Skip to main content

Structural Multifunctional Nanofibers and Their Emerging Applications

  • Reference work entry
  • First Online:
Handbook of Nanofibers

Abstract

Nanofibers are an exciting new class of nanomaterials (NMs) produced by using innovative manufacturing process technologies. Nanofibers are developed from a wide variety of materials of diverse architecture and nature. Nanofibers are divided into the following classes: (1) based on the raw material, nanofibers are classified into organic, inorganic, and carbon and composite fibers, and (2) based on the structure, nanofibers are divided into nonporous, mesoporous, hollow, and core-shell fibers. The geometrical shape (structure) of the fiber materials can be tuned from the non-woven web, yarn, to bulk structures using nanofiber fabrication techniques. Nanofibers have been widely used in a range of applications, such as energy generation, production, and storage, environmental protection and improvement, tissue engineering, pharmaceutical, and biomedical applications. This chapter discusses the nanofibers’ types, structures, fabrication techniques, inherent properties, and how these properties affect their potential usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng MH, Zhang Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    Article  Google Scholar 

  2. Rathinamoorthy R (2012) Nanofiber for drug delivery system: principle and application. Pak Text J 61:45–48

    Google Scholar 

  3. Frenot A, Ioannis SC (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75

    Article  CAS  Google Scholar 

  4. Hyuk SY, Taek GK, Tae GP (2009) Surface-functioned electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61:1033–1042

    Article  CAS  Google Scholar 

  5. Ding B, Wang M, Wang X, Yu J, Sun G (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13(11):16–27

    Article  CAS  Google Scholar 

  6. Huang MZ, Zhang YZ, Kotaki S, Ramakrishna M (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    CAS  Google Scholar 

  7. Liu G, Zhengbiao G, Hong Y, Cheng L, Li C (2017) Electrospun starch nanofibers: recent advances, challenges, and strategies for potential pharmaceutical applications. J Control Release 252(28):95–107

    Article  CAS  Google Scholar 

  8. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425

    Article  CAS  Google Scholar 

  9. Xie J, MacEwan MR, Schwartz AG, Xia Y (2010) Electrospun nanofibers for neural tissue engineering. Nanoscale 2:35–44

    Article  CAS  Google Scholar 

  10. Li D, Wang Y, Xia Y (2004) Electrospinning nanofibers as Uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater 2004(16):361–366

    Article  CAS  Google Scholar 

  11. Rho KS, Jeong L, Lee G, Seo BM et al (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461

    Article  CAS  Google Scholar 

  12. Han I, Shim KJ, Kim JY, Im SU et al (2007) Effect of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber matrices cocultured with hair follicular epithelial and dermal cells for biological wound dressing. Artif Organs 31:801–808

    Article  CAS  Google Scholar 

  13. Huang CY, Hu KH, Wei ZH (2016) Comparison of cell behavior on PVA / PVA-gelatin electrospun nanofibers with random and aligned configuration. Sci Report 6:37960. https://doi.org/10.1038/srep37960

    Article  CAS  Google Scholar 

  14. Stitzel J, Liu J, Lee SJ, Komura M, Berry J, Soker S (2006) Controlled fabrication of a biological vascular substitute. Biomaterials 27:1088–1094

    Article  CAS  Google Scholar 

  15. Daamen WF, Veerkamp JH, van Hest JCM, Van Kuppevelt TH (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28:4378–4398

    Article  CAS  Google Scholar 

  16. Geng X, Kwon OH, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432

    Article  CAS  Google Scholar 

  17. Meng ZX, Zheng W, Li L, Zhenga YF (2011) Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Mater Chem Phys 125:601–611

    Article  CAS  Google Scholar 

  18. Jiang H, Fang D, Hsiao BS, Chu B, Chen W (2004) Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules 5:326–333

    Article  CAS  Google Scholar 

  19. Zhang JF, Wang Y, Lam ML, McKinnnie RJ et al (2017) Cross-linked poly (lactic acid)/dextran nanofibrous scaffolds with tunable hydrophilicity promoting differentiation of embryoid bodies. Materialstoday 13:306–317

