Skip to main content

Native Crystalline Polysaccharide Nanofibers: Processing and Properties

  • Reference work entry
  • First Online:
Handbook of Nanofibers

Abstract

Native polysaccharide nanocrystals have gained increasing interest as fibrous reinforcement in nanocomposites. Unique mechanical properties combined with biodegradability and renewability have placed them as alternative for designing environmentally friendly materials. The source origin and processing have a large impact on the nanofiber dimensions and properties. Most of the studies have been devoted to cellulose and chitin nanocrystals which are organized into fiber bundles in nature. Cellulose nanofibers can be obtained from animal, bacterial, algal, and plant sources. Chitin fibrils constitute, for example, fungal cell walls and arthropod exoskeletons. Based on processing, one defines two major families of polysaccharide nanofibers (whiskers and nanofibrils of polysaccharide). The preparation of the elementary whisker monocrystals has been achieved by acid hydrolysis, which allows collecting them after cleavage of the amorphous domains of the original substrates. Alternatively, the nanofibrillated material constitutes the other family, which results from the peeling of native microfibrils into a network of nanofibrils. The microfibril delamination is often performed with mechanical devices. Chitosan is the deacetylated derivative of chitin. Nevertheless, the preparation of chitosan crystalline nanofibrils that preserve the native directional packing is challenging. The preparation of chitosan nanofibril networks was recently reported by means of a chitosan mild hydrolysis at the solid state. This chapter reviews the methodologies used to produce crystalline nanofibers of polysaccharide with preserved native structural packing. Nanofibers of polysaccharides cellulose, chitin, and chitosan will be the focus of this review. The methods used to characterize these nanofibers will be revised, and the nanofiber properties will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985) Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz. Planta 166:161–168

    Article  CAS  Google Scholar 

  2. Nishiyama Y, Langan P, Chanzy H (2003) Preparation of tunicin cellulose Iβ samples for X-ray and neutron diffraction. Fibre Diffract Rev 11:75–78

    Google Scholar 

  3. Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175

    Article  CAS  Google Scholar 

  4. Nishiyama Y, Lagan P, Chanzy H (2002) Crystal structure and hydrogen bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  5. Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140

    Article  CAS  Google Scholar 

  6. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306

    Article  CAS  Google Scholar 

  7. Chrétiennot-Dinet M-J, Giraud-Guille M-M, Vaulot D, Putaux J-L, Saito Y, Chanzy H (1997) The chitinous nature of filaments ejected by phaeocystis (Prymnesiophyceae). J Phycol 33:666–672

    Article  Google Scholar 

  8. Blackwell J, Weih MA (1984) The structure of chitin-protein complexes. In: Zikakis JP (ed) Chitin, chitosan and related enzymes. Academic, London, pp 257–263

    Chapter  Google Scholar 

  9. Neville AC (1993) Biology of fibrous composites; development beyond the cell membrane. Cambridge University Press, New York

    Book  Google Scholar 

  10. Revol JF, Marchessault RH (1993) In vitro chiral nematic ordering of chitin crystallites. Int J Biol Macromol 15:329–335

    Article  CAS  Google Scholar 

  11. Giraud-Guille M-M (1984) Fine structure of the chitin-protein system in the crab cuticle. Tissue Cell 16:75–92

    Article  CAS  Google Scholar 

  12. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  13. Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633

    Article  CAS  Google Scholar 

  14. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65

    Article  CAS  Google Scholar 

  15. Dufresne A (2012) Nanocellulose, from nature to high performance tailored materials. Berlin, Boston: De Gruyter

    Google Scholar 

  16. Fan Y, Fukuzumi H, Saito T, Isogai A (2012) Comparative characterization of aqueous dispersions and cast films of different chitin nanowhiskers/nanofibers. Int J Biol Macromol 50:69–76

    Article  CAS  Google Scholar 

  17. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  18. Kaushik M, Fraschini C, Chauve G, Putaux J.-L, Moores A (2015) Transmission electron microscopy for the characterization of cellulose nanocrystals. In: Maaz K (ed) The transmission electron microscope – theory and applications. InTech, London, pp 129–163

    Google Scholar 

  19. Mao J, Osorio-Madrazo A, Laborie M-P (2013) Preparation of cellulose I nanowhiskers with a mildly acidic aqueous ionic liquid: reaction efficiency and whiskers attributes. Cellulose 20:1829–1840

