Skip to main content

Oil and Hydrocarbon-Producing Bacteria

  • Living reference work entry
  • First Online:
Biogenesis of Hydrocarbons

Abstract

Bacteria are recognized as a sustainable source of renewable feedstocks for production of biofuels and other chemicals. Triacylglycerols and wax esters, with potential applications similar to the ones derived from plants, can be produced by several groups of bacteria using inexpensive carbon sources, such as organic residues from industry or municipal sources. Also, aliphatic hydrocarbons, which are the main components of gasoline, diesel, and jet fuels, can be produced by some bacteria directly from sunlight and CO2 or by other groups using renewable organic sources.

This chapter highlights the advantages and biotechnological applications of bacterial oil and hydrocarbon (O&H) production, in particular for the biofuel industry, gives an overview of the bacterial groups having this capacity, and finally outlines major research needs in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alvarez H (2003) Relationship between beta-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Int Biodeterior Biodegrad 52:35–42

    Article  CAS  Google Scholar 

  • Alvarez H (2006) Bacterial triacylglycerols. Triglyc Cholest Res 6:159–176

    Google Scholar 

  • Alvarez HM (2010) Biotechnological production and significance of triacylglycerols and wax esters. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 2995–3002

    Chapter  Google Scholar 

  • Alvarez H, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  CAS  Google Scholar 

  • Alvarez H, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386

    Article  CAS  Google Scholar 

  • Alvarez H, Kalscheuer R, Steinbüchel A (1997a) Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Fett-Lipid 99:239–246

    Article  CAS  Google Scholar 

  • Alvarez HM, Pucci OH, Steinbüchel A (1997b) Lipid storage compounds in marine bacteria. Appl Microbiol Biotechnol 47:132–139

    Article  CAS  Google Scholar 

  • Alvarez H, Kalscheuer R & Steinbuchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Applied Microbiology Biotechnology 54: 218–223

    Article  CAS  Google Scholar 

  • Alvarez H, Souto M, Viale A, Pucci O (2001) Biosynthesis of fatty acids and triacylglycerols by 2,6,10,14-tetramethyl pentadecane-grown cells of Nocardia globerula 432. FEMS Microbiol Lett 200:195–200

    Article  CAS  Google Scholar 

  • Alvarez HM, Luftmann H, Silva RA, Cesari AC, Viale A, Wältermann M, Steinbüchel A (2002) Identification of phenyldecanoic acid as a constituent of triacylglycerols and wax ester produced by Rhodococcus opacus PD630. Microbiol 148:1407–1412

    Article  CAS  Google Scholar 

  • Alvarez HM, Silva RA, Cesari AC, Zamit AL, Peressutti SR, Teichelt R, Keller U, Malkus U, Rasch C, Maskow T, Mayer F, Steinbüchel A (2004) Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress. FEMS Microbiol Ecol 50:75–86

    Article  CAS  Google Scholar 

  • Alvarez A, Alvarez H, Kalscheuer R, Waltermann M & Steinbuchel A (2008) Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleaginous bacterium Rhodococcus opacus PD630. Microbiology 154: 2327–2335

    Article  CAS  Google Scholar 

  • Banchio C, Gramajo H (2002) A stationary-phase acyl-coenzyme A synthetase of Streptomyces coelicolor A3 (2) is necessary for the normal onset of antibiotic production. Appl Environ Microbiol 68:4240–4246

    Article  CAS  Google Scholar 

  • Barksdale L, Kim K (1977) Mycobacterium. Bacteriol Rev 41:217–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beller HR, Lee TS, Katz L (2015) Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids. Nat Prod Rep 32:1508

    Article  CAS  Google Scholar 

  • Belyaeva MI, Zolotukhina LM, Bagaeva TV (1995) Method for the production of liquid hydrocarbons. Invention Certificate SU2027760 [in Russian]

    Google Scholar 

  • Bequer Urbano S, Albarracín VH, Ordoñez OF, Farías ME, Alvarez HM (2013) Lipid storage in high-altitude Andean Lakes extremophiles and its mobilization under stress conditions in Rhodococcus sp. A5, a UV-resistant actinobacterium. Extremophiles 17:217–227

    Article  CAS  Google Scholar 

  • Bredemeier R, Hulsch R, Metzger JO, Berthe-Corti L (2003) Submersed culture production of extracellular wax esters by the marine bacterium Fundibacter jadensis. Mar Biotechnol 5:579–583

