Anaerobic Digestion as Key Technology in the Bio-Based Economy

  • Nayaret Acosta
  • Jo De Vrieze
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


In our current society, there is a pressing need to shift from a fossil fuel-based to a bio-based economy in which renewable resources are used for the recovery of energy and production of bio-based chemicals for the industry. For several decades, anaerobic digestion has been the technology par excellence to deal with organic waste streams for waste stabilization and energy recovery in the form of biogas. This contributed a central role to anaerobic digestion in the biorefinery to deal with the massive amounts of waste streams that are generated during the production of bio-based chemicals. Due to their complex nature, these wastewaters often pose a challenge for anaerobic digestion, thus, integration with other technologies is needed to sustain its central role. The potential of anaerobic digestion can be extended beyond mere on-site energy recovery. Biogas upgrading to biomethane can be considered an interesting alternative for natural gas, yet, the economic viability will strongly depend on the future market value of electricity. Nutrient recovery and carboxylate production can also be targeted through the anaerobic digestion process, enabling the recovery of higher-value products, compared with biomethane. The potential integration of anaerobic digestion with other technologies for transport fuel production, integrated manure management, and carbon sequestration further emphasizes the versatility of anaerobic digestion and central position in the bio-economy.



Nayaret Acosta is supported by the project grant SENESCYT Convocatoria Abierta 2014 Primera Fase. Jo De Vrieze is supported as postdoctoral fellow from the Research Foundation Flanders (FWO-Vlaanderen).


  1. Abbasi T, Tauseef SM, Abbasi SA (2012) Biogas energy. Springer, New York, pp 11–23CrossRefGoogle Scholar
  2. Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29(2):70–78PubMedCrossRefGoogle Scholar
  3. Agler MT, Spirito CM, Usack JG, Werner JJ, Angenent LT (2012) Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates. Energy Environ Sci 5(8):8189–8192CrossRefGoogle Scholar
  4. Agler MT, Spirito CM, Usack JG, Werner JJ, Angenent LT (2014) Development of a highly specific and productive process for n-caproic acid production: applying lessons from methanogenic microbiomes. Water Sci Technol 69(1):62–68PubMedCrossRefGoogle Scholar
  5. Ahring BK, Traverso JJ, Murali N, Srinivas K (2016) Continuous fermentation of clarified corn stover hydrolysate for the production of lactic acid at high yield and productivity. Biochem Eng J 109:162–169CrossRefGoogle Scholar
  6. Andersen SJ, Hennebel T, Gildemyn S, Coma M, Desloover J, Berton J, Tsukamoto J, Stevens C, Rabaey K (2014) Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams. Environ Sci Technol 48(12):7135–7142PubMedCrossRefGoogle Scholar
  7. Andersen SJ, Candry P, Basadre T, Khor WC, Roume H, Hernandez-Sanabria E, Coma M, Rabaey K (2015) Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation. Biotechnol Biofuels 8:14CrossRefGoogle Scholar
  8. Andersen SJ, De Groof V, Khor WC, Roume H, Props R, Coma M, Rabaey K (2017) A Clostridium group IV species dominates and suppresses a mixed culture fermentation by tolerance to medium chain fatty acids products. Front Bioeng Biotechnol 5:8PubMedPubMedCentralCrossRefGoogle Scholar
  9. Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbiol Biotechnol 38(4):560–564CrossRefGoogle Scholar
  10. Angenent LT, Karim K, Al-Dahhan MH, Domiguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22(9):477–485PubMedCrossRefGoogle Scholar
