Advertisement

Contribution of Methane Formation and Methane Oxidation to Methane Emission from Freshwater Systems

  • Carsten J. Schubert
  • Bernhard Wehrli
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Lakes and reservoirs have been only in the early twenty-first century identified to be main methane emitters to the atmosphere (Bastviken et al., Glob Biogeochem Cycles 18:1–12, 2004; St. Louis et al., Bioscience 50:766–775, 2000). With an estimated yearly amount of 12–29.6 Tg CH4 for reservoirs (Deemer et al., Bioscience 66:949–964, 2016) and up to 71.6 Tg CH4 for lakes (Bastviken et al., Science 331:50–50, 2011), they represent up to 10% of total methane emissions and hence have to be taken into account in global budgets. Freshwater systems are emitting more methane than oceans although only covering about 3% of the earth surface since methanogenesis, the building process of methane, is the main organic matter degradation step compared to oceans where sulfate reduction is dominant. Reservoirs in comparison to lakes have two additional methane release mechanisms, which are loss from methane-rich hypolimnion waters at the turbine and then degassing in the river to which the turbined water has been released. A still poorly constrained mechanism occurring in both systems is ebullition, the transfer of methane bubbles directly through the water column towards the atmosphere. Whereas in the oceans, mainly archaea often in a consortium with bacteria oxidize the methane in the sediments or water column, in freshwater systems the oxidation process seems to be much more versatile in respect to electron acceptors (oxygen, nitrate, iron, and manganese) as well as to the microorganisms involved. We believe that in the future there will be more discoveries and surprises when investigating freshwater methane oxidation.

Notes

Acknowledgments

We acknowledge all people that have gone with us the road of first determining methane emissions in Swiss and African lakes and reservoirs (Torsten Diem, Natacha Pasche, Martin Schmid, Johny Wüest, Tonya DelSontro, Sébastien Sollberger, Werner Eugster) or determining methane in lake sediments (Lina Tyroller, Rolf Kipfer), followed by investigating methane oxidation (Francoise Lucas, Edith Durisch-Kaiser, Kirsten Oswald, Carole Guggenheim, Andreas Brand, Helmut Bürgman, Corinne Jegge, Jana Milucka, Marcel Kuypers). Thanks also to all technicians without their help this work would not have been possible (the late Gijs Nobbe, Serge Robert, Alois Zwyssig, Christian Dinkel, Patrick Kathriner, Michael Schurter). We acknowledge funding from Eawag and ETH and from several Swiss National Science Foundation grants to BW and CJS (SNF grant no. 2100-068130, 200020-103887, 135299, 153091, 128707).

References

  1. Abril G, Guérin F, Richard S, Delmas R, Galy-Lacaux C, Gosse P, Tremblay A, Varfalvy L, Dos Santos MA, Matvienko B (2005) Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Glob Biogeochem Cycles 19Google Scholar
  2. Aloisi G, Bouloubassi I, Heijs SK, Pancost RD, Pierre C, Sinninghe Damsté JS, Gottschal JC, Forney LJ, Rouchy J-M (2002) CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet Sci Lett 203:195–203CrossRefGoogle Scholar
  3. Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60CrossRefGoogle Scholar
  4. Barnes RO, Goldberg ED (1976) Methane production and consumption in anoxic marine sediments. Geology 4:297–300CrossRefGoogle Scholar
  5. Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VLM, del Giorgio P, Roland F (2011) Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 4:593–596CrossRefGoogle Scholar
  6. Bastviken D, Ejlertsson J, Tranvik L (2002) Measurement of methane oxidation in lakes: a comparison of methods. Environ Sci Technol 36:3354–3361PubMedCrossRefGoogle Scholar