    Article  CAS  Google Scholar 

  • Castro AR, Rocha I, Alves MM, Pereira MA (2016) Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals. AMB Express 6:35

    Article  Google Scholar 

  • Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502:571–574

    Article  CAS  Google Scholar 

  • Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner P, Sherman DH, Allen EE, Gerwick L, Gerwick WH (2014) Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS One 9(1):e85140

    Article  Google Scholar 

  • Comba S, Sabatini M, Menendez-Bravo S, Ana Arabolaza A (2014) Engineering a Streptomyces coelicolor biosynthesis pathway into Escherichia coli for high yield triglyceride production. Biotechnol Biofuels 7:172

    Article  Google Scholar 

  • Da Silva PDMP, Lima F, Alves MM, Bijmans MFM, Pereira MA (2016) Valorization of lubricant-based wastewater for bacterial neutral lipids production: growth-linked biosynthesis. Water Res 101:17–24

    Article  Google Scholar 

  • de Andrés C, Espuny MJ, Robert M, Mercadé ME, Manresa A, Guinea J (1991) Cellular lipid accumulation by Pseudomonas aeruginosa 44T1. Appl Microbiol Biotechnol 35:813–816

    Article  Google Scholar 

  • Dulermo T, Coze F, Virolle M-J, Méchin V, Baumberger S, Froissard M (2016) Bioconversion of agricultural lignocellulosic residues into branched-chain fatty acids using Streptomyces lividans. OCL 23(2):A202

    Article  Google Scholar 

  • Eberly JO, Ringelberg DB, Indest KJ (2013) Physiological characterization of lipid accumulation and in vivo ester formation in Gordonia sp. KTR9. J Ind Microbiol Biotechnol 40:201–208

    Article  CAS  Google Scholar 

  • Fixter LM, Nagi MN, Mccormack JG, Fewson CA (1986) Structure, distribution and function of Wax Esters in Acinetobacter calcoaceticus. Microbiology 132:3147–3157

    Article  CAS  Google Scholar 

  • Fu W-J, Chi Z, Ma Z-C, Zhou H-X, Liu G-L, Lee C-F, Chi Z-M (2015) Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable. Appl Microbiol Biotechnol 99:7481–7494

    Article  CAS  Google Scholar 

  • Gouda M, Omar S, Aouad L (2008) Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol 24:1703–1711

    Article  CAS  Google Scholar 

  • Grossi V, Yakimov MM, Ali BA, Tapilatu Y, Cuny P, Goutx M, Cono VL, Giuliano L, Tamburini C (2010) Hydrostatic pressure affects membrane and storage lipid compositions of the piezotolerant hydrocarbon-degrading Marinobacter hydrocarbonoclasticus strain 5. Environmental Microbiology 12(7):2020–2033

    Article  CAS  Google Scholar 

  • Harger M, Zheng L, Moon A, Ager C, An JH, Choe C, Lai YL, Mo B, Zong D, Smith MD, Egbert RG, Mills JH, Baker D, Pultz IS, Siegel JB (2013) Expanding the product profile of a microbial alkane biosynthetic pathway. ACS Synth Biol 2:59–62

    Article  CAS  Google Scholar 

  • Hernandez M, Mohn W, Martinez E, Rost E, Alvarez A, Alvarez H (2008) Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics 9:600

    Article  Google Scholar 

  • Holtzapple E, Schmidt-Dannert C (2007) Biosynthesis of isoprenoid wax ester in Marinobacter hydrocarbonoclasticus DSM 8798: identification and characterization of isoprenoid coenzyme A synthetase and wax ester synthases. J Bacteriol 189:3804–3812

    Article  CAS  Google Scholar 

  • Hori K, Abe M, Unno H (2009) Production of triacylglycerol and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the toluene-degrading bacterium Rhodococcus aetherivorans IAR1. J Biosci Bioeng 108:319–324

    Article  CAS  Google Scholar 

  • Ishige T, Tani A, Takabe K, Kawasaki K, Sakai Y, Kato N (2002) Wax Ester production from n-alkanes by Acinetobacter sp. Strain M-1: ultrastructure of cellular inclusions and role of acyl Coenzyme A reductase. Appl Environ Microbiol 68:1192–1195