    Article  CAS  Google Scholar 

  20. Abushammala H, Krossing I, Laborie M-P (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr Polym 134:609–616

    Article  CAS  Google Scholar 

  21. Abushammala H, Goldsztayn R, Leao A, Laborie M-P (2016) Combining steam explosion with 1-ethyl-3-methylimidazlium acetate treatment of wood yields lignin-coated cellulose nanocrystals of high aspect ratio. Cellulose 23:1813–1823

    Article  CAS  Google Scholar 

  22. Fragal EH, Fragal VH, Huang X, Martins AC, Cellet TSP, Pereira GM, Mikmekova E, Rubira AF, Silva R, Asefa T (2017) From ionic liquid-modified cellulose nanowhiskers to highly active metal-free nanostructured carbon catalysts for the hydrazine oxidation reaction. J Mater Chem A 5:1066–1077

    Article  CAS  Google Scholar 

  23. Osorio-Madrazo A, David L, Trombotto S, Lucas J-M, Peniche-Covas C, Domard A (2010) Kinetics study of the solid-state acid hydrolysis of chitosan: evolution of the crystallinity and macromolecular structure. Biomacromolecules 11:1376–1386

    Article  CAS  Google Scholar 

  24. Watthanaphanit A, Supaphol P, Tamura H, Tokura S, Rujiravanit R (2010) Wet-spun alginate/chitosan whiskers nanocomposite fibers: preparation, characterization and release characteristic of the whiskers. Carbohydr Polym 79:738–746

    Article  CAS  Google Scholar 

  25. Osorio-Madrazo A, Eder M, Rueggeberg M, Pandey J, Harrington MJ, Nishiyama Y, Putaux J-L, Rochas C, Burgert I (2012) Reorientation of cellulose nanowhiskers in agarose hydrogels under tensile loading. Biomacromolecules 13:850–856

    Article  CAS  Google Scholar 

  26. Belamie E, Domard A, Chanzy H, Giraud-Guille MM (1999) Spherulitic crystallization of chitosan oligomers. Langmuir 15:1549–1555

    Article  CAS  Google Scholar 

  27. Osorio-Madrazo A, David L, Peniche-Covas C, Rochas C, Putaux J-L, Trombotto S, Alcouffe P, Domard A (2015) Fine microstructure of processed chitosan nanofibril networks preserving directional packing and high molecular weight. Carbohydr Polym 131:1–8

    Article  CAS  Google Scholar 

  28. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102

    Article  CAS  Google Scholar 

  29. Kumar V, Bollström R, Yang A, Chen Q, Chen G, Salminen P, Bousfield D, Toivakka M (2014) Comparison of nano- and microfibrillated cellulose films. Cellulose 21:3443–3456

    Article  CAS  Google Scholar 

  30. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111

    Article  CAS  Google Scholar 

  31. Ifuku S (2014) Chitin and chitosan nanofibers: preparation and chemical modifications. Molecules 19:18367

    Article  CAS  Google Scholar 

  32. Fan Y, Saito T, Isogai A (2008) Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromolecules 9:192–198

    Article  CAS  Google Scholar 

  33. Ifuku S, Nogi M, Abe K, Yoshioka M, Morimoto M, Saimoto H, Yano H (2011) Simple preparation method of chitin nanofibers with a uniform width of 10–20 nm from prawn shell under neutral conditions. Carbohydr Polym 84:762–764

    Article  CAS  Google Scholar 

  34. Zhang Y, Jiang J, Liu L, Zheng K, Yu S, Fan Y (2015) Preparation, assessment, and comparison of α-chitin nano-fiber films with different surface charges. Nanoscale Res Lett 10(1):226

    Article  CAS  Google Scholar 

  35. Janardhnan S, Sain M (2011) Targeted disruption of hydroxyl chemistry and crystallinity in natural fibers for the isolation of cellulose nano-fibers via enzymatic treatment. Bioresources 6(2):1242–1250

    CAS  Google Scholar 

  36. Cara C, Ruiz E, Ballesteros I, Negro MJ, Castro E (2006) Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochem 41:423–429

    Article  CAS  Google Scholar 

  37. Xiong Y, Zhang Z, Wang X, Liu B, Lin J (2014) Hydrolysis of cellulose in ionic liquids catalyzed by a magnetically-recoverable solid acid catalyst. Chem Eng J 235:349–355

