Skip to main content

Cancer Stem Cells in Radiation Oncology

  • Living reference work entry
  • First Online:
Radiation Oncology

Abstract

Cancer stem cells, also known as tumor-initiating cells, are a subset of cells within a tumor which are believed to be the origin of the tumor, recurrences, and metastasis. Cancer stem cells are capable of both symmetric and asymmetric division, giving rise to all the cell types found within a cancerous tumor. Importantly from a radiation oncology point of view, cancer stem cells are thought to be more resistant to treatment (both radiotherapy and chemotherapy) than the other cells within a tumor, while they also display an increased migration capability. Thus, after treatment cancer stem cells are believed to be responsible for tumor recurrence and tumor metastasis. In this chapter, the history of cancer stem cells is briefly discussed. Furthermore, potential means to enhance the radiosensitivity of cancer stem cells and models to study cancer stem cells are covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbaszadegan MR, Bagheri V, Razavi MS, Momtazi AA, Sahebkar A, Gholamin M. Isolation, identification, and characterization of cancer stem cells: a review. J Cell Physiol. 2017;232(8):2008–18.

    Article  CAS  Google Scholar 

  • Baccelli I, Trumpp A. The evolving concept of cancer and metastasis stem cells. J Cell Biol. 2012;198(3):281–93.

    Article  CAS  Google Scholar 

  • Barendsen GW. Dose-survival curves of human cells in tissue culture irradiated with alpha-, beta-, 20-kV. x- and 200-kV. x-radiation. Nature. 1962;193:1153–5.

    Article  CAS  Google Scholar 

  • Bishehsari F, Zhang L, Barlass U, Preite N, Turturro S, Najor MS, et al. KRAS mutation and epithelial-macrophage interplay in pancreatic neoplastic transformation. Int J Cancer. 2018;143:1994.

    Article  CAS  Google Scholar 

  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    Article  CAS  Google Scholar 

  • Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today. 2013;18(5–6):240–9.

    Article  CAS  Google Scholar 

  • Carlson BL, Grogan PT, Mladek AC, Schroeder MA, Kitange GJ, Decker PA, et al. Radiosensitizing effects of temozolomide observed in vivo only in a subset of O6-methylguanine-DNA methyltransferase methylated glioblastoma multiforme xenografts. Int J Radiat Oncol Biol Phys. 2009;75(1):212–9.

    Article  CAS  Google Scholar 

  • Chang L, Graham P, Hao J, Ni J, Deng J, Bucci J, et al. Cancer stem cells and signaling pathways in radioresistance. Oncotarget. 2016;7(10):11002–17.

    Article  Google Scholar 

  • Clevers H. Modeling development and disease with organoids. Cell. 2016;165(7):1586–97.

    Article  CAS  Google Scholar 

  • Clevers H, Watt FM. Defining adult stem cells by function, not by phenotype. Annu Rev Biochem. 2018;87: 1015–27.

    Article  CAS  Google Scholar 

  • Coppes RP, Dubrovska A. Targeting stem cells in radiation oncology. Clin Oncol (R Coll Radiol). 2017;29(6): 329–34.

    Article  CAS  Google Scholar 

  • Coppes RP, Baumann M, Krause M, Hill RP. Stem cells in radiotherapy. In: Joiner M, van der Kogel AJ, editors. Basic clinical radiobiology. 5th ed; 2018. p. 171–80.

    Chapter  Google Scholar 

  • Davies EJ, Dong M, Gutekunst M, Narhi K, van Zoggel HJ, Blom S, et al. Capturing complex tumour biology in vitro: histological and molecular characterisation of precision cut slices. Sci Rep. 2015;5:17187.

    Article  CAS  Google Scholar 

  • Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM, de Winter-de Groot KM, et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med. 2013;19(7):939–45.

    Article  CAS  Google Scholar 

  • Dekkers JF, Berkers G, Kruisselbrink E, Vonk A, de Jonge HR, Janssens HM, et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci Transl Med. 2016;8(344):344ra84.

    Article  Google Scholar 

  • Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015;521(7550):43–7.

    Article  CAS  Google Scholar 

  • Dutta D, Heo I, Clevers H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med. 2017;23(5):393–410.

    Article  CAS  Google Scholar 

  • Eke I, Hehlgans S, Sandfort V, Cordes N. 3D matrix-based cell cultures: automated analysis of tumor cell survival and proliferation. Int J Oncol. 2016;48(1):313–21.

    Article  CAS  Google Scholar 

  • El Hout M, Dos Santos L, Hamai A, Mehrpour M. A promising new approach to cancer therapy: targeting iron metabolism in cancer stem cells. Semin Cancer Biol. 2018;53:125–38.

    Article  Google Scholar 

  • Gerlach MM, Merz F, Wichmann G, Kubick C, Wittekind C, Lordick F, et al. Slice cultures from head and neck squamous cell carcinoma: a novel test system for drug susceptibility and mechanisms of resistance. Br J Cancer. 2014;110(2):479–88.

    Article  CAS  Google Scholar 

  • Ghuwalewala S, Ghatak D, Das P, Dey S, Sarkar S, Alam N, et al. CD44(high)CD24(low) molecular signature determines the Cancer Stem Cell and EMT phenotype in Oral Squamous Cell Carcinoma. Stem Cell Res. 2016;16(2):405–17.

