Skip to main content

Contribution of Methane Formation and Methane Oxidation to Methane Emission from Freshwater Systems

  • Living reference work entry
  • First Online:
Biogenesis of Hydrocarbons

Abstract

Lakes and reservoirs have been only in the early twenty-first century identified to be main methane emitters to the atmosphere (Bastviken et al., Glob Biogeochem Cycles 18:1–12, 2004; St. Louis et al., Bioscience 50:766–775, 2000). With an estimated yearly amount of 12–29.6 Tg CH4 for reservoirs (Deemer et al., Bioscience 66:949–964, 2016) and up to 71.6 Tg CH4 for lakes (Bastviken et al., Science 331:50–50, 2011), they represent up to 10% of total methane emissions and hence have to be taken into account in global budgets. Freshwater systems are emitting more methane than oceans although only covering about 3% of the earth surface since methanogenesis, the building process of methane, is the main organic matter degradation step compared to oceans where sulfate reduction is dominant. Reservoirs in comparison to lakes have two additional methane release mechanisms, which are loss from methane-rich hypolimnion waters at the turbine and then degassing in the river to which the turbined water has been released. A still poorly constrained mechanism occurring in both systems is ebullition, the transfer of methane bubbles directly through the water column towards the atmosphere. Whereas in the oceans, mainly archaea often in a consortium with bacteria oxidize the methane in the sediments or water column, in freshwater systems the oxidation process seems to be much more versatile in respect to electron acceptors (oxygen, nitrate, iron, and manganese) as well as to the microorganisms involved. We believe that in the future there will be more discoveries and surprises when investigating freshwater methane oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abril G, Guérin F, Richard S, Delmas R, Galy-Lacaux C, Gosse P, Tremblay A, Varfalvy L, Dos Santos MA, Matvienko B (2005) Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Glob Biogeochem Cycles 19

    Google Scholar 

  • Aloisi G, Bouloubassi I, Heijs SK, Pancost RD, Pierre C, Sinninghe Damsté JS, Gottschal JC, Forney LJ, Rouchy J-M (2002) CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet Sci Lett 203:195–203

    Article  CAS  Google Scholar 

  • Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60

    Article  Google Scholar 

  • Barnes RO, Goldberg ED (1976) Methane production and consumption in anoxic marine sediments. Geology 4:297–300

    Article  CAS  Google Scholar 

  • Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VLM, del Giorgio P, Roland F (2011) Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 4:593–596

    Article  CAS  Google Scholar 

  • Bastviken D, Ejlertsson J, Tranvik L (2002) Measurement of methane oxidation in lakes: a comparison of methods. Environ Sci Technol 36:3354–3361

    Article  CAS  PubMed  Google Scholar 

  • Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles 18:1–12

    Article  CAS  Google Scholar 

  • Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50–50

    Article  CAS  PubMed  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JJ, Smolenski RL, Nietch CT, Townsend-Small A, Elovitz MS (2014) High methane emissions from a midlatitude reservoir draining an agricultural watershed. Environ Sci Technol 48:11100–11108

    Article  CAS  PubMed  Google Scholar 

  • Biderre-Petit C, Jézéquel D, Dugat-Bony E, Lopes F, Kuever J, Borrel G, Viollier E, Fonty G, Peyret P (2011) Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake. FEMS Microbiol Ecol 77:533–545

    Article  CAS  PubMed  Google Scholar 

  • Blees J, Niemann H, Wenk CB, Zopfi J, Schubert CJ, Kirf MK, Veronesi ML, Hitz C, Lehmann MF (2014) Micro-aerobic bacterial methane oxidation in the chemocline and anoxic water column of deep south-Alpine Lake Lugano (Switzerland). Limnol Oceanogr 59:311–324

    Article  CAS  Google Scholar 

  • Bloom AA, Palmer PI, Fraser A, Reay DS, Frankenberg C (2010) Large-scale controls of Methanogenesis inferred from methane and gravity spaceborne data. Science 327:322–325