  7. Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles 18:1–12CrossRefGoogle Scholar
  8. Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50–50PubMedCrossRefGoogle Scholar
  9. Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187PubMedCrossRefGoogle Scholar
  10. Beaulieu JJ, Smolenski RL, Nietch CT, Townsend-Small A, Elovitz MS (2014) High methane emissions from a midlatitude reservoir draining an agricultural watershed. Environ Sci Technol 48:11100–11108PubMedCrossRefGoogle Scholar
  11. Biderre-Petit C, Jézéquel D, Dugat-Bony E, Lopes F, Kuever J, Borrel G, Viollier E, Fonty G, Peyret P (2011) Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake. FEMS Microbiol Ecol 77:533–545PubMedCrossRefGoogle Scholar
  12. Blees J, Niemann H, Wenk CB, Zopfi J, Schubert CJ, Kirf MK, Veronesi ML, Hitz C, Lehmann MF (2014) Micro-aerobic bacterial methane oxidation in the chemocline and anoxic water column of deep south-Alpine Lake Lugano (Switzerland). Limnol Oceanogr 59:311–324CrossRefGoogle Scholar
  13. Bloom AA, Palmer PI, Fraser A, Reay DS, Frankenberg C (2010) Large-scale controls of Methanogenesis inferred from methane and gravity spaceborne data. Science 327:322–325PubMedCrossRefGoogle Scholar
  14. Bodelier PL, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265–277PubMedCrossRefGoogle Scholar
  15. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Giesecke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626PubMedCrossRefGoogle Scholar
  16. Bogard MJ, del Giorgio PA, Boutet L, Chaves MCG, Prairie YT, Merante A, Derry AM (2014) Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat Commun 5:5350PubMedCrossRefGoogle Scholar
  17. Boone DR, Whitman WB, Rouviere P (1993) Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis. Chapman and Hall Co., New York, pp 35–80CrossRefGoogle Scholar
  18. Borrego CM, Arellano JB, Abella CA, Gillbro T, Garcia-Gil J (1999) The molar extinction coefficient of bacteriochlorophyll e and the pigment stoichiometry in Chlorobium phaeobacteroides. Photosynth Res 60:257–264CrossRefGoogle Scholar
  19. Brand A, Bruderer H, Oswald K, Guggenheim C, Schubert CJ, Wehrli B (2016) Oxygenic primary production below the oxycline and its importance for redox dynamics. Aquat Sci 78:727–741CrossRefGoogle Scholar
  20. Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol 19:1325–1346PubMedCrossRefGoogle Scholar
  21. Bruun A-M, Finster K, Gunnlaugsson HP, Nørnberg P, Friedrich MW (2010) A comprehensive investigation on iron cycling in a freshwater seep including microscopy, cultivation and molecular community analysis. Geomicrobiol J 27:15–34CrossRefGoogle Scholar
  22. Bumb F, Schweisfurth R (1981) Zusammenfassende Darstellung der Kenntnisse über Crenothrix polyspora Cohn und eigene Untersuchungen. Hochschul-Verlag, FreiburgGoogle Scholar
  23. Campeau A, del Giorgio PA (2014) Patterns in CH4 and CO2 concentrations across boreal rivers: major drivers and implications for fluvial greenhouse emissions under climate change scenarios. Glob Chang Biol 20:1075–1088PubMedCrossRefGoogle Scholar
  24. Chanudet V, Descloux S, Harby A, Sundt H, Hansen BH, Brakstad O, Serça D, Guerin F (2011) Gross CO2 and CH4 emissions from the Nam Ngum and Nam Leuk sub-tropical reservoirs in Lao PDR. Sci Total Environ 409:5382–5391PubMedCrossRefGoogle Scholar
  25. Chistoserdova L, Vorholt JA, Thauer RK, Lidstrom ME (1998) C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science 281:99–102PubMedCrossRefGoogle Scholar
  26. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: TF Stocker QD, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp 465–570Google Scholar