    Article  CAS  Google Scholar 

  • Hoffman RM. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer. 2015;15(8):451–2.

    Article  CAS  Google Scholar 

  • Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 2015;21(11):1364–71.

    Article  CAS  Google Scholar 

  • Jeggo PA, Pearl LH, Carr AM. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer. 2016;16(1):35–42.

    Article  CAS  Google Scholar 

  • Koerfer J, Kallendrusch S, Merz F, Wittekind C, Kubick C, Kassahun WT, et al. Organotypic slice cultures of human gastric and esophagogastric junction cancer. Cancer Med. 2016;5(7):1444–53.

    Article  CAS  Google Scholar 

  • Li W, Ma H, Zhang J, Zhu L, Wang C, Yang Y. Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep. 2017;7(1):13856. https://doi.org/10.1038/s41598-017-14364-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 2015;21(3):256–62.

    Article  CAS  Google Scholar 

  • Merz F, Gaunitz F, Dehghani F, Renner C, Meixensberger J, Gutenberg A, et al. Organotypic slice cultures of human glioblastoma reveal different susceptibilities to treatments. Neuro-Oncology. 2013;15(6):670–81.

    Article  CAS  Google Scholar 

  • Moharil RB, Dive A, Khandekar S, Bodhade A. Cancer stem cells: an insight. J Oral Maxillofac Pathol. 2017;21(3):463.

    Article  Google Scholar 

  • Nagle PW, Hosper NA, Ploeg EM, van Goethem MJ, Brandenburg S, Langendijk JA, et al. The in vitro response of tissue stem cells to irradiation with different linear energy transfers. Int J Radiat Oncol Biol Phys. 2016;95(1):103–11.

    Article  CAS  Google Scholar 

  • Nagle PW, Plukker JTM, Muijs CT, van Luijk P, Coppes RP. Patient-derived tumor organoids for prediction of cancer treatment response. Semin Cancer Biol. 2018;53:258–64.

    Article  CAS  Google Scholar 

  • Nikolaev A, Yang ES. The impact of DNA repair pathways in cancer biology and therapy. Cancers (Basel). 2017;9. https://doi.org/10.3390/cancers9090126.

  • Peitzsch C, Tyutyunnykova A, Pantel K, Dubrovska A. Cancer stem cells: the root of tumor recurrence and metastases. Semin Cancer Biol. 2017;44:10–24.

    Article  CAS  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.

    Article  CAS  Google Scholar 

  • Rygaard J, Povlsen CO. Heterotransplantation of a human malignant tumour to “nude” mice. Acta Pathol Microbiol Scand. 1969;77(4):758–60.

    Article  CAS  Google Scholar 

  • Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 2018;172(1–2):373–386.e10.

    Article  CAS  Google Scholar 

  • Seol HS, Kang HJ, Lee SI, Kim NE, Kim TI, Chun SM, et al. Development and characterization of a colon PDX model that reproduces drug responsiveness and the mutation profiles of its original tumor. Cancer Lett. 2014;345(1):56–64.

    Article  CAS  Google Scholar 

  • Smit JK, Faber H, Niemantsverdriet M, Baanstra M, Bussink J, Hollema H, et al. Prediction of response to radiotherapy in the treatment of esophageal cancer using stem cell markers. Radiother Oncol. 2013;107(3):434–41.

    Article  Google Scholar 

  • Steinbichler TB, Dudas J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova II. Therapy resistance mediated by cancer stem cells. Semin Cancer Biol. 2018;53:156–67.

    Article  CAS  Google Scholar 

  • Tignanelli CJ, Herrera Loeza SG, Yeh JJKRAS. PIK3CA mutation frequencies in patient-derived xenograft models of pancreatic and colorectal cancer are reflective of patient tumors and stable across passages. Am Surg. 2014;80(9):873–7.

    PubMed  PubMed Central  Google Scholar 

  • van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161(4):933–45.

    Article  Google Scholar 

  • Wang J, Luo B, Li X, Lu W, Yang J, Hu Y, et al. Inhibition of cancer growth in vitro and in vivo by a novel ROS-modulating agent with ability to eliminate stem-like cancer cells. Cell Death Dis. 2017;8(6):e2887.

    Article  CAS  Google Scholar 

  • Zhang M, Atkinson RL, Rosen JM. Selective targeting of radiation-resistant tumor-initiating cells. Proc Natl Acad Sci USA. 2010;107(8):3522–7.

    Article  CAS  Google Scholar 

  • Zhao Y, Tao L, Yi J, Song H, Chen L. The role of canonical Wnt signaling in regulating radioresistance. Cell Physiol Biochem. 2018;48(2):419–32.

    Article  CAS  Google Scholar 

  • Zhu Y, Tian T, Li Z, Tang Z, Wang L, Wu J, et al. Establishment and characterization of patient-derived tumor xenograft using gastroscopic biopsies in gastric cancer. Sci Rep. 2015;5:8542.

    Article  CAS  Google Scholar 

  • Zoller M. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer. 2011;11(4):254–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Coppes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nagle, P.W., Coppes, R.P. (2019). Cancer Stem Cells in Radiation Oncology. In: Wenz, F. (eds) Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-52619-5_104-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52619-5_104-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52619-5

  • Online ISBN: 978-3-319-52619-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics