Skip to main content

Nanofibers as Promising Materials for New Generations of Solar Cells

  • Reference work entry
  • First Online:
Handbook of Nanofibers

Abstract

Various applications of nanotechnology have been intended to approach enhanced and efficient solar cell devices with more economically pathways. Effective systems for conversion cost, efficient solar energy storage systems, or solar energy on a large scale are created by efficient solar cells which improved using nanofiber (NF) materials. This chapter provides an overview of photovoltaic and solar cell devices (i.e., dye sensitize solar cells, organic solar cells, and perovskite solar cells) based on nanofibers (NFs) as a key element. Details about the main types of solar cells and their working principles and how engineered NFs are used for solar cells are discussed. The potential application of the three representative NF materials, i.e., metals and metal oxides, carbon, and conductive polymers, were reviewed. The future development of NFs toward next-generation solar cells is finally summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ondraczek J, Komendantova N, Patt A (2015) WACC the dog: the effect of financing costs on the levelized cost of solar PV power. Renew Energy 75:888–898

    Article  Google Scholar 

  2. Ganesh I (2015) Solar fuels vis-à-vis electricity generation from sunlight: the current state-of-the-art (a review). Renew Sust Energ Rev 44:904–932

    Article  CAS  Google Scholar 

  3. Allouhi A, Saadani R, Kousksou T, Saidur R, Jamil A, Rahmoune M (2016) Grid-connected PV systems installed on institutional buildings: technology comparison, energy analysis and economic performance. Energ Buildings 130:188–201

    Article  Google Scholar 

  4. Sun H, Deng J, Qiu L, Fang X, Peng H (2015) Recent progress in solar cells based on one-dimensional nanomaterials. Energy Environ Sci 8:1139–1159

    Article  CAS  Google Scholar 

  5. Crabtree GW, Lewis NS (2007) Solar energy conversion. Phys Today 60:37–42

    Article  CAS  Google Scholar 

  6. Scheer H (2002) The solar economy. Earthscan, London. ISBN-13: 978-1844070756, 368 pages

    Google Scholar 

  7. Scheer H (2013) The solar economy: renewable energy for a sustainable global future. Taylor & Francis publisher Group, Routledge. ISBN-10: 1844070751

    Google Scholar 

  8. Shankar S (2017) Renewable and nonrenewable energy resources: bioenergy and biofuels. In: Principles and applications of environmental biotechnology for a sustainable future. Springer, Singapore pp 293–314. https://doi.org/10.1007/978-981-10-1866-4, ISBN 978-981-10-1866-4

    Google Scholar 

  9. (a) Cutz L, Masera O, Santana D, Faaij A (2017) Switching to efficient technologies in traditional biomass intensive countries: the resultant change in emissions. Energy 126:513–526. (b) https://industryhack.com/challenges/fortum/

  10. Williams R (1960) Becquerel photovoltaic effect in binary compounds. J Chem Phys 32:1505–1514

    Article  CAS  Google Scholar 

  11. Perlin J (1999) From space to earth: the story of solar electricity. Earthscan, New York

    Google Scholar 

  12. Hall R (1953) Segregation of impurities during the growth of germanium and silicon. J Phys Chem 57:836–839

    Article  CAS  Google Scholar 

  13. Zhu L, Wang L, Pan C, Chen L, Xue F, Chen B, Yang L, Su L, Wang ZL (2017) Enhancing the efficiency of silicon-based solar cells by the piezo-phototronic effect. ACS Nano 11:1894–1900

    Article  CAS  Google Scholar 

  14. Amarakoon S, Vallet C, Curran MA, Haldar P, Metacarpa D, Fobare D, Bell J (2017) Life cycle assessment of photovoltaic manufacturing consortium (PVMC) copper indium gallium (di) selenide (CIGS) modules. Int J Life Cycle Assess 1–16. https://doi.org/10.1007/s11367-017-1345-4