    CAS  Google Scholar 

  20. Thanvel R, Seong SAA (2013) Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int J Nanomedicine 8:3641–3662

    Google Scholar 

  21. Garry EW, Marcus EC, David GS, Garry LB (2003) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3:213–216

    Article  CAS  Google Scholar 

  22. Wnek G, Carr M, Simpson D, Bowlin G (2003) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3:213–216

    Article  CAS  Google Scholar 

  23. Nedjari S, AwajaF AG (2017) Three dimensional honeycomb patterned fibrinogen based Nanofbers induce substantial osteogenic response of mesenchymal stem cells. Sci Report. https://doi.org/10.1038/s41598-017-15956-8

  24. Junka R, Valmikinathan CM, Kalyon DM, Yu X (2013) Laminin functionalized biomimetic nanofibers for nerve tissue engineering. J Biomater Tissue Eng 3:1–9

    Article  CAS  Google Scholar 

  25. Neal RA, McClugage SG, Link MC, Sefcik LS et al (2009) Laminin nanofiber meshes that mimic morphological properties and bioactivity of basement membranes. Tissue Eng Part C Methods 15:11–21

    Article  CAS  Google Scholar 

  26. Kijenska E, Prabhakaran MP, Swieszkowski W et al (2014) Interaction of Schwann cells with laminin encapsulated PLCL core–shell nanofibers for nerve tissue engineering. Eur Polym J 50:30–38

    Article  CAS  Google Scholar 

  27. Ji Y, Ghosh K, Shu XZ, Li B, Sokolov JC (2006) Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 27:3782–3792

    Article  CAS  Google Scholar 

  28. Um IC, Fang D, Hsiao BS et al (2004) Electro-spinning and electro-blowing of hyaluronic acid. Biomacromolecules 5:1428–1436

    Article  CAS  Google Scholar 

  29. Brenner EK, Schiffman JD, Thompson EA et al (2012) Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions. Carbohyd Polym 87:926–929

    Article  CAS  Google Scholar 

  30. Ge S, Shi X, Sun K, Li C, Uher C et al (2009) Facile hydrothermal synthesis of Iron oxide nanoparticles with Tunable magnetic properties. J Phys Chem C 113:13593–13599

    Article  CAS  Google Scholar 

  31. Wang HG, Yuan S, Long Ma D et al (2015) Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy Environ Sci 8:1660–1681

    Article  CAS  Google Scholar 

  32. Wang H, Ma D, Huang X, Huang Y, Zhang X (2012) General and controllable synthesis strategy of metal oxide/TiO2 hierarchical heterostructures with improved lithium-ion battery performance. Sci Report 2:701

    Article  CAS  Google Scholar 

  33. Nguyen M, Nguyen D, BuiThe H, Le Y (2016) CuO-decorated ZnO hierarchical nanostructures as efficient and established sensing materials for H2S gas sensors. Sci Report. https://doi.org/10.1038/srep26736

  34. Peng C, Zhang J, Xiong Z, Zhao Z, Liu P (2015) Fabrication of porous hollow γ-Al2O3 nanofibers by facile electrospinning and its application for water remediation. Micropo Mesopor Mater 215:133–142

    Article  CAS  Google Scholar 

  35. Yongliang WH, Yanfei Z, Ling Z et al (2010) Preparation of TiO2 hollow nanofibers by electrospinning combined with sol–gel process. Cryst Eng comm 12:2256–2260

    Article  CAS  Google Scholar 

  36. Lee SS, Bai H, Liu Z, Sun DD (2012) Electrospun TiO2/SnO2 nanofibers with innovative structure and chemical properties for highly efficient photocatalytic H2 generation. Int J Hydro Enegy 37:10575–10584

    Article  CAS  Google Scholar 

  37. Xia X, Dong XJ, Wei QF, Cai YB et al (2012) Formation mechanism of porous hollow SnO2 nanofibers prepared by one-step electrospinning. Expres Polym Lett 2:169–176

    Article  CAS  Google Scholar 

  38. Du H, Wang J, Sun Y, Yao P, Li X, Yu N (2015) Investigation of gas sensing properties of SnO2/In2O3 composite hetero-nanofibers treated by oxygen plasma. Sensor Actuator B: Chem 206:753–763

    Article  CAS  Google Scholar 

  39. Yan X, Tai Z, Chen Z, Xue Q (2011) Fabrication of carbon nanofiber–polyaniline composite flexible paper for super capacitor. Nanoscale 3:212–216