  11. Appels L, Baeyens J, Degreve J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34(6):755–781CrossRefGoogle Scholar
  12. Appels L, Lauwers J, Degreve J, Helsen L, Lievens B, Willems K, Van Impe J, Dewil R (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sustain Energy Rev 15(9):4295–4301CrossRefGoogle Scholar
  13. Astals S, Nolla-Ardevol V, Mata-Alvarez J (2012) Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: biogas and digestate. Bioresour Technol 110:63–70PubMedCrossRefGoogle Scholar
  14. Batstone DJ, Hulsen T, Mehta CM, Keller J (2015) Platforms for energy and nutrient recovery from domestic wastewater: a review. Chemosphere 140:2–11PubMedCrossRefGoogle Scholar
  15. Bauer CG, Forest TW (2001) Effect of hydrogen addition on the performance of methane-fueled vehicles. Part I: effect on SI engine performance. Int J Hydrog Energy 26(1):55–70CrossRefGoogle Scholar
  16. Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159(2):474–480PubMedCrossRefGoogle Scholar
  17. Boe K, Angelidaki I (2009) Serial CSTR digester configuration for improving biogas production from manure. Water Res 43(1):166–172PubMedCrossRefGoogle Scholar
  18. Boehnke B, Diering B, Zuckut SW (1997) Cost-effective wastewater treatment process for removal of organics and nutrients. Water-Eng Manage 144(7):18–21Google Scholar
  19. Bolzonella D, Fatone F, Di Fabio S, Cecchi F (2009) In: Pierucci S (ed) Icheap-9: 9th international conference on chemical and process engineering, Pts 1–3. Aidic Servizi Srl, Milano, pp 385–390Google Scholar
  20. Bond T, Templeton MR (2011) History and future of domestic biogas plants in the developing world. Energy Sustain Dev 15(4):347–354CrossRefGoogle Scholar
  21. Bonmatí A, Flotats X (2003) Air stripping of ammonia from pig slurry: characterisation and feasibility as a pre- or post-treatment to mesophilic anaerobic digestion. Waste Manag 23(3):261–272PubMedCrossRefGoogle Scholar
  22. Borowski S, Weatherley L (2013) Co-digestion of solid poultry manure with municipal sewage sludge. Bioresour Technol 142(0):345–352PubMedCrossRefGoogle Scholar
  23. Cagnetta C, Coma M, Vlaeminck SE, Rabaey K (2016) Production of carboxylates from high rate activated sludge through fermentation. Bioresour Technol 217:165–172PubMedCrossRefGoogle Scholar
  24. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064PubMedCrossRefGoogle Scholar
  25. Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51(7):1412–1421CrossRefGoogle Scholar
  26. Choi S, Song CW, Shin JH, Lee SY (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239PubMedCrossRefGoogle Scholar
  27. Cusick RD, Ullery ML, Dempsey BA, Logan BE (2014) Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell. Water Res 54:297–306PubMedCrossRefGoogle Scholar
  28. de Vries SC, van de Ven GWJ, van Ittersum MK, Giller KE (2010) Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques. Biomass Bioenergy 34(5):588–601CrossRefGoogle Scholar
  29. De Vrieze J, Hennebel T, Boon N, Verstraete W (2012) Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour Technol 112:1–9PubMedCrossRefGoogle Scholar
  30. De Vrieze J, De Lathouwer L, Verstraete W, Boon N (2013) High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste. Water Res 47(11):3732–3741PubMedCrossRefGoogle Scholar
  31. De Vrieze J, Plovie K, Verstraete W, Boon N (2015a) Co-digestion of molasses or kitchen waste with high-rate activated sludge results in a diverse microbial community with stable methane production. J Environ Manag 152(0):75–82CrossRefGoogle Scholar
  32. De Vrieze J, Saunders AM, He Y, Fang J, Nielsen PH, Verstraete W, Boon N (2015b) Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Res 75(0):312–323PubMedCrossRefGoogle Scholar