    Article  CAS  Google Scholar 

  • Ishige T, Tani A, Sakai Y, Kato N (2003) Wax ester production by bacteria. Curr Opin Microbiol 6:244–250

    Article  CAS  Google Scholar 

  • Jetter R, Kunst L (2008) Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J 54:670–683

    Article  CAS  Google Scholar 

  • Jiménez-Díaz L, Caballero A, Pérez-Hernández N, Segura A (2017) Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives. Microb Biotechnol 10:103–124

    Article  Google Scholar 

  • Kalscheuer R (2010) Genetics of Wax Ester and Triacylglycerol Biosynthesis in Bacteria. Handbook of Hydrocarbon and Lipid Microbiology (Timmis K) 527–535. Springer Berlin Heidelberg

    Chapter  Google Scholar 

  • Kalscheuer R, Steinbüchel A (2003) A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–8082

    Article  CAS  Google Scholar 

  • Kalscheuer R, Uthoff S, Luftmann H, Steinbüchel A (2003) In vitro and in vivo biosynthesis of wax diesters by an unspecific bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase from Acinetobacter calcoaceticus ADP1. Eur J Lipid Sci Technol 105:578–584

    Article  CAS  Google Scholar 

  • Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    Article  CAS  Google Scholar 

  • Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbüchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189:918–928

    Article  CAS  Google Scholar 

  • Kang MK, Nielsen J (2017) Biobased production of alkanes and alkenes through metabolic engineering of microorganisms. Journal of Industrial Microbiology & Biotechnology 44 (4–5):613–622

    Article  Google Scholar 

  • Kannisto M, Aho T, Karp M, Santala V (2014) Metabolic engineering of Acinetobacter baylyi ADP1 for improved growth on gluconate and glucose. Appl Environ Microbiol 80(22): 7021–7027

    Article  Google Scholar 

  • Klein B, Grossi V, Bouriat P, Goulas P, Grimaud R (2008) Cytoplasmic wax ester accumulation during biofilm-driven substrate assimilation at the alkane–water interface by Marinobacter hydrocarbonoclasticus SP17. Res Microbiol 159:137–144

    Article  CAS  Google Scholar 

  • Kosa M, Ragauskas A (2012) Bioconversion of lignin model compounds with oleaginous Rhodococci. Appl Microbiol Biotechnol 93:891–900

    Article  CAS  Google Scholar 

  • Kumar S, Gupta N, Pakshirajan K (2015) Simultaneous lipid production and dairy wastewater treatment using Rhodococcus opacus in a batch bioreactor for potential biodiesel application. J Environ Chem Eng 3:1630–1636

    Article  CAS  Google Scholar 

  • Kurosawa KWS, Sinskey JA (2013) Engineering xylose metabolism in triacylglycerol producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnol Biofuels 6:134–147

    Article  CAS  Google Scholar 

  • Kurosawa K, Boccazzi P, de Almeida N & Sinskey A (2010) High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. Journal of Biotechnology 147: 212–218

    Article  CAS  Google Scholar 

  • Kurosawa K, Plassmeier J, Kalinowski J, Rückert C, Sinskey AJ (2015a) Engineering l-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Metab Eng 30:89–95

    Article  CAS  Google Scholar 

  • Kurosawa K, Plassmeier JK, Sinskey AJ (2015b) Improved glycerol utilization by a triacylglycerol producing Rhodococcus opacus strain for renewable fuels. Biotechnol Biofuels 8:31–42

    Article  Google Scholar 

  • Kuyukina M, Ivshina I (2010) Application of Rhodococcus in bioremediation of contaminated environments. In: Alvarez HM (ed) Biology of Rhodococcus, vol 16. Springer, Berlin/Heidelberg, pp 231–262

    Chapter  Google Scholar 

  • Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014

    Article  CAS  Google Scholar 

  • Liu A, Zhu T, Lu X, Song L (2013) Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species. Appl Energy 111:383–393

    Article  CAS  Google Scholar 

  • Liu Y, Wang C, Yan J, Zhang W, Guan W, Lu X, Li S (2014) Hydrogen peroxide-independent production of α-alkenes by OleTJE P450 fatty acid decarboxylase. Biotechnol Biofuels 7:28

