Skip to main content

Engineering Nanofibers as Electrode and Membrane Materials for Batteries, Supercapacitors, and Fuel Cells

  • Reference work entry
  • First Online:
Handbook of Nanofibers

Abstract

Energy and environment are two major problems facing mankind today. Developing environment-friendly and energy-saving technology has always been the focuses of researchers all over the world. Batteries, supercapacitors, and fuel cells are three widely used or promising devices that can ease the energy and environmental pressures. However, there are still many problems and deficiencies that need to be solved or improved, such as low capacity, low-power density, and poor durability. In order to address these drawbacks, nanofibers are introduced into the application of electrode and electrolyte fabrication because of the high specific surface area, interpenetrating network, and strength. This section will introduce the applications of nanofibers in batteries, supercapacitors, and fuel cells in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naoi K, Ishimoto S, Miyamoto J-i, Naoi W (2012) Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ Sci 5(11):9363–9373

    Article  CAS  Google Scholar 

  2. Dudney NJ, Li J (2015) Using all energy in a battery. Science 347(6218):131–132

    Article  CAS  Google Scholar 

  3. Conway BE (1991) Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J Electrochem Soc 138(6):1539–1548

    Article  CAS  Google Scholar 

  4. Zeng X, Ge Y, Shen J, Zeng L, Liu Z, Liu W (2017) The optimization of channels for a proton exchange membrane fuel cell applying genetic algorithm. Int J Heat Mass Transf 105:81–89

    Article  CAS  Google Scholar 

  5. Ahmadi N, Rezazadeh S, Mirzaee I, Pourmahmoud N (2012) Three-dimensional computational fluid dynamic analysis of the conventional PEM fuel cell and investigation of prominent gas diffusion layers effect. J Mech Sci Technol 26(8):2247–2257

    Article  Google Scholar 

  6. Yin C, Gao J, Wen X, Xie G, Yang C, Fang H et al (2016) In situ investigation of proton exchange membrane fuel cell performance with novel segmented cell design and a two-phase flow model. Energy 113:1071–1089

    Article  CAS  Google Scholar 

  7. Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4(8):2682–2699

    Article  CAS  Google Scholar 

  8. Manthiram A, Fu Y, Su Y-S (2012) Challenges and prospects of lithium–sulfur batteries. Acc Chem Res 46(5):1125–1134

    Article  CAS  Google Scholar 

  9. Roy P, Srivastava SK (2015) Nanostructured anode materials for lithium ion batteries. J Mater Chem A 3(6):2454–2484

    Article  CAS  Google Scholar 

  10. Liu D, Cao G (2010) Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation. Energy Environ Sci 3(9):1218–1237

    Article  CAS  Google Scholar 

  11. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4418

    Article  CAS  Google Scholar 

  12. Gu Y, Chen D, Jiao X (2005) Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries. J Phys Chem B 109(38):17901–17906

    Article  CAS  Google Scholar 

  13. Liu Y, Taya M (2009) Electrospinning fabrication and electrochemical properties of lithium cobalt nanofibers for lithium battery cathode. SPIE smart structures and materials+ nondestructive evaluation and health monitoring; 2009: International Society for Optics and Photonics

    Google Scholar 

  14. Gu Y, Chen D, Jiao X, Liu F (2007) LiCoO 2–MgO coaxial fibers: co-electrospun fabrication, characterization and electrochemical properties. J Mater Chem 17(18):1769–1776

    Article  CAS  Google Scholar 

  15. Zhu C, Yu Y, Gu L, Weichert K, Maier J (2011) Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires. Angew Chem Int Ed 50(28):6278–6282

    Article  CAS  Google Scholar 

  16. Hosono E, Wang Y, Kida N, Enomoto M, Kojima N, Okubo M et al (2009) Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method. ACS Appl Mater Interfaces 2(1):212–218

    Article  CAS  Google Scholar 

  17. Lu Q, Hutchings GS, Zhou Y, Xin HL, Zheng H, Jiao F (2014) Nanostructured flexible Mg-modified LiMnPO 4 matrix as high-rate cathode materials for Li-ion batteries. J Mater Chem A 2(18):6368–6373