    Article  CAS  Google Scholar 

  40. Hu L, Liu N, Eskilsson M, Zheng G, McDonough J, Wågberg L, Cui Y (2013) Nano Energy 2:138–145

    Article  CAS  Google Scholar 

  41. Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K (2001) Vapor-grown carbon fibers (VGCFs) – basic properties and their battery applications. Carbon 39:1287–1297

    Article  CAS  Google Scholar 

  42. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  43. Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32:314–319

    Article  CAS  Google Scholar 

  44. Chen Q, Wu W, Zhao Y, Xi M et al (2014) Nano-epoxy resins containing electrospun carbon nanofibers and the resulting hybrid multi-scale composites. Compos Part B Eng 58:43–53

    Article  CAS  Google Scholar 

  45. Miyagaw H, Misra M, Mohanty AK (2005) Mechanical properties of carbon nanotubes and their polymer nanocomposites. J Nanosci Nanotechnol 5:1593–1615

    Article  CAS  Google Scholar 

  46. Mordkovich VZ (2003) Carbon nanofibers: a new ultra high-strength material for chemical technology. Theor Found Chem Eng 37:429–438

    Article  CAS  Google Scholar 

  47. Kim YA, Hayashi T, Fukai Y, Endo M et al (2002) Effect of ball milling on morphology of cup-stacked carbon nanotubes. Chem Phys Lett 355:279–284

    Article  CAS  Google Scholar 

  48. Endo M, Kim YA, Hayashi T, Fukai Y et al (2002) Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett 80:1267–1279

    Article  CAS  Google Scholar 

  49. Reneker D, Chun I (1996) Nanometer diameter fibers of polymer produced by electrospinning. Nanotechnol 7:216–223

    Article  CAS  Google Scholar 

  50. Xiangcun L, Vijay TJ, Gaohong H, Jibao H et al (2012) Magnetic TiO2–SiO2 hybrid hollow spheres with TiO2 nanofibers on the surface and their formation mechanism. J Mater Chem 22:17476

    Article  CAS  Google Scholar 

  51. Zhang Z, Lieber CM (1993) Nanotube structure and electronic properties probed by STM. Appl Phys Lett 62:2972–2974

    Google Scholar 

  52. Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35:151

    Article  CAS  Google Scholar 

  53. Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibres by electrospinning. Nano Lett 4:933–938

    Article  CAS  Google Scholar 

  54. Zhao T, Liu Z, Nakata K, Nishimoto S, Murakami T, Zhao Y et al (2010) Multichannel TiO2 hollow fibers with enhanced photocatalytic activity. J Mater Chem 20:5095–5099

    Article  CAS  Google Scholar 

  55. Jiang H, Hu Y, Li Y, Zhao P et al (2005) A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Control Release 108:237–243

    Article  CAS  Google Scholar 

  56. Lee BS, Park KM, Yu WR, Youk JH (2012) An effective method for manufacturing hollow carbon nanofibers and microstructural analysis. Macromol Res 20:605–613

    Article  CAS  Google Scholar 

  57. Lee GH, Song JC, Yoon KB (2010) Controlled wall thickness and porosity of polymeric hallow nanofibers by coaxial electrospinning. Macromol Res 18:571–576

    Article  CAS  Google Scholar 

  58. Ahmed GED, Nasser AMB, Khalil AK, Hak YK (2014) Hollow carbon nanofibers as an effective electrode for brackish water desalination using the capacitive deionization process. New J Chem 38:198–205

    Article  Google Scholar 

  59. Li L, Peng S, Lee JKY, Ji D et al (2017) Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39:111–139

    Article  CAS  Google Scholar 

  60. Baizeng F, Jung HK, Cheolgyu L, Jong-Sung Y (2008) Hollow macroporous Core/mesoporous Shell carbon with a tailored structure as a cathode electro catalyst support for proton exchange membrane fuel cells. J Phys Chem C112:639–645

    Google Scholar 

  61. Sihui Z, Dairong C, Xiuling J, Caihong T (2006) Long TiO2 hollow Fibers with mesoporous walls: sol-gel combined electrospun fabrication and photocatalytic properties. J Phys Chem B 110:11199–11204

    Article  CAS  Google Scholar 

  62. Kim CH, Jung YH, Kim HY, Lee DR (2006) Effect of collector temperature on the porous structure of electrospun fibers. Macromol Res 14:59–65