    Article  Google Scholar 

  15. Green MA (2002) Third generation photovoltaics: solar cells for 2020 and beyond. Physica E 14:65–70

    Article  CAS  Google Scholar 

  16. Imalka Jayawardena KDG, Rozanski LJ, Mills CA, Beliatis MJ, Aamina Nismy N, Ravi S, Silva P (2013) ‘Inorganics-in-organics’: recent developments and outlook for 4G polymer solar cells. Nanoscale 5:8411

    Article  Google Scholar 

  17. Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110:6873–6890

    Article  CAS  Google Scholar 

  18. Jayawardena KD, Rozanski LJ, Mills CA, Beliatis MJ, Nismy NA, Silva SR (2013) ‘Inorganics-in-organics’: recent developments and outlook for 4G polymer solar cells. Nanoscale 5:8411–8427

    Article  CAS  Google Scholar 

  19. Conibeer G, Green M, Corkish R, Cho Y, Cho E-C, Jiang C-W, Fangsuwannarak T, Pink E, Huang Y, Puzzer T (2006) Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511:654–662

    Article  Google Scholar 

  20. Jang J, Lee JS, Hong K-H, Lee D-K, Song S, Kim K, Eo Y-J, Yun JH, Chung C-H (2017) Cu (In, Ga) Se 2 thin film solar cells with solution processed silver nanowire composite window layers: buffer/window junctions and their effects. Sol Energy Mater Sol Cells 170:60–67

    Article  CAS  Google Scholar 

  21. (a) Green MA (1982) Solar cells: operating principles, technology, and system applications. (b) Creative Commons Attribution 4.0 License, from Open Stax CNX, “An Introduction to Solar Technology” by Brittany L. Oliva-Chatelain and Andrew R. Barron, https://cnx.org/contents/3QU3ovtd@1/An-Introduction-to-Solar-Cell-. Figure adapted from P. J. Reddy, Science and Technology of Photovoltaics, 2nd edition, CRC Press, Leiden (2010)

  22. Mesquita I, Andrade L, Mendes A (in press) Perovskite solar cells: materials, configurations and stability. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2017.09.011

    Article  CAS  Google Scholar 

  23. Siebentritt S (2017) Basics of chalcogenide thin film solar cells, photovoltaic solar energy: from fundamentals to applications, John Wiley & Sons, 169, ISBN: 111892746X, 9781118927465

    Google Scholar 

  24. Choi KM, Kim D, Rungtaweevoranit B, Trickett CA, Barmanbek JTD, Alshammari AS, Yang P, Yaghi OM (2017) Plasmon-enhanced photocatalytic CO2 conversion within metal–organic frameworks under visible light. J Am Chem Soc 139:356–362

    Article  CAS  Google Scholar 

  25. El Baraka A, Abid S, Ennaceri H, Khaldoun A (2016) Building of a PV DSSC small scale prototype based TiO2 nano coating with natural pigment. Renew Sustain Energy Conf. https://doi.org/10.1109/IRSEC.2016.7983940

  26. (a) Wang J, Liu K, Ma L, Zhan X (2016) Triarylamine: versatile platform for organic, dye-sensitized, and perovskite solar cells. Chem Rev 116:14675−14725. (b) Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A Chem 164:3–14

    Google Scholar 

  27. Jinchu I, Sreekala C, Sreelatha K (2014) Dye sensitized solar cell using natural dyes as chromophores – review. In: Mater Sci Forum. Trans Tech Publ 771:39–51. https://doi.org/10.4028/www.scientific.net/MSF.771.39

    Article  Google Scholar 

  28. Pagliaro M, Ciriminna R, Palmisano G (2008) Flexible solar cells. ChemSusChem 1:880–891

    Article  CAS  Google Scholar 

  29. Shalan AE, Rashad MM, Yu Y, Lira-Cantú M, Abdel-Mottaleb MSA (2013) Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells. Electrochim Acta 89:469–478

    Article  CAS  Google Scholar 

  30. Kelen T (2010) SSRL Headlines. Effects of thermal annealing on organic solar cells. http://today.slac.stanford.edu/a/2011/03-01.htm

  31. Nagata S, Atkinson GM, Pestov D, Tepper GC, McLeskey JT (2011) Co-planar bi-metallic interdigitated electrode substrate for spin-coated organic solar cells. Sol Energy Mater Sol Cells 95:1594–1597