    Article  CAS  Google Scholar 

  18. Vu NH, Arunkumar P, Im WB (2017) High-performance spinel-rich Li1. 5MnTiO4+ δ ultralong nanofibers as cathode materials for Li-ion batteries. Sci Rep 7:45579

    Article  CAS  Google Scholar 

  19. Zhou X, Dai Z, Liu S, Bao J, Guo YG (2014) Ultra-uniform SnOx/carbon nanohybrids toward advanced lithium-ion battery anodes. Adv Mater 26(23):3943–3949

    Article  CAS  Google Scholar 

  20. Bonino CA, Ji L, Lin Z, Toprakci O, Zhang X, Khan SA (2011) Electrospun carbon-tin oxide composite nanofibers for use as lithium ion battery anodes. ACS Appl Mater Interfaces 3(7):2534–2542

    Article  CAS  Google Scholar 

  21. Liu Y, Yan X, Yu Y, Yang X (2015) Self-improving anodes for lithium-ion batteries: continuous interlamellar spacing expansion induced capacity increase in polydopamine-derived nitrogen-doped carbon tubes during cycling. J Mater Chem A 3(42):20880–20885

    Article  CAS  Google Scholar 

  22. Cho JS, Lee SY, Kang YC (2016) First introduction of NiSe2 to anode material for sodium-ion batteries: a hybrid of graphene-wrapped NiSe2/C porous nanofiber. Sci Rep 6:23338

    Article  CAS  Google Scholar 

  23. Li D, McCann JT, Xia Y, Marquez M (2006) Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc 89(6):1861–1869

    Article  CAS  Google Scholar 

  24. Choi S-S, Lee YS, Joo CW, Lee SG, Park JK, Han K-S (2004) Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim Acta 50(2):339–343

    Article  CAS  Google Scholar 

  25. Xiao Q, Li Z, Gao D, Zhang H (2009) A novel sandwiched membrane as polymer electrolyte for application in lithium-ion battery. J Membr Sci 326(2):260–264

    Article  CAS  Google Scholar 

  26. Wang Y, Wang S, Fang J, Ding L-X, Wang H (2017) A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci 537:248–254

    Article  CAS  Google Scholar 

  27. Kim J-H, Kim J-H, Choi E-S, Yu HK, Kim JH, Wu Q et al (2013) Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries. J Power Sources 242:533–540

    Article  CAS  Google Scholar 

  28. Jayalakshmi M, Balasubramanian K (2008) Simple capacitors to supercapacitors-an overview. Int J Electrochem Sci 3(11):1196–1217

    CAS  Google Scholar 

  29. Fritts DH (1997) An analysis of electrochemical capacitors. J Electrochem Soc 144(6):2233–2241

    Article  CAS  Google Scholar 

  30. Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    Article  CAS  Google Scholar 

  31. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9(15):1774–1785

    Article  CAS  Google Scholar 

  32. Urbina A (2005) Carbon nanotubes and their application to molecular electronics. Electron devices, 2005 Spanish conference on; 2005: IEEE

    Google Scholar 

  33. Xia X, Hao Q, Lei W, Wang W, Wang H, Wang X (2012) Reduced-graphene oxide/molybdenum oxide/polyaniline ternary composite for high energy density supercapacitors: synthesis and properties. J Mater Chem 22(17):8314–8320

    Article  CAS  Google Scholar 

  34. Lei Z, Shi F, Lu L (2012) Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl Mater Interfaces 4(2):1058–1064

    Article  CAS  Google Scholar 

  35. Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y et al (2011) Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett 11(10):4438–4442

    Article  CAS  Google Scholar 

  36. Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2(2):159–173

    Article  CAS  Google Scholar 

  37. Zhang H, Jiang Y, Hu Y, Maclennan A, Wang H, Wang C (2014) Effect of pyrite in precursor on capacitance behavior of prepared activated carbon. Ind Eng Chem Res 53(24):10125–10132

    Article  CAS  Google Scholar 

  38. Pell WG, Conway BE, Adams WA, de Oliveira J (1999) Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications. J Power Sources 80(1):134–141