    Article  CAS  PubMed  Google Scholar 

  • Bodelier PL, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265–277

    Article  CAS  PubMed  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Giesecke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Bogard MJ, del Giorgio PA, Boutet L, Chaves MCG, Prairie YT, Merante A, Derry AM (2014) Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat Commun 5:5350

    Article  CAS  PubMed  Google Scholar 

  • Boone DR, Whitman WB, Rouviere P (1993) Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis. Chapman and Hall Co., New York, pp 35–80

    Chapter  Google Scholar 

  • Borrego CM, Arellano JB, Abella CA, Gillbro T, Garcia-Gil J (1999) The molar extinction coefficient of bacteriochlorophyll e and the pigment stoichiometry in Chlorobium phaeobacteroides. Photosynth Res 60:257–264

    Article  CAS  Google Scholar 

  • Brand A, Bruderer H, Oswald K, Guggenheim C, Schubert CJ, Wehrli B (2016) Oxygenic primary production below the oxycline and its importance for redox dynamics. Aquat Sci 78:727–741

    Article  CAS  Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol 19:1325–1346

    Article  PubMed  Google Scholar 

  • Bruun A-M, Finster K, Gunnlaugsson HP, Nørnberg P, Friedrich MW (2010) A comprehensive investigation on iron cycling in a freshwater seep including microscopy, cultivation and molecular community analysis. Geomicrobiol J 27:15–34

    Article  CAS  Google Scholar 

  • Bumb F, Schweisfurth R (1981) Zusammenfassende Darstellung der Kenntnisse über Crenothrix polyspora Cohn und eigene Untersuchungen. Hochschul-Verlag, Freiburg

    Google Scholar 

  • Campeau A, del Giorgio PA (2014) Patterns in CH4 and CO2 concentrations across boreal rivers: major drivers and implications for fluvial greenhouse emissions under climate change scenarios. Glob Chang Biol 20:1075–1088

    Article  PubMed  Google Scholar 

  • Chanudet V, Descloux S, Harby A, Sundt H, Hansen BH, Brakstad O, Serça D, Guerin F (2011) Gross CO2 and CH4 emissions from the Nam Ngum and Nam Leuk sub-tropical reservoirs in Lao PDR. Sci Total Environ 409:5382–5391

    Article  CAS  PubMed  Google Scholar 

  • Chistoserdova L, Vorholt JA, Thauer RK, Lidstrom ME (1998) C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science 281:99–102

    Article  CAS  PubMed  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: TF Stocker QD, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp 465–570

    Google Scholar 

  • Cohn F (1870) Über den Brunnenfaden (Crenothrix polyspora) mit Bemerkungen über die mikroskopische Analyse des Brunnenwassers. Beitr Biol Pflanzen 1:108–131

    Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Conrad R (1989) Control of methane production in terrestrial ecosystems. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, Chichester, pp 39–58

    Google Scholar 

  • Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–292

    Article  CAS  PubMed  Google Scholar 

  • Conrad R, Frenzel P (2002) Flooded soils. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 1316–1333

    Google Scholar 

  • Crawford JT, Lottig NR, Stanley EH, Walker JF, Hanson PC, Finlay JC, Striegl RG (2014) CO2 and CH4 emissions from streams in a lake-rich landscape: patterns, controls, and regional significance. Glob Biogeochem Cycles 28:197–210

    Article  CAS  Google Scholar 

  • Crowe SA, Katsev S, Leslie K, Sturm A, Magen C, Nomosatryo S, Pack MA, Kessler JD, Reeburgh WS, Roberts JA, Gonzalez L, Haffner GD, Mucci A, Sundby B, Fowle DA (2011) The methane cycle in ferruginous Lake Matano. Geobiology 9:61–78

    Article  CAS  PubMed  Google Scholar 

  • Davidson TA, Audet J, Svenning J-C, Lauridsen TL, Søndergaard M, Landkildehus F, Larsen SE, Jeppesen E (2015) Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming. Glob Chang Biol 21:4449–4463