  33. De Vrieze J, Coma M, Debeuckelaere M, Van der Meeren P, Rabaey K (2016a) High salinity in molasses wastewaters shifts anaerobic digestion to carboxylate production. Water Res 98:293–301PubMedCrossRefGoogle Scholar
  34. De Vrieze J, Devooght A, Walraedt D, Boon N (2016b) Enrichment of Methanosaetaceae on carbon felt and biochar during anaerobic digestion of a potassium-rich molasses stream. Appl Microbiol Biotechnol 100(11):5177–5187PubMedCrossRefGoogle Scholar
  35. De Vrieze J, Smet D, Klok J, Colsen J, Angenent LT, Vlaeminck SE (2016c) Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants. Bioresour Technol 218:1237–1245PubMedCrossRefGoogle Scholar
  36. Desloover J, Woldeyohannis AA, Verstraete W, Boon N, Rabaey K (2012) Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion. Environ Sci Technol 46(21):12209–12216PubMedCrossRefGoogle Scholar
  37. Desloover J, De Vrieze J, de Vijver MV, Mortelmans J, Rozendal R, Rabaey K (2015) Electrochemical nutrient recovery enables ammonia toxicity control and biogas desulfurization in anaerobic digestion. Environ Sci Technol 49(2):948–955PubMedCrossRefGoogle Scholar
  38. Desmidt E, Ghyselbrecht K, Zhang Y, Pinoy L, Van der Bruggen B, Verstraete W, Rabaey K, Meesschaert B (2015) Global phosphorus scarcity and full-scale P-recovery techniques: a review. Crit Rev Environ Sci Technol 45(4):336–384CrossRefGoogle Scholar
  39. Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources: an introduction. Wiley, WeinheimCrossRefGoogle Scholar
  40. DeWulf J, van Langenhove H, van de Velde B (2005) Exergy-based efficiency and renewability assessment of biofuel production. Environ Sci Technol 39(10):3878–3882PubMedCrossRefGoogle Scholar
  41. Dias MOS, Cunha MP, Jesus CDF, Rocha GJM, Pradella JGC, Rossell CEV, Maciel R, Bonomi A (2011) Second generation ethanol in Brazil: can it compete with electricity production? Bioresour Technol 102(19):8964–8971PubMedCrossRefGoogle Scholar
  42. DiStefano TD, Palomar A (2010) Effect of anaerobic reactor process configuration on useful energy production. Water Res 44(8):2583–2591PubMedCrossRefGoogle Scholar
  43. Ebbers B, Ottosen LM, Jensen PE (2015) Electrodialytic treatment of municipal wastewater and sludge for the removal of heavy metals and recovery of phosphorus. Electrochim Acta 181:90–99CrossRefGoogle Scholar
  44. Fang C, Boe K, Angelidaki I (2011a) Anaerobic co-digestion of by-products from sugar production with cow manure. Water Res 45(11):3473–3480PubMedCrossRefGoogle Scholar
  45. Fang C, Boe K, Angelidaki I (2011b) Anaerobic co-digestion of desugared molasses with cow manure; focusing on sodium and potassium inhibition. Bioresour Technol 102(2):1005–1011PubMedCrossRefGoogle Scholar
  46. Ge HQ, Jensen PD, Batstone DJ (2011) Temperature phased anaerobic digestion increases apparent hydrolysis rate for waste activated sludge. Water Res 45(4):1597–1606PubMedCrossRefGoogle Scholar
  47. Ge H, Batstone DJ, Keller J (2013) Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion. Water Res 47(17):6546–6557PubMedCrossRefGoogle Scholar
  48. Guiot SR, Cimpoia R, Carayon G (2011) Potential of wastewater-treating anaerobic granules for biomethanation of synthesis gas. Environ Sci Technol 45(5):2006–2012PubMedCrossRefGoogle Scholar
  49. Gunnerson CG, Stuckey DC (1986) Anaerobic digestion : principles and practices for biogas systems. World Bank, Washington, DCGoogle Scholar
  50. Gustin S, Marinsek-Logar R (2011) Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent. Process Saf Environ Prot 89(1):61–66CrossRefGoogle Scholar
  51. Guwy AJ, Dinsdale RM, Kim JR, Massanet-Nicolau J, Premier G (2011) Fermentative biohydrogen production systems integration. Bioresour Technol 102(18):8534–8542PubMedCrossRefGoogle Scholar