    Article  CAS  Google Scholar 

  32. Umeyama T, Miyata T, Jakowetz AC, Shibata S, Kurotobi K, Higashino T, Koganezawa T, Tsujimoto M, Gélinas S, Matsuda W (2017) Regioisomer effects of [70] fullerene mono-adduct acceptors in bulk heterojunction polymer solar cells. Chem Sci 8:181–188

    Article  CAS  Google Scholar 

  33. (a) Sauvé G, Fernando R (2015) Beyond fullerenes: designing alternative molecular electron acceptors for solution-processable bulk heterojunction organic photovoltaics. J Phys Chem Lett 6:3770–3780. (b) Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Baker RH, Yum J-H, Moser JE, Grätzel M, Park N-G (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591. (c) Xiaoqing J, Ze Y, Yuchen Z, Jianbo L, Jiajia L, Gagik GG, Xichuan Y & Licheng S (2017) Scientific Reports 7:42564 https://doi.org/10.1038/srep42564

  34. (a) Pedro VG, Perez EJJ, Arsyad W-S, Barea EM, Santiago FF, Sero IM, Bisquert J (2014) General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett 14:888–893. (b) Shalan AE, Oshikiri T, Narra S, Elshanawany MM, Ueno K, Wu H-P, Nakamura K, Shi X, Diau EW-G, Misawa H (2016) Cobalt oxide (CoOx) as an efficient hole-extracting layer for high-performance inverted planar perovskite solar cells. ACS Appl Mater Interfaces 8:33592–33600

    Google Scholar 

  35. Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805

    Article  CAS  Google Scholar 

  36. Segets D, Matthew Lucas J, Taylor RNK, Scheele M, Zheng H, Paul Alivisatos A, Peukert W (2012) Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements. ACS Nano 6:9021–9032

    Article  CAS  Google Scholar 

  37. Shalan AE, Rashad MM, Youhai Y, Lira-Cantú M, Abdel-Mottaleb MSA (2013) A facile low temperature synthesis of TiO2 nanorods for high efficiency dye sensitized solar cells. Appl Phys A 110:111–122

    Article  CAS  Google Scholar 

  38. Feng X (2015) Science, nanocarbons for advanced energy conversion. https://books.google.com.eg/books?isbn=3527336664

    Google Scholar 

  39. Shalan AE, Oshikiri T, Sawayanagi H, Nakamura K, Ueno K, Sun Q, Hui-Ping W, Diau EW-G, Misawa H (2017) Versatile plasmonic-effects at the interface of inverted perovskite solar cells. Nanoscale 9:1229–1236

    Article  CAS  Google Scholar 

  40. Yang L, Leung WWF (2013) Electrospun TiO2 nanorods with carbon nanotubes for efficient electron collection in dye-sensitized solar cells. Adv Mater 25:1792–1795

    Article  CAS  Google Scholar 

  41. Wang Q, Xie Y, Soltani-Kordshuli F, Eslamian M (2016) Progress in emerging solution-processed thin film solar cells – part I: polymer solar cells. Renew Sust Energ Rev 56:347–361

    Article  CAS  Google Scholar 

  42. Kovalenko A, Michal Hrabal M (2017) Printable Solar Cells. In Advances in Solar Cell Materials and Storage. Scrivener Publishing 163–202. ISBN: 9781119283713

    Google Scholar 

  43. Nagata S, Atkinson GM, Pestov D, Tepper GC, Mcleskey JT (2013) Electrospun polymer-fiber solar cell. Adv Mater Sci Eng 2013:975947–975953. https://doi.org/10.1155/2013/975947

    Article  CAS  Google Scholar 

  44. Nasybulin E, Wei S, Cox M, Kymissis I, Levon K (2011) Morphological and spectroscopic studies of electrochemically deposited poly(3,4-ethylenedioxythiophene) (PEDOT) hole extraction layer for organic photovoltaic device (OPVd) fabrication. J Phys Chem C 115:4307–4314