    Article  CAS  Google Scholar 

  63. Nayani K, Katepalli H, Sharma CS, Sharma A et al (2012) Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow sub micrometer polymer fibers. Ind Eng Chem Res 51:1761–1766

    Article  CAS  Google Scholar 

  64. Chunrong X, Moon JK, Kenneth JB (2006) TiO2 nanofibers and Core–Shell structures prepared using mesoporous molecular sieves as templates. Small 2:52–55

    Article  CAS  Google Scholar 

  65. Liangmiao Z, Wencong L, Rongrong C, Shanshan S (2010) One-pot template-free synthesis of mesoporous boehmite core–shell and hollow spheres by a simple solvo thermal route. Mater Res Bull 45:429–436

    Article  CAS  Google Scholar 

  66. Li Y, Xu G, Yao Y, Xue L, Yanilmaz M, Lee H, Zhang X (2014) Coaxial electrospun Si/C–C core–shell composite nanofibers as binder-free anodes for lithium-ion batteries. Solid State Ionics 258:67–73

    Article  CAS  Google Scholar 

  67. Wei M, Lee J, Kang B, Mead J (2005) Preparation of core-sheath nanofibers from conducting polymer blends. Macromol Rapid Commun 26:1127–1132

    Article  CAS  Google Scholar 

  68. Xiong C, Kenneth JB (2005) Fabrication of TiO2 nanofibers from a mesoporous silica film. Chem Mater 17:5136–5140

    Article  CAS  Google Scholar 

  69. Zhuo HT, Hu JL, Chen SJ (2011) Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials. Polym Lett 5(2):182–187

    Article  CAS  Google Scholar 

  70. Zhang YZ, Venugopal J, Huang Z, Lim CT, Ramakrishna S (2005) Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 6:2583–2589

    Article  CAS  Google Scholar 

  71. Li D, Mccann JT, Xia Y (2005) Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces. Small 1:83–86

    Article  CAS  Google Scholar 

  72. Zhang J, Yang D, Xu F, Zhang Z et al (2009) Electrospun core shell structure nanofibers from homogeneous solution of poly(ethylene oxide)/chitosan. Macromolecules 42:5278–5284

    Article  CAS  Google Scholar 

  73. Wenqi L, Shuyi M, Yingfeng L, Guijin Y et al (2015) Enhanced ethanol sensing performance of hollow ZnO–SnO2core–shell nanofibers. Sensor Actuator B Chem 211:392–402

    Article  CAS  Google Scholar 

  74. Nair S, Erik H, Seong HK (2008) Fabrication of electrically-conducting nonwoven porous mats of polystyrene–polypyrrole core–shell nanofibers via electrospinning and vapor phase polymerization. J Mater Chem 18:5155–5161

    Article  CAS  Google Scholar 

  75. Xinhong Z, Chaoqun S, Lin G, Shanmu D, Xiao C et al (2011) Mesoporous coaxial titanium nitride-vanadium nitride Fibers of Core-shell structures for high-performance super capacitors. ACS Appl Mater Interface 3:3058–3063

    Article  CAS  Google Scholar 

  76. Li F, Zhao Y, Song Y (2010) Core-chell nanofibers: nano channel and capsule by coaxial electrospinning. Nanotechnology and nanomaterials Nanofibers Ashok Kumar, INTECH, Croatia, isbn: 978-953-7619-86-2

    Google Scholar 

  77. Xiaomin S, Weiping Z, Delong M, Qian M et al (2015) Electrospinning of nanofibers and their applications for energy devices. J Nanomater. https://doi.org/10.1155/2015/140716

    Google Scholar 

  78. Guiru S, Liqun S, Haiming X, Jia L (2016) Electrospinning of nanofibers for energy applications. Nano 6:129

    Google Scholar 

  79. Xu H, Hun X, Sun Y, Luo W, Chen C, Liu Y, Huangn Y (2014) Highly porous Li4Ti5O12/carbon nanofibers for ultrafast electrochemical energy storage. Nano Energy 10:163–171

    Article  CAS  Google Scholar 

  80. Seeram R, Kazutoshi F, Teo WE, Yong T et al (2006) Electrospun nanofibers solving global issues. Materialtoday 9:40–50

    Google Scholar 

  81. Mondal K (2017) Recent advances in the synthesis of metal oxide nanofibers and their environmental remediation applications. Inventions 2:1–29