  52. Han Y, Dague RR (1997) Laboratory studies on the temperature phased anaerobic digestion of domestic primary sludge. Water Environ Res 69(6):1139–1143CrossRefGoogle Scholar
  53. Hansen KH, Angelidaki I, Ahring BK (1998) Anaerobic digestion of swine manure: inhibition by ammonia. Water Res 32(1):5–12CrossRefGoogle Scholar
  54. He PJ (2010) Anaerobic digestion: an intriguing long history in China. Waste Manag 30(4):549–550PubMedCrossRefGoogle Scholar
  55. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100(22):5478–5484PubMedCrossRefGoogle Scholar
  56. Hubner T, Mummea J (2015) Integration of pyrolysis and anaerobic digestion – use of aqueous liquor from digestate pyrolysis for biogas production. Bioresour Technol 183:86–92PubMedCrossRefGoogle Scholar
  57. Inyang M, Gao B, Pullammanappallil P, Ding WC, Zimmerman AR (2010) Biochar from anaerobically digested sugarcane bagasse. Bioresour Technol 101(22):8868–8872PubMedCrossRefGoogle Scholar
  58. Inyang M, Gao B, Yao Y, Xue YW, Zimmerman AR, Pullammanappallil P, Cao XD (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56PubMedCrossRefGoogle Scholar
  59. Ippersiel D, Mondor M, Lamarche F, Tremblay F, Dubreuil J, Masse L (2012) Nitrogen potential recovery and concentration of ammonia from swine manure using electrodialysis coupled with air stripping. J Environ Manag 95:S165–S169CrossRefGoogle Scholar
  60. Jagadabhi PS, Kaparaju P, Rintala J (2010) Effect of micro-aeration and leachate replacement on COD solubilization and VFA production during mono-digestion of grass-silage in one-stage leach-bed reactors. Bioresour Technol 101(8):2818–2824PubMedCrossRefGoogle Scholar
  61. Jimenez AM, Borja R, Martin A (2003) Aerobic-anaerobic biodegradation of beet molasses alcoholic fermentation wastewater. Process Biochem 38(9):1275–1284CrossRefGoogle Scholar
  62. Jimenez AM, Borja R, Martin A, Raposo F (2005) Mathematical modelling of aerobic degradation of vinasses with Penicillium decumbens. Process Biochem 40(8):2805–2811CrossRefGoogle Scholar
  63. Jin H, Chang Z (2011) Distribution of heavy metal contents and chemical fractions in anaerobically digested manure slurry. Appl Biochem Biotechnol 164(3):268–282PubMedCrossRefGoogle Scholar
  64. Junne S, Kabisch J (2017) Fueling the future with biomass: processes and pathways for a sustainable supply of hydrocarbon fuels and biogas. Eng Life Sci 17(1):14–26CrossRefGoogle Scholar
  65. Jury C, Benetto E, Koster D, Schmitt B, Welfring J (2010) Life cycle assessment of biogas production by monofermentation of energy crops and injection into the natural gas grid. Biomass Bioenergy 34(1):54–66CrossRefGoogle Scholar
  66. Kataki S, West H, Clarke M, Baruah DC (2016) Phosphorus recovery as struvite: recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resour Conserv Recycl 107:142–156CrossRefGoogle Scholar
  67. Khan AA, Gaur RZ, Tyagi VK, Khursheed A, Lew B, Mehrotra I, Kazmi AA (2011) Sustainable options of post treatment of UASB effluent treating sewage: a review. Resour Conserv Recycl 55(12):1232–1251CrossRefGoogle Scholar
  68. Khor WC, Roume H, Coma M, Vervaeren H, Rabaey K (2016) Acetate accumulation enhances mixed culture fermentation of biomass to lactic acid. Appl Microbiol Biotechnol 100(19):8337–8348PubMedCrossRefGoogle Scholar
  69. Kim S, Dale BE (2005) Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel. Biomass Bioenergy 29(6):426–439CrossRefGoogle Scholar
  70. Kjerstadius H, Jansen JL, De Vrieze J, Haghighatafshar S, Davidsson A (2013) Hygienization of sludge through anaerobic digestion at 35, 55 and 60 degrees C. Water Sci Technol 68(10):2234–2239PubMedCrossRefGoogle Scholar
  71. Kjerstadius H, Haghighatafshar S, Davidsson A (2015) Potential for nutrient recovery and biogas production from blackwater, food waste and greywater in urban source control systems. Environ Technol 36(13):1707–1720PubMedCrossRefGoogle Scholar