    Article  PubMed  Google Scholar 

  • Davis J, Coty V, Stanley J (1964) Atmospheric nitrogen fixation by methane-oxidizing bacteria. J Bacteriol 88:468–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deemer BR, Harrison JA, Li S, Beaulieu JJ, DelSontro T, Barros N, Bezerra-Neto JF, Powers SM, dos Santos MA, Vonk JA (2016) Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. Bioscience 66:949–964

    Article  Google Scholar 

  • DelSontro T, McGinnis DF, Sobek S, Ostrovsky I, Wehrli B (2010) Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments. Environ Sci Technol 44:2419–2425

    Article  CAS  PubMed  Google Scholar 

  • DelSontro T, Kunz MJ, Kempter T, Wüest A, Wehrli B, Senn DB (2011) Spatial heterogeneity of methane ebullition in a large tropical reservoir. Environ Sci Technol 45:9866–9873

    Article  CAS  PubMed  Google Scholar 

  • DelSontro T, McGinnis DF, Wehrli B, Ostrovsky I (2015) Size does matter: importance of large bubbles and small-scale hot spots for methane transport. Environ Sci Technol 49:1268–1276

    Article  CAS  PubMed  Google Scholar 

  • DelSontro T, Boutet L, St-Pierre A, del Giorgio PA, Prairie YT (2016a) Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity. Limnol Oceanogr 61:S62–S77

    Article  CAS  Google Scholar 

  • DelSontro T, Perez KK, Sollberger S, Wehrli B (2016b) Methane dynamics downstream of a temperate run-of-the-river reservoir. Limnol Oceanogr 61:S188–S203

    Article  CAS  Google Scholar 

  • Deshmukh C, Serça D, Delon C, Tardif R, Demarty M, Jarnot C, Meyerfeld Y, Chanudet V, Guédant P, Rode W, Descloux S, Guérin F (2014) Physical controls on CH4 emissions from a newly flooded subtropical freshwater hydroelectric reservoir: Nam Theun 2. Biogeosciences 11:4251–4269

    Article  CAS  Google Scholar 

  • Deshmukh C, Guérin F, Labat D, Pighini S, Vongkhamsao A, Guédant P, Rode W, Godon A, Chanudet V, Descloux S, Serça D (2016) Low methane (CH4) emissions downstream of a monomictic subtropical hydroelectric reservoir (Nam Theun 2, Lao PDR). Biogeosciences 13:1919–1932

    Article  CAS  Google Scholar 

  • Deutzmann JS, Stief P, Brandes J, Schink B (2014) Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. Proc Natl Acad Sci 111:18273–18278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diem T, Koch S, Schwarzenbach S, Wehrli B, Schubert CJ (2012) Greenhouse gas emissions (CO2, CHç, N2O) from several perialpine and alpine hydropower reservoirs by diffusion and loss in turbines. Aquat Sci 74:619–635

    Article  CAS  Google Scholar 

  • Dörr N, Glaser B, Kolb S (2010) Methanotrophic communities in Brazilian ferralsols from naturally forested, afforested, and agricultural sites. Appl Environ Microbiol 76:1307–1310

    Article  PubMed  CAS  Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397

    Article  Google Scholar 

  • Drewniak L, Maryan N, Lewandowski W, Kaczanowski S, Sklodowska A (2012) The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine. Environ Pollut 162:190–201

    Article  CAS  PubMed  Google Scholar 

  • Dumestre J, Guézennec J, Galy-Lacaux C, Delmas R, Richard S, Labroue L (1999) Influence of light intensity on methanotrophic bacterial activity in Petit Saut Reservoir, French Guiana. Appl Environ Microbiol 65:534–539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durisch-Kaiser E, Schmid M, Peeters F, Kipfer R, Dinkel C, Diem T, Schubert CJ, Wehrli B (2011) What prevents outgassing of methane to the atmosphere in Lake Tanganyika? J Geophys Res Biogeosci 116:1–16, G02022, https://doi.org/10.1029/2010JG001323