    Article  CAS  Google Scholar 

  38. Taheri H, Samyn P (2016) Effect of homogenization (microfluidization) process parameters in mechanical production of micro- and nanofibrillated cellulose on its rheological and morphological properties. Cellulose 23(2):1221–1238

    Article  CAS  Google Scholar 

  39. Schenzel K, Fischer S, Brendler E (2005) New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose 12(3):223–231

    Article  CAS  Google Scholar 

  40. Saurabh CK, Mustapha A, Masri MM, Owolabi AF, Syakir MI, Dungani R, Paridah MT, Jawaid M, Abdul Khalil HPS (2016) Isolation and characterization of cellulose nanofibers from Gigantochloa scortechinii as a reinforcement material. J Nanomater 2016:8

    Article  CAS  Google Scholar 

  41. Duchemin BCZ, Newman R, Staiger M (2007) Phase transformations in microcrystalline cellulose due to partial dissolution. Cellulose 14(4):311–320

    Article  CAS  Google Scholar 

  42. Kondo T, Togawa E, Brown RM (2001) “Nematic ordered cellulose”: a concept of glucan chain association. Biomacromolecules 2(4):1324–1330

    Article  CAS  Google Scholar 

  43. Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89(2):461–466

    Article  CAS  Google Scholar 

  44. Qing Y, Sabo R, Zhu JY, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97(1):226–234

    Article  CAS  Google Scholar 

  45. Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) Characterization of cellulose nanofibrillation by micro grinding. J Nanopart Res. 2014 16(4):2349

    Article  CAS  Google Scholar 

  46. Yuanita E, Pratama JN, Chalid M (2017) Preparation of micro fibrillated cellulose based on Arenga Pinnata “Ijuk” fibre for nucleating agent of polypropylene: characterization, optimization and feasibility study. Macromol Symp 371(1):61–68

    Article  CAS  Google Scholar 

  47. Clark GL, Smith AF (1936) X-ray diffraction studies of chitin, chitosan, and derivatives. J Phys Chem 40(7):863–879

    Article  CAS  Google Scholar 

  48. Okuyama K, Noguchi K, Miyazawa T, Yui T, Ogawa K (1997) Molecular and crystal structure of hydrated chitosan. Macromolecules 30(19):5849–5855

    Article  CAS  Google Scholar 

  49. Ogawa K, Hirano S, Miyanishi T, Yui T, Watanabe T (1984) A new polymorph of chitosan. Macromolecules 17(4):973–975

    Article  CAS  Google Scholar 

  50. Saito H, Tabeta R, Ogawa K (1987) High-resolution solid-state carbon-13 NMR study of chitosan and its salts with acids: conformational characterization of polymorphs and helical structures as viewed from the conformation-dependent carbon-13 chemical shifts. Macromolecules 20(10):2424–2430

    Article  CAS  Google Scholar 

  51. Okuyama K, Noguchi K, Hanafusa Y, Osawa K, Ogawa K (1999) Structural study of anhydrous tendon chitosan obtained via chitosan/acetic acid complex. Int J Biol Macromol 26(4):285–293

    Article  CAS  Google Scholar 

  52. Kim U-J, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95(5):778–781

    Article  CAS  Google Scholar 

  53. Agustin MB, Nakatsubo F, Yano H (2016) The thermal stability of nanocellulose and its acetates with different degree of polymerization. Cellulose 23(1):451–464

    Article  CAS  Google Scholar 

  54. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677

    Article  CAS  Google Scholar 

  55. Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493

    Article  CAS  Google Scholar 

  56. Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19(3):855–866

    Article  CAS  Google Scholar 

  57. Lekha P, Mtibe A, Motaung TE, Andrew JE, Sitholè BB, Gibril M (2016) Effect of mechanical treatment on properties of cellulose nanofibrils produced from bleached hardwood and softwood pulps. Maderas Ciencia y tecnología 18:457–466

    CAS  Google Scholar 

  58. Nair SS, Yan N (2015) Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose 22(5):3137–3150

    Article  CAS  Google Scholar 

  59. Tanaka R, Saito T, Hondo H, Isogai A (2015) Influence of flexibility and dimensions of nanocelluloses on the flow properties of their aqueous dispersions. Biomacromolecules 16(7):2127–2131