  72. Kleerebezem R, Joosse B, Rozendal R, Van Loosdrecht MCM (2015) Anaerobic digestion without biogas? Rev Environ Sci Biotechnol 14(4):787–801CrossRefGoogle Scholar
  73. Kovács KL, Kovács ÁT, Maróti G, Bagi Z, Csanádi G, Perei K, Bálint B, Balogh J, Fülöp A, Mészáros LS, Tóth A, Dávid R, Latinovics D, Varga A, Rákhely G (2004) Improvement of biohydrogen production and intensification of biogas formation. Rev Environ Sci Biotechnol 3(4):321–330CrossRefGoogle Scholar
  74. Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM (2014) Full-scale partial nitritation/anammox experiences – an application survey. Water Res 55:292–303PubMedCrossRefGoogle Scholar
  75. Lettinga G, Hulshoff Pol LW (1991) UASB-process design for various types of wastewaters. Water Sci Technol 24(8):87–107Google Scholar
  76. Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22(4):699–734CrossRefGoogle Scholar
  77. Lu F, Luo CH, Shao LM, He PJ (2016) Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina. Water Res 90:34–43PubMedCrossRefGoogle Scholar
  78. Lund H, Andersen AN, Ostergaard PA, Mathiesen BV, Connolly D (2012) From electricity smart grids to smart energy systems – a market operation based approach and understanding. Energy 42(1):96–102CrossRefGoogle Scholar
  79. Lv W, Schanbacher FL, Yu ZT (2010) Putting microbes to work in sequence: recent advances in temperature-phased anaerobic digestion processes. Bioresour Technol 101(24):9409–9414PubMedCrossRefGoogle Scholar
  80. Maity SK (2015) Opportunities, recent trends and challenges of integrated biorefinery: part I. Renew Sustain Energy Rev 43:1427–1445CrossRefGoogle Scholar
  81. Mata-Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74(1):3–16CrossRefGoogle Scholar
  82. McCarty PL (1981) One hundred years of anaerobic treatment. In: Hughes DE, Stafford DA, Wheatley BI (eds) Anaerobic Digestion. Amsterdam, Elsevier Biomedical Press, pp 3–22Google Scholar
  83. Meerburg FA, Boon N, Van Winckel T, Vercamer JAR, Nopens I, Vlaeminck SE (2015) Toward energy-neutral wastewater treatment: a high-rate contact stabilization process to maximally recover sewage organics. Bioresour Technol 179:373–381PubMedCrossRefGoogle Scholar
  84. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38(4):522–550CrossRefGoogle Scholar
  85. Meyer-Aurich A, Schattauer A, Hellebrand HJ, Klauss H, Plochl M, Berg W (2012) Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renew Energy 37(1):277–284CrossRefGoogle Scholar
  86. Misi SN, Forster CF (2001) Batch co-digestion of multi-component agro-wastes. Bioresour Technol 80(1):19–28PubMedCrossRefGoogle Scholar
  87. Moller K, Muller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng Life Sci 12(3):242–257CrossRefGoogle Scholar
  88. Mondor M, Masse L, Ippersiel D, Lamarche F, Masse DI (2008) Use of electrodialysis and reverse osmosis for the recovery and concentration of ammonia from swine manure. Bioresour Technol 99(15):7363–7368PubMedCrossRefGoogle Scholar
  89. Monlau F, Sambusiti C, Antoniou N, Barakat A, Zabaniotou A (2015) A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process. Appl Energy 148:32–38CrossRefGoogle Scholar
  90. Monlau F, Francavilla M, Sambusiti C, Antoniou N, Solhy A, Libutti A, Zabaniotou A, Barakat A, Monteleone M (2016) Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management. Comparison between solid-digestate and its derived pyrochar as soil amendment. Appl Energy 169:652–662CrossRefGoogle Scholar
  91. Moraes BS, Zaiat M, Bonomi A (2015) Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renew Sustain Energy Rev 44:888–903CrossRefGoogle Scholar