  • Eller G, Känel L, Krüger M (2005) Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plußsee. Appl Environ Microbiol 71:8925–8928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emerson D (2009) Potential for iron-reduction and iron-cycling in iron oxyhydroxide-rich microbial mats at Loihi Seamount. Geomicrobiol J 26:639–647

    Article  CAS  Google Scholar 

  • Encinas Fernández J, Peeters F, Hofmann H (2016) On the methane paradox: transport from shallow water zones rather than in situ methanogenesis is the major source of CH4 in the open surface water of lakes. J Geophys Res Biogeosci 121:2717–2726

    Article  CAS  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs K-J, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  PubMed  Google Scholar 

  • Eugster W, DelSontro T, Sobek S (2011) Eddy covariance flux measurements confirm extreme CH(4) emissions from a Swiss hydropower reservoir and resolve their short-term variability. Biogeosciences 8:2815–2831

    Article  CAS  Google Scholar 

  • Gibson C (1985) Growth rate, maintenance energy and pigmentation of planktonic cyanophyta during one-hour light: dark cycles. Br Phycol J 20:155–161

    Article  Google Scholar 

  • Glass JB, Orphan VJ (2012) Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front Microbiol 3:1–20

    Google Scholar 

  • Grossart H-P, Frindte K, Dziallas C, Eckert W, Tang KW (2011) Microbial methane production in oxygenated water column of an oligotrophic lake. Proc Natl Acad Sci 108:19657–19661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerin F (2006) Emissions de Gaz a Effet de Serre (CO2, CH4) par une Retenue de Barrage Hydroelectrique en Zone Tropicale (Petit-Saut, Guyane Francaise): Experimentation et Modelisation. Thèse de doctorat de l’Université Paul Sabatier (Toulouse III)

    Google Scholar 

  • Guérin F, Abril G, de Junet A, Bonnet M-P (2008) Anaerobic decomposition of tropical soils and plant material: implication for the CO2 and CH4 budget of the Petit Saut Reservoir. Appl Geochem 23:2272–2283

    Article  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567

    Article  CAS  PubMed  Google Scholar 

  • Harrison JA, Deemer BR, Birchfield MK, O’Malley MT (2017) Reservoir water-level drawdowns accelerate and amplify methane emission. Environ Sci Technol 51:1267–1277

    Article  CAS  PubMed  Google Scholar 

  • Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Article  CAS  PubMed  Google Scholar 

  • Hoehler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Glob Biogeochem Cycles 8:451–463

    Article  CAS  Google Scholar 

  • Kalff J (2002) Limnology. Prentice Hall, New York

    Google Scholar 

  • Karl DM, Beversdorf L, Bjorkman KM, Church MJ, Martinez A, Delong EF (2008) Aerobic production of methane in the sea. Nat Geosci 1:473–478

    Article  CAS  Google Scholar 

  • Kelly CA, Rudd JWM, Bodaly RA, Roulet NP, St.Louis VL, Heyes A, Moore TR, Schiff S, Aravena R, Scott KJ, Dyck B, Harris R, Warner B, Edwards G (1997) Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. Environ Sci Technol 31:1334–1344

    Article  CAS  Google Scholar 

  • Kemenes A, Forsberg BR, Melack JM (2011) CO2 emissions from a tropical hydroelectric reservoir (Balbina, Brazil). J Geophys Res Biogeo 116:1–11, G03004, https://doi.org/10.1029/2010JG001465

  • Kirf M, Dinkel C, Schubert C, Wehrli B (2014) Submicromolar oxygen profiles at the oxic–anoxic boundary of temperate lakes. Aquat Geochem 20:39–57

    Article  CAS  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque J-F, Langenfelds RL, Le Quere C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823

    Article  CAS  Google Scholar 

  • Kits KD, Campbell DJ, Rosana AR, Stein LY (2015a) Diverse electron sources support denitrification under hypoxia in the obligate methanotroph Methylomicrobium album strain BG8. Front Microbiol 6:1072