  27. Cohn F (1870) Über den Brunnenfaden (Crenothrix polyspora) mit Bemerkungen über die mikroskopische Analyse des Brunnenwassers. Beitr Biol Pflanzen 1:108–131Google Scholar
  28. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  29. Conrad R (1989) Control of methane production in terrestrial ecosystems. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, Chichester, pp 39–58Google Scholar
  30. Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–292PubMedCrossRefGoogle Scholar
  31. Conrad R, Frenzel P (2002) Flooded soils. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 1316–1333Google Scholar
  32. Crawford JT, Lottig NR, Stanley EH, Walker JF, Hanson PC, Finlay JC, Striegl RG (2014) CO2 and CH4 emissions from streams in a lake-rich landscape: patterns, controls, and regional significance. Glob Biogeochem Cycles 28:197–210CrossRefGoogle Scholar
  33. Crowe SA, Katsev S, Leslie K, Sturm A, Magen C, Nomosatryo S, Pack MA, Kessler JD, Reeburgh WS, Roberts JA, Gonzalez L, Haffner GD, Mucci A, Sundby B, Fowle DA (2011) The methane cycle in ferruginous Lake Matano. Geobiology 9:61–78PubMedCrossRefGoogle Scholar
  34. Davidson TA, Audet J, Svenning J-C, Lauridsen TL, Søndergaard M, Landkildehus F, Larsen SE, Jeppesen E (2015) Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming. Glob Chang Biol 21:4449–4463PubMedCrossRefGoogle Scholar
  35. Davis J, Coty V, Stanley J (1964) Atmospheric nitrogen fixation by methane-oxidizing bacteria. J Bacteriol 88:468–472PubMedPubMedCentralGoogle Scholar
  36. Deemer BR, Harrison JA, Li S, Beaulieu JJ, DelSontro T, Barros N, Bezerra-Neto JF, Powers SM, dos Santos MA, Vonk JA (2016) Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. Bioscience 66:949–964CrossRefGoogle Scholar
  37. DelSontro T, McGinnis DF, Sobek S, Ostrovsky I, Wehrli B (2010) Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments. Environ Sci Technol 44:2419–2425PubMedCrossRefGoogle Scholar
  38. DelSontro T, Kunz MJ, Kempter T, Wüest A, Wehrli B, Senn DB (2011) Spatial heterogeneity of methane ebullition in a large tropical reservoir. Environ Sci Technol 45:9866–9873PubMedCrossRefGoogle Scholar
  39. DelSontro T, McGinnis DF, Wehrli B, Ostrovsky I (2015) Size does matter: importance of large bubbles and small-scale hot spots for methane transport. Environ Sci Technol 49:1268–1276PubMedCrossRefGoogle Scholar
  40. DelSontro T, Boutet L, St-Pierre A, del Giorgio PA, Prairie YT (2016a) Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity. Limnol Oceanogr 61:S62–S77CrossRefGoogle Scholar
  41. DelSontro T, Perez KK, Sollberger S, Wehrli B (2016b) Methane dynamics downstream of a temperate run-of-the-river reservoir. Limnol Oceanogr 61:S188–S203CrossRefGoogle Scholar
  42. Deshmukh C, Serça D, Delon C, Tardif R, Demarty M, Jarnot C, Meyerfeld Y, Chanudet V, Guédant P, Rode W, Descloux S, Guérin F (2014) Physical controls on CH4 emissions from a newly flooded subtropical freshwater hydroelectric reservoir: Nam Theun 2. Biogeosciences 11:4251–4269CrossRefGoogle Scholar
  43. Deshmukh C, Guérin F, Labat D, Pighini S, Vongkhamsao A, Guédant P, Rode W, Godon A, Chanudet V, Descloux S, Serça D (2016) Low methane (CH4) emissions downstream of a monomictic subtropical hydroelectric reservoir (Nam Theun 2, Lao PDR). Biogeosciences 13:1919–1932CrossRefGoogle Scholar
  44. Deutzmann JS, Stief P, Brandes J, Schink B (2014) Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. Proc Natl Acad Sci 111:18273–18278PubMedPubMedCentralCrossRefGoogle Scholar
  45. Diem T, Koch S, Schwarzenbach S, Wehrli B, Schubert CJ (2012) Greenhouse gas emissions (CO2, CHç, N2O) from several perialpine and alpine hydropower reservoirs by diffusion and loss in turbines. Aquat Sci 74:619–635CrossRefGoogle Scholar