    Article  CAS  Google Scholar 

  60. Le Goff KJ, Gaillard C, Helbert W, Garnier C, Aubry T (2015) Rheological study of reinforcement of agarose hydrogels by cellulose nanowhiskers. Carbohydr Polym 116:117–123

    Article  CAS  Google Scholar 

  61. Iotti M, Gregersen ØW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19(1):137–145

    Article  CAS  Google Scholar 

  62. Araki J, Yamanaka Y, Ohkawa K (2012) Chitin-chitosan nanocomposite gels: reinforcement of chitosan hydrogels with rod-like chitin nanowhiskers. Polym J 44(7):713–717

    Article  CAS  Google Scholar 

  63. Mushi NE, Kochumalayil J, Cervin NT, Zhou Q, Berglund LA (2016) Nanostructurally controlled hydrogel based on small-diameter native chitin nanofibers: preparation, structure, and properties. ChemSusChem 9(9):989–995

    Article  CAS  Google Scholar 

  64. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    Article  CAS  Google Scholar 

  65. Chen C, Yano H, Li D, Abe K (2015) Preparation of high-strength α-chitin nanofiber-based hydrogels under mild conditions. Cellulose 22(4):2543–2550

    Article  CAS  Google Scholar 

  66. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571–2576

    Article  CAS  Google Scholar 

  67. Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2):1055–1061

    Article  CAS  Google Scholar 

  68. Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41(24):9755–9759

    Article  CAS  Google Scholar 

  69. Eichhorn SJ (2012) Stiff as a board: perspectives on the crystalline modulus of cellulose. ACS Macro Lett 1(11):1237–1239

    Article  CAS  Google Scholar 

  70. Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101(15):5961–5968

    Article  CAS  Google Scholar 

  71. Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585

    Article  CAS  Google Scholar 

  72. Tanpichai S, Quero F, Nogi M, Yano H, Young RJ, Lindström T, Sampson WW, Eichhorn SJ (2012) Effective young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13(5):1340–1349

    Article  CAS  Google Scholar 

  73. Lemke CH, Dong RY, Michal CA, Hamad WY (2012) New insights into nano-crystalline cellulose structure and morphology based on solid-state NMR. Cellulose 19(5):1619–1629

    Article  CAS  Google Scholar 

  74. Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017

    Article  CAS  Google Scholar 

  75. Fahma F, Hori N, Iwamoto S, Iwata T, Takemura A (2016) Cellulose nanowhiskers from sugar palm fibers. Emirates J Food Agric 28:566–571

    Article  Google Scholar 

  76. Hassanzadeh P, Sun W, de Silva JP, Jin J, Makhnejia K, Cross GLW, Rolandi M (2014) Mechanical properties of self-assembled chitin nanofiber networks. J Mater Chem B 2(17):2461–2466

    Article  CAS  Google Scholar 

  77. Cui J, Yu Z, Lau D (2016) Effect of acetyl group on mechanical properties of chitin/chitosan nanocrystal: a molecular dynamics study. Int J Mol Sci 17(1):61

    Article  CAS  Google Scholar 

  78. Oh DX, Cha YJ, Nguyen H-L, Je HH, Jho YS, Hwang DS, Yoon DK (2016) Chiral nematic self-assembly of minimally surface damaged chitin nanofibrils and its load bearing functions. Sci Rep 6:23245

    Article  CAS  Google Scholar 

  79. Liu L, Wang R, Yu J, Jiang J, Zheng K, Hu L, Wang Z, Fan Y (2016) Robust self-standing chitin nanofiber/nanowhisker hydrogels with designed surface charges and ultralow mass content via gas phase coagulation. Biomacromolecules 17(11):3773–3781

    Article  CAS  Google Scholar 

  80. Josefsson G, Berthold F, Gamstedt EK (2014) Stiffness contribution of cellulose nanofibrils to composite materials. Int J Solids Struct 51(5):945–953

    Article  CAS  Google Scholar 

  81. Lee K-Y, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27

    Article  CAS  Google Scholar 

  82. Rusli R, Eichhorn tJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93:033111

    Article  CAS  Google Scholar 

  83. Favier V, Chanzy H, Cavaillé JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    Article  CAS  Google Scholar 

  84. Matos Ruiz M, Cavaillé JY, Dufresne A, Gérard JF, Graillat C (2000) Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Compos Interfaces 7(2):117–131