    Article  PubMed  PubMed Central  Google Scholar 

  • Kits KD, Klotz MG, Stein LY (2015b) Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol 17:3219–3232

    Article  CAS  PubMed  Google Scholar 

  • Kling GW, Kipphut GW, Miller MC (1992) The flux of CO2 and CH4 from lakes and rivers in arctic Alaska, Hydrobiologia 240:23–36

    Article  CAS  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  CAS  PubMed  Google Scholar 

  • Lamontagne RA, Swinnerton JW, Linnenbom VJ, Smith WD (1973) Methane concentrations in various marine environments. J Geophys Res 78:5317–5324

    Article  CAS  Google Scholar 

  • Lehmann M, Simona M, Wyss S, Blees J, Frame C, Niemann H, Veronesi M, Zopfi J (2015) Powering up the “biogeochemical engine”: the impact of exceptional ventilation of a deep meromictic lake on the lacustrine redox, nutrient, and methane balances. Front Earth Sci 3(45):1–13, https://doi.org/10.3389/feart.2015.00045

  • Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22

    Article  Google Scholar 

  • Lehner B, Liermann CR, Revenga C, Vörösmarty C, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rödel R, Sindorf N, Wisser D (2011) High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ 9:494–502

    Article  Google Scholar 

  • Lidstrom ME, Somers L (1984) Seasonal study of methane oxidation in Lake Washington. Appl Environ Microbiol 47:1255–1260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luther GW, Sundby B, Lewis BL, Brendel PJ, Silverberg N (1997) Interactions of manganese with the nitrogen cycle: alternative pathways to dinitrogen. Geochim Cosmochim Acta 61:4043–4052

    Article  CAS  Google Scholar 

  • Maeck A, DelSontro T, McGinnis DF, Fischer H, Flury S, Schmidt M, Fietzek P, Lorke A (2013) Sediment trapping by dams creates methane emission hot spots. Environ Sci Technol 47:8130–8137

    Article  CAS  PubMed  Google Scholar 

  • McGinnis DF, Bilsley N, Schmidt M, Fietzek P, Bodmer P, Premke K, Lorke A, Flury S (2016) Deconstructing methane emissions from a small Northern European River: hydrodynamics and temperature as key drivers. Environ Sci Technol 50:11680–11687

    Article  CAS  PubMed  Google Scholar 

  • McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526:531–535

    Article  CAS  PubMed  Google Scholar 

  • Melton ED, Swanner ED, Behrens S, Schmidt C, Kappler A (2014) The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat Rev Microbiol 12:797–808

    Article  CAS  PubMed  Google Scholar 

  • Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jorgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015

    Article  CAS  PubMed  Google Scholar 

  • Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491:541

    Article  CAS  PubMed  Google Scholar 

  • Milucka J, Kirf M, Lu L, Krupke A, Lam P, Littmann S, Kuypers MM, Schubert CJ (2015) Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME J 9:1991–2002

    Google Scholar 

  • Murase J, Sakai Y, Kametani A, Sugimoto A (2005) Dynamics of methane in mesotrophic Lake Biwa, Japan. In: Kohyama T, Canadell J, Ojima DS, Pitelka LF (eds) Forest ecosystems and environments. Springer, Tokyo, pp 143–151

    Chapter  Google Scholar 

  • Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Niemann H, Losekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schluter M, Klages M, Foucher JP, Boetius A (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443:854–858

    Article  CAS  PubMed  Google Scholar 

  • Norði K, Thamdrup B, Schubert CJ (2013) Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment. Limnol Oceanogr 58:546–554

    Article  CAS  Google Scholar 

  • Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487

    Article  CAS  PubMed  Google Scholar 

  • Oswald K, Milucka J, Littmann S, Brand A, Wehrli B, Kuypers MMM, Schubert CJ (2015) Light-dependent aerobic methane oxidation reduces methane emissions from seasonally stratified lakes. PLoS One 10:e0132574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oswald K, Jegge C, Tischer J, Berg J, Brand A, Miracle M, Soria X, Vicente E, Lehmann M, Zopfi J, Carsten S (2016a) Methanotrophy under versatile conditions in the water column of the ferruginous meromictic Lake La Cruz (Spain). Front Microbiol 7:1762