  46. Dörr N, Glaser B, Kolb S (2010) Methanotrophic communities in Brazilian ferralsols from naturally forested, afforested, and agricultural sites. Appl Environ Microbiol 76:1307–1310PubMedCrossRefGoogle Scholar
  47. Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397CrossRefGoogle Scholar
  48. Drewniak L, Maryan N, Lewandowski W, Kaczanowski S, Sklodowska A (2012) The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine. Environ Pollut 162:190–201PubMedCrossRefGoogle Scholar
  49. Dumestre J, Guézennec J, Galy-Lacaux C, Delmas R, Richard S, Labroue L (1999) Influence of light intensity on methanotrophic bacterial activity in Petit Saut Reservoir, French Guiana. Appl Environ Microbiol 65:534–539PubMedPubMedCentralGoogle Scholar
  50. Durisch-Kaiser E, Schmid M, Peeters F, Kipfer R, Dinkel C, Diem T, Schubert CJ, Wehrli B (2011) What prevents outgassing of methane to the atmosphere in Lake Tanganyika? J Geophys Res Biogeosci 116:1–16, G02022,  https://doi.org/10.1029/2010JG001323
  51. Eller G, Känel L, Krüger M (2005) Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plußsee. Appl Environ Microbiol 71:8925–8928PubMedPubMedCentralCrossRefGoogle Scholar
  52. Emerson D (2009) Potential for iron-reduction and iron-cycling in iron oxyhydroxide-rich microbial mats at Loihi Seamount. Geomicrobiol J 26:639–647CrossRefGoogle Scholar
  53. Encinas Fernández J, Peeters F, Hofmann H (2016) On the methane paradox: transport from shallow water zones rather than in situ methanogenesis is the major source of CH4 in the open surface water of lakes. J Geophys Res Biogeosci 121:2717–2726CrossRefGoogle Scholar
  54. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs K-J, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548PubMedCrossRefGoogle Scholar
  55. Eugster W, DelSontro T, Sobek S (2011) Eddy covariance flux measurements confirm extreme CH(4) emissions from a Swiss hydropower reservoir and resolve their short-term variability. Biogeosciences 8:2815–2831CrossRefGoogle Scholar
  56. Gibson C (1985) Growth rate, maintenance energy and pigmentation of planktonic cyanophyta during one-hour light: dark cycles. Br Phycol J 20:155–161CrossRefGoogle Scholar
  57. Glass JB, Orphan VJ (2012) Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front Microbiol 3:1–20Google Scholar
  58. Grossart H-P, Frindte K, Dziallas C, Eckert W, Tang KW (2011) Microbial methane production in oxygenated water column of an oligotrophic lake. Proc Natl Acad Sci 108:19657–19661PubMedPubMedCentralCrossRefGoogle Scholar
  59. Guerin F (2006) Emissions de Gaz a Effet de Serre (CO2, CH4) par une Retenue de Barrage Hydroelectrique en Zone Tropicale (Petit-Saut, Guyane Francaise): Experimentation et Modelisation. Thèse de doctorat de l’Université Paul Sabatier (Toulouse III)Google Scholar
  60. Guérin F, Abril G, de Junet A, Bonnet M-P (2008) Anaerobic decomposition of tropical soils and plant material: implication for the CO2 and CH4 budget of the Petit Saut Reservoir. Appl Geochem 23:2272–2283CrossRefGoogle Scholar
  61. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471PubMedPubMedCentralGoogle Scholar
  62. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567PubMedCrossRefGoogle Scholar
  63. Harrison JA, Deemer BR, Birchfield MK, O’Malley MT (2017) Reservoir water-level drawdowns accelerate and amplify methane emission. Environ Sci Technol 51:1267–1277PubMedCrossRefGoogle Scholar
  64. Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805PubMedCrossRefGoogle Scholar
  65. Hoehler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Glob Biogeochem Cycles 8:451–463CrossRefGoogle Scholar
  66. Kalff J (2002) Limnology. Prentice Hall, New YorkGoogle Scholar