    Article  CAS  Google Scholar 

  39. Wickramaratne NP, Xu J, Wang M, Zhu L, Dai L, Jaroniec M (2014) Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption. Chem Mater 26(9):2820–2828

    Article  CAS  Google Scholar 

  40. Wang J-G, Yang Y, Huang Z-H, Kang F (2013) Effect of temperature on the pseudo-capacitive behavior of freestanding MnO 2@ carbon nanofibers composites electrodes in mild electrolyte. J Power Sources 224:86–92

    Article  CAS  Google Scholar 

  41. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? ACS Publications, Energy Fuels

    Google Scholar 

  42. Mu J, Chen B, Guo Z, Zhang M, Zhang Z, Shao C et al (2011) Tin oxide (SnO 2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: controlled fabrication and high capacitive behavior. J Colloid Interface Sci 356(2):706–712

    Article  CAS  Google Scholar 

  43. Gao Z, Yang W, Wang J, Wang B, Li Z, Liu Q et al (2012) A new partially reduced graphene oxide nanosheet/polyaniline nanowafer hybrid as supercapacitor electrode material. Energy Fuel 27(1):568–575

    Article  CAS  Google Scholar 

  44. Kim C, Yang K (2003) Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl Phys Lett 83(6):1216–1218

    Article  CAS  Google Scholar 

  45. Yun YS, Im C, Park HH, Hwang I, Tak Y, Jin H-J (2013) Hierarchically porous carbon nanofibers containing numerous heteroatoms for supercapacitors. J Power Sources 234:285–291

    Article  CAS  Google Scholar 

  46. Tran C, Kalra V (2013) Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors. J Power Sources 235:289–296

    Article  CAS  Google Scholar 

  47. Kim B-H, Yang KS, Kim YA, Kim YJ, An B, Oshida K (2011) Solvent-induced porosity control of carbon nanofiber webs for supercapacitor. J Power Sources 196(23):10496–10501

    Article  CAS  Google Scholar 

  48. Kim B-H, Yang KS, Ferraris JP (2012) Highly conductive, mesoporous carbon nanofiber web as electrode material for high-performance supercapacitors. Electrochim Acta 75:325–331

    Article  CAS  Google Scholar 

  49. Guo Q, Zhou X, Li X, Chen S, Seema A, Greiner A et al (2009) Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes. J Mater Chem 19(18):2810–2816

    Article  CAS  Google Scholar 

  50. Zhou Z, Wu X-F (2013) Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: synthesis and electrochemical characterization. J Power Sources 222:410–416

    Article  CAS  Google Scholar 

  51. Jung K-H, Ferraris JP (2012) Preparation and electrochemical properties of carbon nanofibers derived from polybenzimidazole/polyimide precursor blends. Carbon 50(14):5309–5315

    Article  CAS  Google Scholar 

  52. Ma C, Song Y, Shi J, Zhang D, Zhai X, Zhong M et al (2013) Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes. Carbon 51:290–300

    Article  CAS  Google Scholar 

  53. Yan X, Tai Z, Chen J, Xue Q (2011) Fabrication of carbon nanofiber–polyaniline composite flexible paper for supercapacitor. Nanoscale 3(1):212–216

    Article  CAS  Google Scholar 

  54. Kim B-H, Kim CH, Yang KS, Rahy A, Yang DJ (2012) Electrospun vanadium pentoxide/carbon nanofiber composites for supercapacitor electrodes. Electrochim Acta 83:335–340

    Article  CAS  Google Scholar 

  55. Wee G, Soh HZ, Cheah YL, Mhaisalkar SG, Srinivasan M (2010) Synthesis and electrochemical properties of electrospun V 2 O 5 nanofibers as supercapacitor electrodes. J Mater Chem 20(32):6720–6725

    Article  CAS  Google Scholar 

  56. Choi S-H, Hyun T-S, Lee H, Jang S-Y, Oh S-G, Kim I-D (2010) Facile synthesis of highly conductive platinum nanofiber mats as conducting core for high rate redox supercapacitor. Electrochem Solid-State Lett 13(6):A65–AA8

    Article  CAS  Google Scholar 

  57. Subramaniam C, Ramya C, Ramya K (2011) Performance of EDLCs using Nafion and Nafion composites as electrolyte. J Appl Electrochem 41(2):197–206