    Article  Google Scholar 

  82. Morie A, Garg T, Ak G, Rath G (2016) Nanofibers as novel drug carrier – an overview. Artif Cells Nanomed Biotechnol 44:135–143

    Article  CAS  Google Scholar 

  83. Martin et al (1989) US Patent 4878908

    Google Scholar 

  84. Berry JP (1990) US Patent 4965110

    Google Scholar 

  85. Stenoien et al (1999) US Patent 5866217

    Google Scholar 

  86. Scopelianos AG (1996) US Patent 5522879

    Google Scholar 

  87. Verreck G, Chun I, Rosenblatt J (2003) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, non biodegradable polymer. J Control Release 92:349–360

    Article  CAS  Google Scholar 

  88. Rajesh V, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomedicine 1:15–30

    Article  Google Scholar 

  89. Hoerstrup SP, Vacanti JP (2004) Overview of tissue engineering. In: Ratner BD, Hoffman AS, Schoen FJ (eds) Biomaterial science: an introduction to materials in medicine, 2nd edn. Elsevier Academic Press, San Diego, pp 712–727

    Google Scholar 

  90. Li WJ, Laurencin CT, Caterson EJ et al (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621

    Article  CAS  Google Scholar 

  91. Huang Z, Zhang Y, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  92. Kumbar SG, James R, Nukavarapu SP, Laurencin CT (2007) Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater 2:1–15

    Article  CAS  Google Scholar 

  93. Nair LS, Bhattacharyya S, Laurencin CT (2004) Development of novel tissue engineering scaffolds via electrospinning. Expert Opin Biol Ther 4:659–668

    Article  CAS  Google Scholar 

  94. Chew SY, Wen Y, Dzenis Y, Leong KW (2006) The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Des 12:4751–4770

    Article  CAS  Google Scholar 

  95. Laurencin CT, Ko FK (2004) Hybrid nanofibril matrices for use as tissue engineering devices. US patent 6689166

    Google Scholar 

  96. Laurencin CT, Nair LS, Bhattacharyya S, Allcock HR, et al (2005) Polymeric nanofibers for tissue engineering and drug delivery. US patent 7235295

    Google Scholar 

  97. Kumbar SG, Nair LS, Bhattacharyya S, Laurencin CT (2006) Polymeric nanofibers as novel carriers for the delivery of therapeutic molecules. J Nanosci Nanotechnol 6:2591–2607

    Article  CAS  Google Scholar 

  98. Lee S, Jin G, Jang JH (2014) Electrospun nanofibers as versatile interfaces for efficient gene delivery. J Biol Eng 8:30–59

    Article  Google Scholar 

  99. Yun ZL, Meng L, Changzhi G et al (2011) Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci 36:1415–1442

    Article  CAS  Google Scholar 

  100. Morie A, Garg T, Ak G, Rath G (2016) Nanofibers as novel drug carrier--an overview. Artif Cells Nanomed Biotechnol 44:135–143

    Article  CAS  Google Scholar 

  101. Matthew DB, Dmitry L (2007) Nanofiber-based drug delivery. In: Thassu D, Michel D, Yashwant P (eds) Nanoparticulate drug delivery systems, vol 166. Informa Healthcare USA, Inc., New York, pp 61–69

    Google Scholar 

  102. Gibson P, Schreuder Gibson H, Rivin D (1999) Electrospun fiber mats: transport properties. AICHE J 45:190–195

    Article  CAS  Google Scholar 

  103. Gu L, Zhou D, Cao JC (2016) Piezoelectric active humidity sensors based on lead-free NaNbO3Piezoelectric nanofibers. Sensors 16:833

    Article  CAS  Google Scholar 

  104. Huang ZM, Kotaki M, Ramakrishna S (2003) Innovations 3(3):30

    Google Scholar 

  105. Xiaomin S, Weiping Z, Delong M (2015) Electrospinning of nanofibers and their applications for energy devices. J Nanomat. https://doi.org/10.1155/2015/140716

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dalapathi Gugulothu or Ahmed Barhoum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gugulothu, D., Barhoum, A., Afzal, S.M., Venkateshwarlu, B., Uludag, H. (2019). Structural Multifunctional Nanofibers and Their Emerging Applications. In: Barhoum, A., Bechelany, M., Makhlouf, A. (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-53655-2_16

Download citation

Publish with us

Policies and ethics