  67. Karl DM, Beversdorf L, Bjorkman KM, Church MJ, Martinez A, Delong EF (2008) Aerobic production of methane in the sea. Nat Geosci 1:473–478CrossRefGoogle Scholar
  68. Kelly CA, Rudd JWM, Bodaly RA, Roulet NP, St.Louis VL, Heyes A, Moore TR, Schiff S, Aravena R, Scott KJ, Dyck B, Harris R, Warner B, Edwards G (1997) Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. Environ Sci Technol 31:1334–1344CrossRefGoogle Scholar
  69. Kemenes A, Forsberg BR, Melack JM (2011) CO2 emissions from a tropical hydroelectric reservoir (Balbina, Brazil). J Geophys Res Biogeo 116:1–11, G03004,  https://doi.org/10.1029/2010JG001465
  70. Kirf M, Dinkel C, Schubert C, Wehrli B (2014) Submicromolar oxygen profiles at the oxic–anoxic boundary of temperate lakes. Aquat Geochem 20:39–57CrossRefGoogle Scholar
  71. Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque J-F, Langenfelds RL, Le Quere C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823CrossRefGoogle Scholar
  72. Kits KD, Campbell DJ, Rosana AR, Stein LY (2015a) Diverse electron sources support denitrification under hypoxia in the obligate methanotroph Methylomicrobium album strain BG8. Front Microbiol 6:1072PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kits KD, Klotz MG, Stein LY (2015b) Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol 17:3219–3232PubMedCrossRefGoogle Scholar
  74. Kling GW, Kipphut GW, Miller MC (1992) The flux of CO2 and CH4 from lakes and rivers in arctic Alaska, Hydrobiologia 240:23–36CrossRefGoogle Scholar
  75. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334PubMedCrossRefGoogle Scholar
  76. Lamontagne RA, Swinnerton JW, Linnenbom VJ, Smith WD (1973) Methane concentrations in various marine environments. J Geophys Res 78:5317–5324CrossRefGoogle Scholar
  77. Lehmann M, Simona M, Wyss S, Blees J, Frame C, Niemann H, Veronesi M, Zopfi J (2015) Powering up the “biogeochemical engine”: the impact of exceptional ventilation of a deep meromictic lake on the lacustrine redox, nutrient, and methane balances. Front Earth Sci 3(45):1–13,  https://doi.org/10.3389/feart.2015.00045
  78. Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22CrossRefGoogle Scholar
  79. Lehner B, Liermann CR, Revenga C, Vörösmarty C, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rödel R, Sindorf N, Wisser D (2011) High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ 9:494–502CrossRefGoogle Scholar
  80. Lidstrom ME, Somers L (1984) Seasonal study of methane oxidation in Lake Washington. Appl Environ Microbiol 47:1255–1260PubMedPubMedCentralGoogle Scholar
  81. Luther GW, Sundby B, Lewis BL, Brendel PJ, Silverberg N (1997) Interactions of manganese with the nitrogen cycle: alternative pathways to dinitrogen. Geochim Cosmochim Acta 61:4043–4052CrossRefGoogle Scholar
  82. Maeck A, DelSontro T, McGinnis DF, Fischer H, Flury S, Schmidt M, Fietzek P, Lorke A (2013) Sediment trapping by dams creates methane emission hot spots. Environ Sci Technol 47:8130–8137PubMedCrossRefGoogle Scholar
  83. McGinnis DF, Bilsley N, Schmidt M, Fietzek P, Bodmer P, Premke K, Lorke A, Flury S (2016) Deconstructing methane emissions from a small Northern European River: hydrodynamics and temperature as key drivers. Environ Sci Technol 50:11680–11687PubMedCrossRefGoogle Scholar
  84. McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526:531–535PubMedCrossRefGoogle Scholar
  85. Melton ED, Swanner ED, Behrens S, Schmidt C, Kappler A (2014) The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat Rev Microbiol 12:797–808PubMedCrossRefGoogle Scholar
  86. Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jorgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015PubMedCrossRefGoogle Scholar
  87. Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491:541PubMedCrossRefGoogle Scholar