    Article  CAS  Google Scholar 

  58. Meng Y, Zhao Y, Hu C, Cheng H, Hu Y, Zhang Z et al (2013) All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25(16):2326–2331

    Article  CAS  Google Scholar 

  59. Niu Z, Zhang L, Liu L, Zhu B, Dong H, Chen X (2013) All-solid-state flexible ultrathin micro-supercapacitors based on graphene. Adv Mater 25(29):4035–4042

    Article  CAS  Google Scholar 

  60. Wu G, Lin S, Yang C (2006) Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes. J Membr Sci 275(1):127–133

    Article  CAS  Google Scholar 

  61. Gaikwad AM, Whiting GL, Steingart DA, Arias AC (2011) Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv Mater 23(29):3251–3255

    Article  CAS  Google Scholar 

  62. Miao Y-E, Yan J, Huang Y, Fan W, Liu T (2015) Electrospun polymer nanofiber membrane electrodes and an electrolyte for highly flexible and foldable all-solid-state supercapacitors. RSC Adv 5(33):26189–26196

    Article  CAS  Google Scholar 

  63. Haile SM (2003) Materials for fuel cells. Mater Today 6(3):24–29

    Article  CAS  Google Scholar 

  64. Guo B, Zhao S, Han G, Zhang L (2008) Continuous thin gold films electroless deposited on fibrous mats of polyacrylonitrile and their electrocatalytic activity towards the oxidation of methanol. Electrochim Acta 53(16):5174–5179

    Article  CAS  Google Scholar 

  65. Wang D, Liu Y, Huang J, You T (2012) In situ synthesis of Pt/carbon nanofiber nanocomposites with enhanced electrocatalytic activity toward methanol oxidation. J Colloid Interface Sci 367(1):199–203

    Article  CAS  Google Scholar 

  66. Shui J, Chen C, Li J (2011) Evolution of nanoporous Pt–Fe alloy nanowires by dealloying and their catalytic property for oxygen reduction reaction. Adv Funct Mater 21(17):3357–3362

    Article  CAS  Google Scholar 

  67. Dever DO, Cairncross RA, Elabd YA (2014) Nanofiber cathode catalyst layer model for a proton exchange membrane fuel cell. J Fuel Cell Sci Technol 11(4):041007

    Article  CAS  Google Scholar 

  68. Steele BC, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414(6861):345–352

    Article  CAS  Google Scholar 

  69. Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25(10):1463–1502

    Article  CAS  Google Scholar 

  70. Sood R, Cavaliere S, Jones DJ, Rozière J (2016) Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes. Nano Energy 26:729–745

    Article  CAS  Google Scholar 

  71. Choi J, Lee KM, Wycisk R, Pintauro PN, Mather PT (2008) Nanofiber network ion-exchange membranes. Macromolecules 41(13):4569–4572

    Article  CAS  Google Scholar 

  72. Dong B, Gwee L, Salas-de La Cruz D, Winey KI, Elabd YA (2010) Super proton conductive high-purity Nafion nanofibers. Nano Lett 10(9):3785–3790

    Article  CAS  Google Scholar 

  73. Li H-Y, Liu Y-L (2013) Polyelectrolyte composite membranes of polybenzimidazole and crosslinked polybenzimidazole-polybenzoxazine electrospun nanofibers for proton exchange membrane fuel cells. J Mater Chem A 1(4):1171–1178

    Article  CAS  Google Scholar 

  74. Breitwieser M, Klose C, Klingele M, Hartmann A, Erben J, Cho H et al (2017) Simple fabrication of 12 μm thin nanocomposite fuel cell membranes by direct electrospinning and printing. J Power Sources 337:137–144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weimin Yang or Ahmed Barhoum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Haichao, L., Li, H., Bubakir, M.M., Yang, W., Barhoum, A. (2019). Engineering Nanofibers as Electrode and Membrane Materials for Batteries, Supercapacitors, and Fuel Cells. In: Barhoum, A., Bechelany, M., Makhlouf, A. (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-53655-2_52

Download citation

Publish with us

Policies and ethics