    Article  Google Scholar 

  85. Morin A, Dufresne A (2002) Nanocomposites of chitin whiskers from Riftia tubes and poly(caprolactone). Macromolecules 35(6):2190–2199

    Article  CAS  Google Scholar 

  86. Gopalan Nair K, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior. Biomacromolecules 4(3):666–674

    Article  CAS  Google Scholar 

  87. Rafeadah R, Stephen JE (2011) Interfacial energy dissipation in a cellulose nanowhisker composite. Nanotechnology 22(32):325706

    Article  CAS  Google Scholar 

  88. Favier V, Cavaille JY, Canova GR, Shrivastava SC (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37(10):1732–1739

    Article  CAS  Google Scholar 

  89. Bahar E, Ucar N, Onen A, Wang Y, Oksüz M, Ayaz O, Ucar M, Demir A (2012) Thermal and mechanical properties of polypropylene nanocomposite materials reinforced with cellulose nano whiskers. J Appl Polym Sci 125(4):2882–2889

    Article  CAS  Google Scholar 

  90. Sullivan E, Moon R, Kalaitzidou K (2015) Processing and characterization of cellulose nanocrystals/polylactic acid nanocomposite films. Materials 8(12):5447

    Article  CAS  Google Scholar 

  91. Suryanegara L, Nakagaito A, Yano H (2010) Thermo-mechanical properties of microfibrillated cellulose-reinforced partially crystallized PLA composites. Cellulose 17(4):771–778

    Article  CAS  Google Scholar 

  92. Yao X, Qi X, He Y, Tan D, Chen F, Fu Q (2014) Simultaneous reinforcing and toughening of polyurethane via grafting on the surface of microfibrillated cellulose. ACS Appl Mater Interfaces 6(4):2497–2507

    Article  CAS  Google Scholar 

  93. Wu G-m, Liu D, Liu G-f, Chen J, Huo S-p, Kong Z-w (2015) Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers. Carbohydr Polym 127:229–235

    Article  CAS  Google Scholar 

  94. Liu H, Laborie M-PG (2011) Bio-based nanocomposites by in situ cure of phenolic prepolymers with cellulose whiskers. Cellulose 18(3):619–630

    Article  CAS  Google Scholar 

  95. Wu G-M, Chen J, S-p H, G-f L, Kong Z-W (2014) Thermoset nanocomposites from two-component waterborne polyurethanes and cellulose whiskers. Carbohydr Polym 105:207–213

    Article  CAS  Google Scholar 

  96. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  97. Utracki LA (ed) (2003) Polymer blends handbook. Kluwer Academic, Dordrecht

    Google Scholar 

  98. Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos A: Appl Sci Manuf 42(10):1509–1514

    Article  CAS  Google Scholar 

  99. Gedde UW (1995) Polymer physics. Chapman & Hall, London

    Google Scholar 

  100. Osorio-Madrazo A, Laborie M-P (2013) Morphological and thermal investigations of cellulosic bionanocomposites. In: Dufresne A, Thomas S, Pothen LA (eds) Biopolymer nanocomposites. Wiley, Hoboken, pp 411–436

    Chapter  Google Scholar 

  101. Jiang L, Morelius E, Zhang J, Wolcott M, Holbery J (2008) Study of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing. J Compos Mater 42(24):2629–2645

    Article  CAS  Google Scholar 

  102. Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66(15):2776–2784

    Article  CAS  Google Scholar 

  103. Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69(7):1187–1192

    Article  CAS  Google Scholar 

  104. Luiz de Paula E, Mano V, Pereira FV (2011) Influence of cellulose nanowhiskers on the hydrolytic degradation behavior of poly(d,l-lactide). Polym Degrad Stab 96(9):1631–1638

    Article  CAS  Google Scholar 

  105. Siqueira G, Fraschini C, Bras J, Dufresne A, Prud'homme R, Laborie M-P (2011) Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(ε-caprolactone). Eur Polym J 47(12):2216–2227

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pieter Samyn or Anayancy Osorio-Madrazo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Samyn, P., Osorio-Madrazo, A. (2019). Native Crystalline Polysaccharide Nanofibers: Processing and Properties. In: Barhoum, A., Bechelany, M., Makhlouf, A. (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-53655-2_17

Download citation

Publish with us

Policies and ethics