  88. Milucka J, Kirf M, Lu L, Krupke A, Lam P, Littmann S, Kuypers MM, Schubert CJ (2015) Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME J 9:1991–2002Google Scholar
  89. Murase J, Sakai Y, Kametani A, Sugimoto A (2005) Dynamics of methane in mesotrophic Lake Biwa, Japan. In: Kohyama T, Canadell J, Ojima DS, Pitelka LF (eds) Forest ecosystems and environments. Springer, Tokyo, pp 143–151CrossRefGoogle Scholar
  90. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  91. Niemann H, Losekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schluter M, Klages M, Foucher JP, Boetius A (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443:854–858PubMedCrossRefGoogle Scholar
  92. Norði K, Thamdrup B, Schubert CJ (2013) Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment. Limnol Oceanogr 58:546–554CrossRefGoogle Scholar
  93. Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487PubMedCrossRefGoogle Scholar
  94. Oswald K, Milucka J, Littmann S, Brand A, Wehrli B, Kuypers MMM, Schubert CJ (2015) Light-dependent aerobic methane oxidation reduces methane emissions from seasonally stratified lakes. PLoS One 10:e0132574PubMedPubMedCentralCrossRefGoogle Scholar
  95. Oswald K, Jegge C, Tischer J, Berg J, Brand A, Miracle M, Soria X, Vicente E, Lehmann M, Zopfi J, Carsten S (2016a) Methanotrophy under versatile conditions in the water column of the ferruginous meromictic Lake La Cruz (Spain). Front Microbiol 7:1762PubMedPubMedCentralGoogle Scholar
  96. Oswald K, Milucka J, Brand A, Hach P, Littmann S, Wehrli B, Kuypers MMM, Schubert CJ (2016b) Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol Oceanogr 61:S101CrossRefGoogle Scholar
  97. Oswald K, Graf JS, Littmann S, Tienken D, Brand A, Wehrli B, Albertsen M, Daims H, Wagner M, Kuypers MMM, Schubert CJ, Milucka J (2017) Crenothrix are major methane consumers in stratified lakes. ISME J 11:2124PubMedPubMedCentralCrossRefGoogle Scholar
  98. Panganiban AT, Patt TE, Hart W, Hanson RS (1979) Oxidation of methane in the absence of oxygen in lake water samples. Appl Environ Microbiol 37:303–309PubMedPubMedCentralGoogle Scholar
  99. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damste JSS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921PubMedCrossRefGoogle Scholar
  100. Reeburgh WS (1976) Methane consumption in Cariaco Trench waters and sediments. Earth Planet Sci Lett 28:337–344CrossRefGoogle Scholar
  101. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513PubMedCrossRefGoogle Scholar
  102. Riedinger N, Formolo MJ, Lyons TW, Henkel S, Beck A, Kasten S (2014) An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology 12:172–181PubMedCrossRefGoogle Scholar
  103. Rudd JWM, Hamilton RD (1975) Factors controlling rates of methane oxidation and distribution of methane oxidizers in a small stratified lake. Archiv Fur Hydrobiologie 75:522–538Google Scholar
  104. Rudd JWM, Hamilton RD, Campbell NE (1974) Measurement of microbial oxidation of methane in lake water. Limnol Oceanogr 19:519–524CrossRefGoogle Scholar
  105. Rudd JWM, Furutani A, Flett RJ, Hamilton RD (1976) Factors controlling methane oxidation in shield lakes – role of nitrogen-fixation and oxygen concentration. Limnol Oceanogr 21:357–364CrossRefGoogle Scholar
  106. Schubert CJ, Coolen MJ, Neretin LN, Schippers A, Abbas B, Durisch-Kaiser E, Wehrli B, Hopmans EC, Damsté JSS, Wakeham S, Kuypers MMM (2006) Aerobic and anaerobic methanotrophs in the Black Sea water column. Environ Microbiol 8:1844–1856PubMedCrossRefGoogle Scholar
  107. Schubert C, Lucas F, Durisch-Kaiser E, Stierli R, Diem T, Scheidegger O, Vazquez F, Müller B (2010a) Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland). Aquat Sci Res Across Bound 72:1–12Google Scholar
  108. Schubert CJ, Lucas FS, Durisch-Kaiser E, Stierli R, Diem T, Scheidegger O, Vazquez F, Muller B (2010b) Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland). Aquat Sci 72:455–466CrossRefGoogle Scholar
  109. Schubert CJ, Diem T, Eugster W (2012) Methane emissions from a small wind shielded lake determined by eddy covariance, flux chambers, anchored funnels, and boundary model calculations: a comparison. Environ Sci Technol 46:4515–4522PubMedCrossRefGoogle Scholar
  110. Scranton MI, Farrington JW (1977) Methane production in the waters off Walvis Bay. J Geophys Res 82:4947–4953CrossRefGoogle Scholar
  111. Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531PubMedCrossRefGoogle Scholar
  112. Sivan O, Adler M, Pearson A, Gelman F, Bar-Or I, John SG, Eckert W (2011) Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol Oceanogr 56:1536–1544CrossRefGoogle Scholar
  113. Slomp CP, Mort HP, Jilbert T, Reed DC, Gustafsson BG, Wolthers M (2013) Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane. PLoS One 8(4):1–13, e62386.  https://doi.org/10.1371/journal.pone.0062386
  114. Sobolev D, Roden EE (2002) Evidence for rapid microscale bacterial redox cycling of iron in circumneutral environments. Antonie Van Leeuwenhoek 81:587–597PubMedCrossRefGoogle Scholar
  115. St. Louis VL, Kelly CA, Duchemin É, Rudd JWM, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate reservoirs are sources of greenhouse gases to the atmosphere, and their surface areas have increased to the point where they should be included in global inventories of anthropogenic emissions of greenhouse gases. Bioscience 50:766–775CrossRefGoogle Scholar
  116. Stanley EH, Casson NJ, Christel ST, Crawford JT, Loken LC, Oliver SK (2016) The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecol Monogr 86:146–171CrossRefGoogle Scholar
  117. Stoecker K, Bendinger B, Schöning B, Nielsen PH, Nielsen JL, Baranyi C, Toenshoff ER, Daims H, Wagner M (2006) Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc Natl Acad Sci U S A 103:2363–2367PubMedPubMedCentralCrossRefGoogle Scholar
  118. Sundh I, Bastviken D, Tranvik LJ (2005) Abundance, activity, and community structure of pelagic methane-oxidizing bacteria in temperate lakes. Appl Environ Microbiol 71:6746–6752PubMedPubMedCentralCrossRefGoogle Scholar
  119. Templeton AS, Chu K-H, Alvarez-Cohen L, Conrad ME (2006) Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria. Geochim Cosmochim Acta 70:1739–1752CrossRefGoogle Scholar
  120. Teodoru CR, Prairie YT, del Giorgio PA (2011) Spatial heterogeneity of surface CO2 fluxes in a newly created Eastmain-1 reservoir in Northern Quebec, Canada. Ecosystems 14:28–46CrossRefGoogle Scholar
  121. Thornton KW, Kimmel BL, Payne FE (1990) Reservoir limnology: ecological perspectives. Wiley, New YorkGoogle Scholar
  122. Tilbrook BD, Karl DM (1995) Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre. Mar Chem 49:51–64CrossRefGoogle Scholar
  123. Tremblay A, Varfalvy L, Roehm C, Garneau M (2005) Greenhouse gas emissions: fluxes and processes, hydroelectric reservoirs and natural environments. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  124. Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook ERC, Minkkinen K, Moore TR, Myers-Smith IH, Nykänen H, Olefeldt D, Rinne J, Saarnio S, Shurpali N, Tuittila E-S, Waddington JM, White JR, Wickland KP, Wilmking M (2014) A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob Chang Biol 20:2183–2197PubMedCrossRefGoogle Scholar
  125. Tyroller L, Tomonaga Y, Brennwald MS, Ndayisaba C, Naeher S, Schubert C, North RP, Kipfer R (2016) Improved method for the quantification of methane concentrations in unconsolidated Lake sediments. Environ Sci Technol 50:7047–7055PubMedCrossRefGoogle Scholar