    Article  CAS  Google Scholar 

  45. Chen J-Y, Chiu Y-C, Shih C-C, Wu W-C, Chen W-C (2015) Electrospun nanofibers with dual plasmonic-enhanced luminescent solar concentrator effects for high-performance organic photovoltaic cells. J Mater Chem A 3:15039–15048

    Article  CAS  Google Scholar 

  46. (a) Tang Q, Cai H, Yuan S, Wang X (2013) Counter electrodes from double-layered polyaniline nanostructures for dye-sensitized solar cell applications. J Mater Chem A 1:317–323. (b) Chen X, Tang Q, He B (2014) Efficient dye-sensitized solar cell from spiny polyaniline nanofiber counter electrode. Mater Lett 119:28–31

    Google Scholar 

  47. Lee TH, Do K, Lee YW, Jeon SS, Kim C, Ko J, Im SS (2012) High-performance dye-sensitized solar cells based on PEDOT nanofibers as an efficient catalytic counter electrode. J Mater Chem 22:21624–21629

    Article  CAS  Google Scholar 

  48. Kurniawan M, Salim T, Tai KF, Sun S, Sie EJ, Wu X, Yeow EKL, Huan CHA, Lam YM, Sum TC (2012) Carrier dynamics in polymer nanofiber:fullerene solar cells. J Phys Chem C 116:18015–18022

    Article  CAS  Google Scholar 

  49. Kim M, Jo SB, Park JH, Cho K (2015) Flexible lateral organic solar cells with core–shell structured organic nanofibers. Nano Energy 18:97–108

    Article  CAS  Google Scholar 

  50. Yu G, Gao J, Hummelen J, Wudl F, Heeger A (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270:1789–1791

    Article  CAS  Google Scholar 

  51. Sundarrajan S, Murugan R, Nair AS, Ramakrishna S (2010) Fabrication of P3HT/PCBM solar cloth by electrospinning technique. Mater Lett 64:2369–2372

    Article  CAS  Google Scholar 

  52. Solanki A, Wu B, Salim T, Yeow EKL, Lam YM, Sum TC (2014) Performance improvements in polymer nanofiber/fullerene solar cells with external electric field treatment. J Phys Chem C 118:11285–11291

    Article  CAS  Google Scholar 

  53. Chen Y, Li X, Park K, Song J, Hong J, Zhou L, Mai Y-W, Huang H, Goodenough JB (2013) Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J Am Chem Soc 135:16280–16283

    Article  CAS  Google Scholar 

  54. Shah KA, Tali BA (2016) Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater Sci Semicond Process 41:67–82

    Article  CAS  Google Scholar 

  55. Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480

    Article  Google Scholar 

  56. Sun G, Sun L, Xie H, Liu J (2016) Electrospinning of nanofibers for energy applications. Nanomaterials 6:129. https://doi.org/10.3390/nano6070129

    Article  CAS  Google Scholar 

  57. Aboagye A, Elbohy H, Kelkar AD, Qiao Q, Zai J, Qian X, Zhang L (2015) Electrospun carbon nanofibers with surface-attached platinum nanoparticles as cost-effective and efficient counter electrode for dye-sensitized solar cells. Nano Energy 11:550–556

    Article  CAS  Google Scholar 

  58. Joshi P, Zhang L, Chen Q, Galipeau D, Fong H, Qiao Q (2010) Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 2:3572–3577

    Article  CAS  Google Scholar 

  59. Park SH, Jung HR, Lee WJ (2013) Hollow activated carbon nanofibers prepared by electrospinning as counter electrodes for dye-sensitized solar cells. Electrochim Acta 102:423–428

    Article  CAS  Google Scholar 

  60. Park SH, Kim BK, Lee WJ (2013) Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells. J Power Sources 239:122–127

    Article  CAS  Google Scholar 

  61. Mohamed IMA, Motlak M, Akhtar MS, Yasin AS, El-Newehy MH, Al-Deyab SS, Barakat NAM (2016) Synthesis, characterization and performance as a counter electrode for dye-sensitized solar cells of CoCr-decorated carbon nanofibers. Ceram Int 42:146–153