    Article  Google Scholar 

  • Makula RA, Lockwood PJ, Finnerty WR (1975) Comparative analysis of the lipids of Acinetobacter species grown on hexadecane. J Bacteriol 121:250–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manilla-Pérez E, Lange A, Hetzler S, Steinbüchel A (2010) Occurrence, production, and export of lipophilic compounds by hydrocarbonoclastic marine bacteria and their potential use to produce bulk chemicals from hydrocarbons. Appl Microbiol Biotechnol 86:1693–1706

    Article  Google Scholar 

  • Manilla-Pérez E, Lange AB, Luftmann H, Robenek H, Steinbüchel A (2011) Neutral lipid production in Alcanivorax borkumensis SK2 and other marine hydrocarbonoclastic bacteria. Eur J Lipid Sci Technol 113:8–17

    Article  Google Scholar 

  • Martinkova L, Uhnakova B, Patek M, Nesvera J, Kren V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177

    Article  CAS  Google Scholar 

  • Nakano M, Kihara M, Iehata S, Tanaka R, Hiroto Maeda H, Yoshikawa T (2011) Wax ester-like compounds as biosurfactants produced by Dietzia maris from n-alkane as a sole carbon source. J Basic Microbiol 51:490–498

    Article  CAS  Google Scholar 

  • Nielsen PH, Roslev P, Dueholm TE, Nielsen LJ (2002) Microthrix parvicella, a specialized lipid consumer in anaerobic–aerobic activated sludge plants. Wat Sci Technol 46(1–2):73–80

    CAS  Google Scholar 

  • Olukoshi ER, Packter NM (1994) Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology 140:931–943

    Article  CAS  Google Scholar 

  • Packter NM & Olukoshi ER (1995) Ultrastructural studies of neutral lipid localisation in Streptomyces. Archives in Microbiology 164: 420–427

    Google Scholar 

  • Palmer JD, Brigham CJ (2016) Feasibility of triacylglycerol production for biodiesel, utilizing Rhodococcus opacus as a biocatalyst and fishery waste as feedstock. Renew Sustain Energy Rev 56:922–928

    Article  CAS  Google Scholar 

  • Patel S, Nelson DR, Gibbs AG (2001) Chemical and physical analyses of wax ester properties. J Insect Sci 1:7

    Article  Google Scholar 

  • Reiser S, Somerville C (1997) Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase. J Bacteriol 179:2969–2975

    Article  CAS  Google Scholar 

  • Reppas NB, Ridley CP (2010) Methods and compositions for the recombinant biosynthesis of n-alkanes. US 7794969 B1; WO 2009/140696

    Google Scholar 

  • Rontani JF (2010) Production of Wax Esters by Bacteria. Handbook of Hydrocarbon and Lipid Microbiology, (Timmis K), 459–470. Springer Berlin Heidelberg

    Chapter  Google Scholar 

  • Rontani J-F, Bonin PC, Volkman JK (1999) Production of wax esters during aerobic growth of marine bacteria on isoprenoid compounds. Appl Environ Microbiol 65:221–230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rontani J-F, Mouzdahir A, Michotey V, Caumette P, Bonin P (2003) Production of a polyunsaturated isoprenoid wax ester during aerobic metabolism of squalene by Marinobacter squalenivorans sp. nov. Appl Environ Microbiol 69:4167–4176

    Article  CAS  Google Scholar 

  • Santala S, Efimova E, Karp M, Santala V (2011a) Real-time monitoring of intracellular wax ester metabolism. Microb Cell Fact 10:75

    Article  CAS  Google Scholar 

  • Santala S, Efimova E, Kivinen V, Larjo A, Aho T, Karp M, Santala V (2011b) Improved triacylglycerol production in Acinetobacter baylyi ADP1 by metabolic engineering. Microb Cell Fact 10:36

    Article  CAS  Google Scholar 

  • Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    Article  CAS  Google Scholar 

  • Schirmer AW, Rude MA, Brubaker SA (2014) Methods and compositions for producing alkanes and alkenes. US 8846371 B2

    Google Scholar 

  • Scott CC, Finnerty WR (1976) Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter species HO1-N. J Bacteriol 127:481–489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva RA, Grossi V, Olivera NL, Alvarez HM (2010) Characterization of indigenous Rhodococcus sp. 602, a strain able to accumulate triacylglycerides from naphthyl compounds under nitrogen-starved conditions. Res Microbiol 161:198–207