    PubMed  PubMed Central  Google Scholar 

  • Oswald K, Milucka J, Brand A, Hach P, Littmann S, Wehrli B, Kuypers MMM, Schubert CJ (2016b) Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol Oceanogr 61:S101

    Article  CAS  Google Scholar 

  • Oswald K, Graf JS, Littmann S, Tienken D, Brand A, Wehrli B, Albertsen M, Daims H, Wagner M, Kuypers MMM, Schubert CJ, Milucka J (2017) Crenothrix are major methane consumers in stratified lakes. ISME J 11:2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panganiban AT, Patt TE, Hart W, Hanson RS (1979) Oxidation of methane in the absence of oxygen in lake water samples. Appl Environ Microbiol 37:303–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damste JSS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    Article  CAS  PubMed  Google Scholar 

  • Reeburgh WS (1976) Methane consumption in Cariaco Trench waters and sediments. Earth Planet Sci Lett 28:337–344

    Article  CAS  Google Scholar 

  • Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513

    Article  CAS  PubMed  Google Scholar 

  • Riedinger N, Formolo MJ, Lyons TW, Henkel S, Beck A, Kasten S (2014) An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology 12:172–181

    Article  CAS  PubMed  Google Scholar 

  • Rudd JWM, Hamilton RD (1975) Factors controlling rates of methane oxidation and distribution of methane oxidizers in a small stratified lake. Archiv Fur Hydrobiologie 75:522–538

    CAS  Google Scholar 

  • Rudd JWM, Hamilton RD, Campbell NE (1974) Measurement of microbial oxidation of methane in lake water. Limnol Oceanogr 19:519–524

    Article  CAS  Google Scholar 

  • Rudd JWM, Furutani A, Flett RJ, Hamilton RD (1976) Factors controlling methane oxidation in shield lakes – role of nitrogen-fixation and oxygen concentration. Limnol Oceanogr 21:357–364

    Article  CAS  Google Scholar 

  • Schubert CJ, Coolen MJ, Neretin LN, Schippers A, Abbas B, Durisch-Kaiser E, Wehrli B, Hopmans EC, Damsté JSS, Wakeham S, Kuypers MMM (2006) Aerobic and anaerobic methanotrophs in the Black Sea water column. Environ Microbiol 8:1844–1856

    Article  CAS  PubMed  Google Scholar 

  • Schubert C, Lucas F, Durisch-Kaiser E, Stierli R, Diem T, Scheidegger O, Vazquez F, Müller B (2010a) Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland). Aquat Sci Res Across Bound 72:1–12

    Google Scholar 

  • Schubert CJ, Lucas FS, Durisch-Kaiser E, Stierli R, Diem T, Scheidegger O, Vazquez F, Muller B (2010b) Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland). Aquat Sci 72:455–466

    Article  CAS  Google Scholar 

  • Schubert CJ, Diem T, Eugster W (2012) Methane emissions from a small wind shielded lake determined by eddy covariance, flux chambers, anchored funnels, and boundary model calculations: a comparison. Environ Sci Technol 46:4515–4522

    Article  CAS  PubMed  Google Scholar 

  • Scranton MI, Farrington JW (1977) Methane production in the waters off Walvis Bay. J Geophys Res 82:4947–4953

    Article  CAS  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    Article  CAS  PubMed  Google Scholar 

  • Sivan O, Adler M, Pearson A, Gelman F, Bar-Or I, John SG, Eckert W (2011) Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol Oceanogr 56:1536–1544

    Article  CAS  Google Scholar 

  • Slomp CP, Mort HP, Jilbert T, Reed DC, Gustafsson BG, Wolthers M (2013) Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane. PLoS One 8(4):1–13, e62386. https://doi.org/10.1371/journal.pone.0062386