  126. Van Cappellen P, Maavara T (2016) Rivers in the Anthropocene: global scale modifications of riverine nutrient fluxes by damming. Ecohydrol Hydrobiol 16:106–111CrossRefGoogle Scholar
  127. Verpoorter C, Kutser T, Seekell DA, Tranvik LJ (2014) A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett 41:6396–6402CrossRefGoogle Scholar
  128. Vigliotta G, Nutricati E, Carata E, Tredici SM, De Stefano M, Pontieri P, Massardo DR, Prati MV, De Bellis L, Alifano P (2007) Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic γ-proteobacterium. Appl Environ Microbiol 73:3556–3565PubMedPubMedCentralCrossRefGoogle Scholar
  129. Walter XA (2011) Anaerobic iron cycling in a neoarchean ocean analogue. Université de NeuchâtelGoogle Scholar
  130. Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75PubMedCrossRefGoogle Scholar
  131. Walter XA, Picazo A, Miracle MR, Vicente E, Camacho A, Aragno M, Zopfi J (2014) Phototrophic Fe (II)-oxidation in the chemocline of a ferruginous meromictic lake. Front Microbiol 5:713PubMedPubMedCentralCrossRefGoogle Scholar
  132. Wankel SD, Adams MM, Johnston DT, Hansel CM, Joye SB, Girguis PR (2012) Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Environ Microbiol 14:2726–2740PubMedCrossRefGoogle Scholar
  133. Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A (2015) Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–590PubMedCrossRefGoogle Scholar
  134. Wehrli B (2011) Climate science: renewable but not carbon-free. Nat Geosci 4:585–586CrossRefGoogle Scholar
  135. West WE, Coloso JJ, Jones SE (2012) Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment. Freshw Biol 57:949–955CrossRefGoogle Scholar
  136. West WE, Creamer KP, Jones SE (2016) Productivity and depth regulate lake contributions to atmospheric methane. Limnol Oceanogr 61:S51–S61CrossRefGoogle Scholar
  137. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:219–314CrossRefGoogle Scholar
  138. Wiesenburg DA, Guinasso NL (1979) Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. J Chem Eng Data 24:356–360CrossRefGoogle Scholar
  139. Wilkinson J, Maeck A, Alshboul Z, Lorke A (2015) Continuous Seasonal River Ebullition Measurements Linked to Sediment Methane FormationEnviron. Sci. Technol. 49:13121–13129CrossRefGoogle Scholar
  140. Wik M, Thornton BF, Bastviken D, MacIntyre S, Varner RK, Crill PM (2014) Energy input is primary controller of methane bubbling in subarctic lakes. Geophys Res Lett 41:555–560CrossRefGoogle Scholar
  141. Wik M, Thornton BF, Bastviken D, Uhlbäck J, Crill PM (2016) Biased sampling of methane release from northern lakes: a problem for extrapolation. Geophys Res Lett 43:1256–1262CrossRefGoogle Scholar
  142. Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth Sci Rev 57:177–210CrossRefGoogle Scholar
  143. Yusuf RO, Noor ZZ, Abba AH, Hassan MAA, Din MFM (2012) Methane emission by sectors: a comprehensive review of emission sources and mitigation methods. Renew Sust Energ Rev 16:5059–5070CrossRefGoogle Scholar
  144. Yvon-Durocher G, Allen AP, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Thanh-Duc N, del Giorgio PA (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:488–491PubMedCrossRefGoogle Scholar
  145. Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K (2015) A global boom in hydropower dam construction. Aquat Sci 77:161–170CrossRefGoogle Scholar
  146. Zigah PK, Oswald K, Brand A, Dinkel C, Wehrli B, Schubert CJ (2015) Methane oxidation pathways and associated methanotrophic communities in the water column of a tropical lake. Limnol Oceanogr 60:553–572CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Surface Waters-Research and ManagementEawagKastanienbaumSwitzerland

Personalised recommendations