    Article  CAS  Google Scholar 

  62. Motlak M, Barakat NAM, Akhtar MS, Hamza AM, Kim BS, Kim CS, Khalil KA, Almajid AA (2015) High performance of NiCo nanoparticles-doped carbon nanofibers as counter electrode for dye-sensitized solar cells. Electrochim Acta 160:1–6

    Article  CAS  Google Scholar 

  63. Barakat NAM, Shaheer Akhtar M, Yousef A, El-Newehy M, Kim HY (2012) Pd-Co-doped carbon nanofibers with photoactivity as effective counter electrodes for DSSCs. Chem Eng J 211–212:9–15

    Article  Google Scholar 

  64. Yousef A, Akhtar MS, Barakat NAM, Motlak M, Yang OB, Kim HY (2013) Effective NiCu NPs-doped carbon nanofibers as counter electrodes for dye-sensitized solar cells. Electrochim Acta 102:142–148

    Article  CAS  Google Scholar 

  65. Saranya K, Subramania A, Sivasankar N (2015) Influence of earth-abundant bimetallic (Fe–Ni) nanoparticle-embedded CNFs as a low-cost counter electrode material for dye-sensitized solar cells. RSC Adv 5:43611–43619

    Article  CAS  Google Scholar 

  66. Jeong I, Lee J, Vincent Joseph KL, Lee HI, Kim JK, Yoon S, Lee J (2014) Low-cost electrospun WC/C composite nanofiber as a powerful platinum-free counter electrode for dye sensitized solar cell. Nano Energy 9:392–400

    Article  CAS  Google Scholar 

  67. Zhang S, Ji C, Bian Z, Yu P, Zhang L, Liu D, Shi E, Shang Y, Peng H, Cheng Q (2012) Porous, platinum nanoparticle-adsorbed carbon nanotube yarns for efficient fiber solar cells. ACS Nano 6:7191–7198

    Article  CAS  Google Scholar 

  68. Chen LF, Huang ZH, Liang HW, Gao HL, Yu SH (2014) Three‐dimensional heteroatom‐doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv Funct Mater 24:5104–5111

    Article  CAS  Google Scholar 

  69. Wang G, Xing W, Zhuo S (2009) Application of mesoporous carbon to counter electrode for dye-sensitized solar cells. J Power Sources 194:568–573

    Article  CAS  Google Scholar 

  70. Trung HN, Baik SJ, Jun Y, Lee M, Chung OH, Park JS (2014) Electrospun coaxial titanium dioxide/carbon nanofibers for use in anodes of dye-sensitized solar cells. Electrochim Acta 142:144–151

    Article  Google Scholar 

  71. Kim GH, Park SH, Birajdar MS, Lee J, Hong SC (2017) Core/shell structured carbon nanofiber/platinum nanoparticle hybrid web as a counter electrode for dye-sensitized solar cell. J Ind Eng Chem 52:211–217

    Article  CAS  Google Scholar 

  72. Kumar A, Jose R, Fujihara K, Wang J, Ramakrishna S (2007) Structural and optical properties of electrospun TiO2 nanofibers. Chem Mater 19:6536–6542

    Article  CAS  Google Scholar 

  73. Song MY, Kim DK, Jo SM, Kim DY (2005) Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment. Synth Met 155:635–638

    Article  CAS  Google Scholar 

  74. Lee BH, Song MY, Jang S-Y, Jo SM, Kwak S-Y, Kim DY (2009) Charge transport characteristics of high efficiency dye-sensitized solar cells based on electrospun TiO2 nanorod photoelectrodes. J Phys Chem C 113:21453–21457

    Article  CAS  Google Scholar 

  75. Onozuka K, Ding B, Tsuge Y, Naka T, Yamazaki M, Sugi S, Ohno S, Yoshikawa M, Shiratori S (2006) Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications. Nanotechnology 17:1026

    Article  CAS  Google Scholar 

  76. Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2005) New application of electrospun TiO2 electrode to solid-state dye-sensitized solar cells. Synth Met 153:77–80

    Article  CAS  Google Scholar 

  77. Hwang D, Kim DY, Jang S-Y, Kim D (2013) Superior photoelectrodes for solid-state dye-sensitized solar cells using amphiphilic TiO2. J Mater Chem A 1:1228–1238

    Article  CAS  Google Scholar 

  78. Kavan L (2012) Electrochemistry of titanium dioxide: some aspects and highlights. Chem Rec 12:131–142

    Article  CAS  Google Scholar 

  79. Bisquert J, Fabregat-Santiago F (2010) Dye-sensitized solar cells. In: Kalyanasundaram K (ed). CRC Press, Boca Raton, Talyor & Francis group, 320 Pages ISBN 9781439808665 - CAT# N10076

    Google Scholar 

  80. Nair AS, Peining Z, Babu VJ, Shengyuan Y, Ramakrishna S (2011) Anisotropic TiO2 nanomaterials in dye-sensitized solar cells. PCCP 13:21248–21261

    Article  CAS  Google Scholar 

  81. Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459

    Article  CAS  Google Scholar 

  82. Mohamed IMA, Dao VD, Yasin AS, Mousa HM, Mohamed HO, Choi HS, Hassan MK, Barakat NAM (2016) Nitrogen-doped&SnO2-incoportaed TiO2 nanofibers as novel and effective photoanode for enhanced efficiency dye-sensitized solar cells. Chem Eng J 304:48–60

    Article  CAS  Google Scholar 

  83. Mingzheng G, Chunyan C, Jianying H, Shuhui L, Zhong C, Ke-Qin Z, Al-Deyabd SS, Yuekun L (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications, J Mater Chem A 4:6772–6801

    Google Scholar 

  84. Krysova H, Zukal A, Trckova-Barakova J, Chandiran AK, Nazeeruddin MK, Grätzel M, Kavan L (2013) The application of electrospun titania nanofibers in dye-sensitized solar cells. Chimia Int J Chem 67:149–154

    Article  CAS  Google Scholar 

  85. (a) Zhou R, Guo W, Yu R, Pan C (2015) Highly flexible, conductive and catalytic Pt networks as transparent counter electrodes for wearable dye-sensitized solar cells. J Mater Chem A 3:23028–23034. (b) Sawanta SM, Chang SS, Hyungjin K, Pramod SP, Chang KH (2016) In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency Nanoscale 8:2664–2677

    Google Scholar 

  86. Lo S, Liu Z, Li J, Chan HL, Yan F (2013) Hybrid solar cells based on poly (3-hexylthiophene) and electrospun TiO2 nanofibers modified with CdS nanoparticles. Prog Nat Sci Mat Int 23:514–518

    Article  Google Scholar 

  87. Dharani S, Mulmudi HK, Yantara N, Trang PTT, Park NG, Graetzel M, Mhaisalkar S, Mathews N, Boix PP (2014) High efficiency electrospun TiO2 nanofiber based hybrid organic–inorganic perovskite solar cell. Nanoscale 6:1675–1679

    Article  CAS  Google Scholar 

  88. Wu S, Tai Q, Yan F (2010) Hybrid photovoltaic devices based on poly (3-hexylthiophene) and ordered electrospun ZnO nanofibers. J Phys Chem C 114(2010):1932–7447

    Google Scholar 

  89. Mali SS, Shim CS, Kim H, Patil PS, Hong CK (2016) In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. Nanoscale 8:2664–2677

    Article  CAS  Google Scholar 

  90. Zhu J, Wei S, Ryu J, Budhathoki M, Liang G, Guo Z (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20:4937–4948

    Article  CAS  Google Scholar 

  91. Neubauer E, Kitzmantel M, Hulman M, Angerer P (2010) Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Compos Sci Technol 70:2228–2236

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed Esmail Shalan or Ahmed Barhoum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shalan, A.E., Barhoum, A., Elseman, A.M., Rashad, M.M., Lira-Cantú, M. (2019). Nanofibers as Promising Materials for New Generations of Solar Cells. In: Barhoum, A., Bechelany, M., Makhlouf, A. (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-53655-2_51

Download citation

Publish with us

Policies and ethics