  92. Mumme J, Srocke F, Heeg K, Werner M (2014) Use of biochars in anaerobic digestion. Bioresour Technol 164:189–197PubMedCrossRefGoogle Scholar
  93. Munch EV, Barr K (2001) Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Water Res 35(1):151–159PubMedCrossRefGoogle Scholar
  94. Munoz R, Meier L, Diaz I, Jeison D (2015) A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev Environ Sci Biotechnol 14(4):727–759CrossRefGoogle Scholar
  95. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14(2):578–597CrossRefGoogle Scholar
  96. Oles J, Dichtl N, Niehoff HH (1997) Full scale experience of two stage thermophilic/mesophilic sludge digestion. Water Sci Technol 36(6–7):449–456Google Scholar
  97. Parajuli R, Dalgaard T, Jorgensen U, Adamsen APS, Knudsen MT, Birkved M, Gylling M, Schjorring JK (2015) Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renew Sustain Energy Rev 43:244–263CrossRefGoogle Scholar
  98. Pimentel D, Patzek TW (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res 14(1):65–76CrossRefGoogle Scholar
  99. Pintucci C, Carballa M, Varga S, Sarli J, Peng L, Bousek J, Pedizzi C, Ruscalleda M, Tarrago E, Prat D, Colica G, Picavet M, Colsen J, Benito O, Balaguer M, Puig S, Lema JM, Colprim J, Fuchs W, Vlaeminck SE (2017) The ManureEcoMine pilot installation: advanced integration of technologies for the management of organics and nutrients in livestock waste. Water Sci Technol 75(6):1281–1293PubMedCrossRefGoogle Scholar
  100. Posada JA, Patel AD, Roes A, Blok K, Faaij APC, Patel MK (2013) Potential of bioethanol as a chemical building block for biorefineries: preliminary sustainability assessment of 12 bioethanol-based products. Bioresour Technol 135:490–499PubMedCrossRefGoogle Scholar
  101. Pucker J, Jungmeier G, Siegl S, Potsch EM (2013) Anaerobic digestion of agricultural and other substrates – implications for greenhouse gas emissions. Animal 7:283–291PubMedCrossRefGoogle Scholar
  102. Rabelo SC, Carrere H, Filho RM, Costa AC (2011) Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour Technol 102(17):7887–7895PubMedCrossRefGoogle Scholar
  103. Rajagopal R, Masse DI, Singh G (2013) A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol 143:632–641PubMedCrossRefGoogle Scholar
  104. Riau V, De la Rubia MA, Perez M (2010) Temperature-phased anaerobic digestion (TPAD) to obtain class a biosolids: a semi-continuous study. Bioresour Technol 101(8):2706–2712PubMedCrossRefGoogle Scholar
  105. Rodriguez-Garcia G, Frison N, Vazquez-Padin JR, Hospido A, Garrido JM, Fatone F, Bolzonella D, Moreira MT, Feijoo G (2014) Life cycle assessment of nutrient removal technologies for the treatment of anaerobic digestion supernatant and its integration in a wastewater treatment plant. Sci Total Environ 490:871–879PubMedCrossRefGoogle Scholar
  106. Ryan D, Gadd A, Kavanagh J, Barton GW (2009) Integrated biorefinery wastewater design. Chem Eng Res Des 87(9A):1261–1268CrossRefGoogle Scholar
  107. Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35(5):1633–1645CrossRefGoogle Scholar
  108. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27CrossRefGoogle Scholar
  109. Satyawali Y, Balakrishnan M (2008) Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review. J Environ Manag 86(3):481–497CrossRefGoogle Scholar
  110. Seghezzo L, Zeeman G, van Lier JB, Hamelers HVM, Lettinga G (1998) A review: the anaerobic treatment of sewage in UASB and EGSB reactors. Bioresour Technol 65(3):175–190CrossRefGoogle Scholar
  111. Serna-Maza A, Heaven S, Banks CJ (2014) Ammonia removal in food waste anaerobic digestion using a side-stream stripping process. Bioresour Technol 152:307–315PubMedCrossRefGoogle Scholar
  112. Shu L, Schneider P, Jegatheesan V, Johnson J (2006) An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresour Technol 97(17):2211–2216PubMedCrossRefGoogle Scholar
  113. Singhania RR, Patel AK, Christophe G, Fontanille P, Larroche C (2013) Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresour Technol 145:166–174PubMedCrossRefGoogle Scholar
  114. Sotres A, Cerrillo M, Vinas M, Bonmati A (2015) Nitrogen recovery from pig slurry in a two-chambered bioelectrochemical system. Bioresour Technol 194:373–382PubMedCrossRefGoogle Scholar
  115. Spirito CM, Richter H, Rabaey K, Stams AJM, Angenent LT (2014) Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr Opin Biotechnol 27:115–122PubMedCrossRefGoogle Scholar
  116. Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, Sørensen SJ, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85(3):612–626PubMedCrossRefGoogle Scholar
  117. Szarka N, Scholwin F, Trommler M, Jacobi HF, Eichhorn M, Ortwein A, Thran D (2013) A novel role for bioenergy: a flexible, demand-oriented power supply. Energy 61:18–26CrossRefGoogle Scholar
  118. Tambone F, Scaglia B, D’Imporzano G, Schievano A, Orzi V, Salati S, Adani F (2010) Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81(5):577–583PubMedCrossRefGoogle Scholar
  119. Torri C, Fabbri D (2014) Biochar enables anaerobic digestion of aqueous phase from intermediate pyrolysis of biomass. Bioresour Technol 172:335–341PubMedCrossRefGoogle Scholar
  120. Usack JG, Angenent LT (2015) Comparing the inhibitory thresholds of dairy manure co-digesters after prolonged acclimation periods: part 1-performance and operating limits. Water Res 87:446–457PubMedCrossRefGoogle Scholar
  121. Vaneeckhaute C, Meers E, Michels E, Ghekiere G, Accoe F, Tack FMG (2013) Closing the nutrient cycle by using bio-digestion waste derivatives as synthetic fertilizer substitutes: a field experiment. Biomass Bioenergy 55:175–189CrossRefGoogle Scholar
  122. Verstraete W, Vlaeminck SE (2011) ZeroWasteWater: short-cycling of wastewater resources for sustainable cities of the future. Int J Sust Dev World 18(3):253–264CrossRefGoogle Scholar
  123. Viau E, Peccia J (2009) Survey of wastewater indicators and human pathogen genomes in biosolids produced by class A and class B stabilization treatments. Appl Environ Microbiol 75(1):164–174PubMedCrossRefGoogle Scholar
  124. Walsh JJ, Jones DL, Edwards-Jones G, Williams AP (2012) Replacing inorganic fertilizer with anaerobic digestate may maintain agricultural productivity at less environmental cost. J Plant Nutr Soil Sci 175(6):840–845CrossRefGoogle Scholar
  125. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860PubMedCrossRefGoogle Scholar
  126. Xu J, Guzman JJL, Andersen SJ, Rabaey K, Angenent LT (2015) In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis. Chem Commun 51(31):6847–6850CrossRefGoogle Scholar
  127. Ye YL, Zamalloa C, Lin HJ, Yan M, Schmidt D, Hu B (2015) Evaluation of anaerobic co-digestion of dairy manure with food wastes via bio-methane potential assay and CSTR reactor. J Environ Sci Health B 50(3):217–227PubMedCrossRefGoogle Scholar
  128. Zhang YF, Angelidaki I (2015a) Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell. Biotechnol Bioeng 112(7):1478–1482PubMedCrossRefGoogle Scholar
  129. Zhang YF, Angelidaki I (2015b) Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia. Bioresour Technol 177:233–239PubMedCrossRefGoogle Scholar
  130. Zhang L, Lee YW, Jahng D (2012) Ammonia stripping for enhanced biomethanization of piggery wastewater. J Hazard Mater 199:36–42PubMedGoogle Scholar
  131. Zhang W, Werner JJ, Agler MT, Angenent LT (2014) Substrate type drives variation in reactor microbiomes of anaerobic digesters. Bioresour Technol 151:397–401PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET)Ghent UniversityGhentBelgium

Personalised recommendations