  • Sobolev D, Roden EE (2002) Evidence for rapid microscale bacterial redox cycling of iron in circumneutral environments. Antonie Van Leeuwenhoek 81:587–597

    Article  CAS  PubMed  Google Scholar 

  • St. Louis VL, Kelly CA, Duchemin É, Rudd JWM, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate reservoirs are sources of greenhouse gases to the atmosphere, and their surface areas have increased to the point where they should be included in global inventories of anthropogenic emissions of greenhouse gases. Bioscience 50:766–775

    Article  Google Scholar 

  • Stanley EH, Casson NJ, Christel ST, Crawford JT, Loken LC, Oliver SK (2016) The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecol Monogr 86:146–171

    Article  Google Scholar 

  • Stoecker K, Bendinger B, Schöning B, Nielsen PH, Nielsen JL, Baranyi C, Toenshoff ER, Daims H, Wagner M (2006) Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc Natl Acad Sci U S A 103:2363–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundh I, Bastviken D, Tranvik LJ (2005) Abundance, activity, and community structure of pelagic methane-oxidizing bacteria in temperate lakes. Appl Environ Microbiol 71:6746–6752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Templeton AS, Chu K-H, Alvarez-Cohen L, Conrad ME (2006) Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria. Geochim Cosmochim Acta 70:1739–1752

    Article  CAS  Google Scholar 

  • Teodoru CR, Prairie YT, del Giorgio PA (2011) Spatial heterogeneity of surface CO2 fluxes in a newly created Eastmain-1 reservoir in Northern Quebec, Canada. Ecosystems 14:28–46

    Article  CAS  Google Scholar 

  • Thornton KW, Kimmel BL, Payne FE (1990) Reservoir limnology: ecological perspectives. Wiley, New York

    Google Scholar 

  • Tilbrook BD, Karl DM (1995) Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre. Mar Chem 49:51–64

    Article  CAS  Google Scholar 

  • Tremblay A, Varfalvy L, Roehm C, Garneau M (2005) Greenhouse gas emissions: fluxes and processes, hydroelectric reservoirs and natural environments. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook ERC, Minkkinen K, Moore TR, Myers-Smith IH, Nykänen H, Olefeldt D, Rinne J, Saarnio S, Shurpali N, Tuittila E-S, Waddington JM, White JR, Wickland KP, Wilmking M (2014) A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob Chang Biol 20:2183–2197

    Article  PubMed  Google Scholar 

  • Tyroller L, Tomonaga Y, Brennwald MS, Ndayisaba C, Naeher S, Schubert C, North RP, Kipfer R (2016) Improved method for the quantification of methane concentrations in unconsolidated Lake sediments. Environ Sci Technol 50:7047–7055

    Article  CAS  PubMed  Google Scholar 

  • Van Cappellen P, Maavara T (2016) Rivers in the Anthropocene: global scale modifications of riverine nutrient fluxes by damming. Ecohydrol Hydrobiol 16:106–111

    Article  Google Scholar 

  • Verpoorter C, Kutser T, Seekell DA, Tranvik LJ (2014) A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett 41:6396–6402

    Article  Google Scholar 

  • Vigliotta G, Nutricati E, Carata E, Tredici SM, De Stefano M, Pontieri P, Massardo DR, Prati MV, De Bellis L, Alifano P (2007) Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic γ-proteobacterium. Appl Environ Microbiol 73:3556–3565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter XA (2011) Anaerobic iron cycling in a neoarchean ocean analogue. Université de Neuchâtel

    Google Scholar 

  • Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75

    Article  CAS  PubMed  Google Scholar 

  • Walter XA, Picazo A, Miracle MR, Vicente E, Camacho A, Aragno M, Zopfi J (2014) Phototrophic Fe (II)-oxidation in the chemocline of a ferruginous meromictic lake. Front Microbiol 5:713