    Article  CAS  Google Scholar 

  • Singer ME, Tyler SM, Finnerty WR (1985) Growth of Acinetobacter sp. strain HO1-N on n-hexadecanol: physiological and ultrastructural characteristics. J Bacteriol 162:162–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stöveken T, Kalscheuer R, Steinbüchel A (2009) Both histidine residues of the conserved HHXXXDG motif are essential for wax ester synthase/acyl-CoA:diacylglycerol acyltransferase catalysis. Eur J Lipid Sci Technol 111:112–119

    Article  Google Scholar 

  • Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP (2010) Wide spread head-to-head hydrocarbon biosynthesis in bacteria and role of oleA. Appl Environ Microbiol 76:3850–3862

    Article  CAS  Google Scholar 

  • Uthoff S, Stöveken T, Weber N, Vosmann K, Klein E, Kalscheuer R, Steinbüchel A (2005) Thio wax ester biosynthesis utilizing the unspecific bifunctional wax ester synthase/acyl Coenzyme A:diacylglycerol acyltransferase of Acinetobacter sp. strain ADP1. Appl Environ Microbiol 71:790–796

    Article  CAS  Google Scholar 

  • Voss I, Steinbüchel A (2001) High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale. Appl Microbiol Biotechnol 55:547–555

    Article  CAS  Google Scholar 

  • Wältermann M & Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. Journal of Bacteriology 187: 3607–3619

    Article  Google Scholar 

  • Wältermann M, Luftmann H, Baumeister D, Kalscheuer R, Steinbüchel A (2000) Rhodococcus opacus strain PD630 as a new source of high-value single-cell oil? Isolation and characterization of triacylglycerols and other storage lipids. Microbiol 146:1143–1149

    Article  Google Scholar 

  • Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla HJ, Kalscheuer R, Stöveken T, von Landenberg P, Steinubüchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–763

    Article  Google Scholar 

  • Wang W, Lu X (2013) Microbial synthesis of alka(e)nes. Front Bioeng Biotechnol 1:10

    Article  Google Scholar 

  • Wang W, Liu X, Lu X (2013) Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnology for Biofuels 6(1):69

    Article  CAS  Google Scholar 

  • Wei Z, Zeng G, Kosa M, Huang D, Ragauskas A (2015a) Pyrolysis oil-based lipid production as biodiesel feedstock by Rhodococcus opacus. Appl Biochem Biotechnol 175:1234–1246

    Article  CAS  Google Scholar 

  • Wei Z, Zeng G, Huang F, Kosa M, Huang D, Ragauskas AJ (2015b) Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chem 17:2784–2789

    Article  CAS  Google Scholar 

  • Westfall PJ, Gardner TS (2011) Industrial fermentation of renewable diesel fuels. Curr Opin Biotechnol 22:344–350

    Article  CAS  Google Scholar 

  • Xiong X, Wang X, Chen S (2012) Engineering of a xylose metabolic pathway in Rhodococcus strains. Appl Environ Microbiol 78(16):5483–5491

    Article  CAS  Google Scholar 

  • Xiong X, Lian J, Yu X, Garcia-Perez M, Chen S (2016a) Engineering levoglucosan metabolic pathway in Rhodococcus jostii RHA1 for lipid production. J Ind Microbiol Biotechnol 43(11):1551–1560

    Article  CAS  Google Scholar 

  • Xiong X, Wang X, Chen S (2016b) Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production. J Ind Microbiol Biotechnol 43(7):1017–1025

    Article  CAS  Google Scholar 

  • Yoshino T, Liang Y, Arai D, Maeda Y, Honda T, Muto M, Kakunaka N, Tanaka T (2015) Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway. Appl Microbiol Biotechnol 99:1521–1529

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement no. 323009 and by the Portuguese Foundation for Science and Technology (FCT) under the scope of project MORE (PTDC/AAG-TEC/3500/2014; POCI-01-0145-FEDER-016575) and of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684), of Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462), POCI-01-0145-FEDER-007679 (UID/CTM/50011/2013), and by BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte 2020 – Programa Operacional Regional do Norte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Alcina Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Castro, A.R., Cavaleiro, A.J., Pereira, M.A. (2018). Oil and Hydrocarbon-Producing Bacteria. In: Stams, A., Sousa, D. (eds) Biogenesis of Hydrocarbons. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-53114-4_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53114-4_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53114-4

  • Online ISBN: 978-3-319-53114-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics