analysis. Computers & Education, 70, 29–40.

    Article  Google Scholar 

  • Michalos, G., et al. (2016). Augmented reality (AR) applications for supporting human-robot interactive cooperation. Procedia CIRP, 41, 370–375.

    Article  Google Scholar 

  • Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, E77–D, 1321–1329.

    Google Scholar 

  • Noor, A. K., & Aras, R. (2015). Potential of multimodal and multiuser interaction with virtual holography. Advances in Engineering Software, 81, 1–6.

    Article  Google Scholar 

  • O’Shea, P. M., & Elliott, J. B. (2016). Augmented reality in education: An exploration and analysis of currently available educational apps. In C. Allison et al. (Eds.), iLRN 2016, CCIS 621 (pp. 147–159). New York: Springer.

    Google Scholar 

  • Pacheco, D., et al. (2014). Spatializing experience: A framework for the geolocalization, visualization and exploration of historical data using VR/AR technologies. In V.V. A.A. (Eds.), Laval Virtual VRIC’ 14 (pp. 1–4). Paris: Laval.

    Google Scholar 

  • Persefoni, K., & Tsinakos, A. (2015). Use of augmented reality in terms of creativity in school learning. Make2Learn 2015 workshop at ICEC’15. Trondheim, 29 Sept 2015.

    Google Scholar 

  • Phipps, L., Alvarez, V., de Freitas, S., Wong, K., Baker, M., & Pettit, J. (2016). Conserv-AR: A virtual and augmented reality mobile game to enhance students’ awareness of wildlife conservation in Western Australia. 15th world conference on mobile and contextual learning (mLearn 2016). Sydney, 24–26 Oct, 2016.

    Google Scholar 

  • Radu, I., Doherty, E., DiQuollo, K., McCarthy, B., & Tiu, M. (2015). Cyberchase shape quest: pushing geometry education boundaries with augmented reality. In Proceedings of the 14th international conference on interaction design and children (pp. 430–433). ACM.

    Google Scholar 

  • Shayan, S., et al. (2015). The emergence of proportional reasoning from embodied interaction with a tablet application: An eye-tracking study. In Proceedings of INTED2015 conference. Madrid, 2nd–4th Mar 2015.

    Google Scholar 

  • Shirai, A., Kose, Y., Minobe, K., & Kimura, T. (2015). Gamification and construction of virtual field museum by using augmented reality game “ingress”. In V.V. A.A. (Eds.), VRIC ‘15 (pp. 1–4). New York: ACM.

    Google Scholar 

  • Sitzmann, T. (2011). A meta-antuzunalytic examination of the instructional effectiveness of computer-based simulation games. Personnel Psychology, 64, 489–528.

    Article  Google Scholar 

  • Sommerauer, P., & Müller, O. (2014). Augmented reality in informal learning environments: A field experiment in a mathematics exhibition. Computers & Education, 79, 59–68.

    Article  Google Scholar 

  • Tateno, M., et al. (2016). New game software (Pokémon go) may help youth with severe social withdrawal, hikikomori. Psychiatry Research, 246(30), 848–849. Available at: http://www.sciencedirect.com/science/article/pii/S0165178116312987.

    Article  Google Scholar 

  • Techakosit, S., & Wannapiroon, P. (2015). Connectivism learning environment in augmented reality science laboratory to enhance scientific literacy. Procedia – Social and Behavioral Sciences, 174, 2108–2115.

    Article  Google Scholar 

  • Wei, X., Weng, D., Liu, Y., & Wang, Y. (2015). Teaching based on augmented reality for a technical creative design course. Computers & Education, 81, 221–234.

    Article  Google Scholar 

  • Wu, H. K., Lee, S. W. Y., Chang, H. Y., & Liang, J. C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62, 41–49.

    Article  Google Scholar 

  • Yilmaz, R. M. (2016). Educational magic toys developed with augmented reality technology for early childhood education. Computers in Human Behavior, 54, 240–248.

    Article  Google Scholar 

  • Zimmerman, H. T., Land, S. M., & Jung, Y. J. (2015). Using augmented reality to support children’s situational interest and science learning during context-sensitive informal mobile learning. In A. Peña-Ayala (Ed.), Mobile, ubiquitous, and pervasive learning (pp. 101–119). New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enrico Gandolfi or Richard E. Ferdig .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gandolfi, E., Ferdig, R.E., Immel, Z. (2018). Educational Opportunities for Augmented Reality. In: Voogt, J., Knezek, G., Christensen, R., Lai, KW. (eds) Second Handbook of Information Technology in Primary and Secondary Education . Springer International Handbooks of Education. Springer, Cham. https://doi.org/10.1007/978-3-319-53803-7_112-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53803-7_112-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53803-7

  • Online ISBN: 978-3-319-53803-7

  • eBook Packages: Springer Reference EducationReference Module Humanities and Social SciencesReference Module Education

Publish with us

Policies and ethics