    Article  PubMed  PubMed Central  Google Scholar 

  • Wankel SD, Adams MM, Johnston DT, Hansel CM, Joye SB, Girguis PR (2012) Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Environ Microbiol 14:2726–2740

    Article  CAS  PubMed  Google Scholar 

  • Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A (2015) Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–590

    Article  CAS  PubMed  Google Scholar 

  • Wehrli B (2011) Climate science: renewable but not carbon-free. Nat Geosci 4:585–586

    Article  CAS  Google Scholar 

  • West WE, Coloso JJ, Jones SE (2012) Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment. Freshw Biol 57:949–955

    Article  CAS  Google Scholar 

  • West WE, Creamer KP, Jones SE (2016) Productivity and depth regulate lake contributions to atmospheric methane. Limnol Oceanogr 61:S51–S61

    Article  CAS  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:219–314

    Article  Google Scholar 

  • Wiesenburg DA, Guinasso NL (1979) Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. J Chem Eng Data 24:356–360

    Article  CAS  Google Scholar 

  • Wilkinson J, Maeck A, Alshboul Z, Lorke A (2015) Continuous Seasonal River Ebullition Measurements Linked to Sediment Methane FormationEnviron. Sci. Technol. 49:13121–13129

    Article  CAS  Google Scholar 

  • Wik M, Thornton BF, Bastviken D, MacIntyre S, Varner RK, Crill PM (2014) Energy input is primary controller of methane bubbling in subarctic lakes. Geophys Res Lett 41:555–560

    Article  CAS  Google Scholar 

  • Wik M, Thornton BF, Bastviken D, Uhlbäck J, Crill PM (2016) Biased sampling of methane release from northern lakes: a problem for extrapolation. Geophys Res Lett 43:1256–1262

    Article  CAS  Google Scholar 

  • Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth Sci Rev 57:177–210

    Article  CAS  Google Scholar 

  • Yusuf RO, Noor ZZ, Abba AH, Hassan MAA, Din MFM (2012) Methane emission by sectors: a comprehensive review of emission sources and mitigation methods. Renew Sust Energ Rev 16:5059–5070

    Article  CAS  Google Scholar 

  • Yvon-Durocher G, Allen AP, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Thanh-Duc N, del Giorgio PA (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:488–491

    Article  CAS  PubMed  Google Scholar 

  • Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K (2015) A global boom in hydropower dam construction. Aquat Sci 77:161–170

    Article  Google Scholar 

  • Zigah PK, Oswald K, Brand A, Dinkel C, Wehrli B, Schubert CJ (2015) Methane oxidation pathways and associated methanotrophic communities in the water column of a tropical lake. Limnol Oceanogr 60:553–572

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge all people that have gone with us the road of first determining methane emissions in Swiss and African lakes and reservoirs (Torsten Diem, Natacha Pasche, Martin Schmid, Johny Wüest, Tonya DelSontro, Sébastien Sollberger, Werner Eugster) or determining methane in lake sediments (Lina Tyroller, Rolf Kipfer), followed by investigating methane oxidation (Francoise Lucas, Edith Durisch-Kaiser, Kirsten Oswald, Carole Guggenheim, Andreas Brand, Helmut Bürgman, Corinne Jegge, Jana Milucka, Marcel Kuypers). Thanks also to all technicians without their help this work would not have been possible (the late Gijs Nobbe, Serge Robert, Alois Zwyssig, Christian Dinkel, Patrick Kathriner, Michael Schurter). We acknowledge funding from Eawag and ETH and from several Swiss National Science Foundation grants to BW and CJS (SNF grant no. 2100-068130, 200020-103887, 135299, 153091, 128707).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten J. Schubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schubert, C.J., Wehrli, B. (2018). Contribution of Methane Formation and Methane Oxidation to Methane Emission from Freshwater Systems. In: Stams, A., Sousa, D. (eds) Biogenesis of Hydrocarbons. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-53114-4_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53114-4_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53114-4

  • Online ISBN: 978-3-319-53114-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics