Skip to main content

Cost of Suppression

  • Living reference work entry
  • First Online:
Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires

Synonyms

Firefighting expenditure; Wildfire control cost; Wildfire perimeter containment expenditure

Definition

Cost of suppression is defined as the money spent in suppression activities. Suppression is defined as the activities aimed at restricting the spread of a wildfire after its detection. The term suppression is broadly defined to encompass all activities aimed at putting the fire out and minimizing the area burned.

Introduction

Suppression, or firefighting, is a fire agency’s response to a wildfire using a range of resources to limit its spread. Other expenditures incurred prior to the start of the fire (e.g., land management planning, fuel treatments, prepositioning of firefighting resources, detection systems, etc.) are considered to be part of the presuppression stage (Gebert et al. 2008). The type of resources needed for suppressing a wildfire and how long they are used for depend on where the fire occurs (e.g., close or far away from human habitations), what assets are...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abt KL, Prestemon JP, Gebert KM (2009) Wildfire suppression cost forecasts for the US Forest Service. J For 107(4):173–178

    Google Scholar 

  • Arienti MC, Cumming SG, Boutin S (2006) Empirical models of forest fire initial attack success probabilities: the effects of fuels, anthropogenic linear features, fire weather, and management. Can J For Res 36(12):3155–3166

    Article  Google Scholar 

  • Barbero R, Abatzoglou JT, Larkin NK, Kolden CA, Stocks B (2015) Climate change presents increased potential for very large fires in the contiguous United States. Int J Wildland Fire 24(7):892–899

    Article  Google Scholar 

  • Barnett K, Parks SA, Miller C, Naughton HT (2016) Beyond fuel treatment effectiveness: characterizing interactions between fire and treatments in the US. Forests 7(10):237

    Article  Google Scholar 

  • Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the earth system. Science 324(5926):481–484

    Article  Google Scholar 

  • Burrows N, McCaw L (2013) Prescribed burning in southwestern Australian forests. Front Ecol Environ 11(s1):e25–e34

    Article  Google Scholar 

  • Calkin DE, Gebert KM, Jones G, Neilson RP (2005) Forest service large fire area burned and suppression expenditure trends, 1970–2002. J For 103(4):179–183

    Google Scholar 

  • Calkin DE, Venn T, Wibbenmeyer M, Thompson MP (2013) Estimating US federal wildland fire managers’ preferences toward competing strategic suppression objectives. Int J Wildland Fire 22(2):212–222

    Article  Google Scholar 

  • Calkin DE, Cohen JD, Finney MA, Thompson MP (2014a) How risk management can prevent future wildfire disasters in the wildland-urban interface. Proc Natl Acad Sci U S A 111(2):746–751

    Article  Google Scholar 

  • Calkin DE, Stonesifer CS, Thompson MP, McHugh CW (2014b) Large airtanker use and outcomes in suppressing wildland fires in the United States. Int J Wildland Fire 23(2):259–271

    Article  Google Scholar 

  • Campbell MJ, Dennison PE, Butler BW (2017) Safe separation distance score: a new metric for evaluating wildland firefighter safety zones using LiDAR. Int J Geogr Inf Sci 31(7):1448–1466

    Article  Google Scholar 

  • Canton-Thompson J, Gebert KM, Thompson B, Jones G, Calkin D, Donovan GH (2008) External human factors in incident management team decision-making and their effect on large fire suppression expenditures. J For 106(8):416–424

    Google Scholar 

  • Chas-Amil ML, Touza J, Garcia-Martinez E (2013) Forest fires in the wildland-urban interface: A spatial analysis of forest fragmentation and human impacts. Appl Geogr 43:127–137

    Article  Google Scholar 

  • Christman L, Rollins K (2015) The economic benefit of localised, short-term, wildfire-potential information. Int J Wildland Fire 24(7):974–982

    Article  Google Scholar 

  • Department of Fire and Emergency Services (DFES) (2017) Emergency operations equipment costs. Unpublished data

    Google Scholar 

  • Department of Parks and Wildlife (DPaW) (2014) Bushfire suppression expenditures in the three forest regions of the south-west of WA. Unpublished data. Government of Western Australia, Perth. DPaW is now the Department of Biodiversity, Conservation and Attractions (DBCA)

    Google Scholar 

  • Donahue AK (2004) The influence of management on the cost of fire protection. J Policy Anal Manage 23(1):71–92

    Article  MathSciNet  Google Scholar 

  • Donovan GH (2006) Determining the optimal mix of federal and contract fire crews: a case study from the Pacific Northwest. Ecol Model 194(4):372–378

    Article  Google Scholar 

  • Donovan GH, Brown TC (2005) An alternative incentive structure for wildfire management on National Forest Land. For Sci 51(5):387–395

    Google Scholar 

  • Donovan GH, Brown TC (2007) Be careful what you wish for: the legacy of Smokey bear. Front Ecol Environ 5(2):73–79

    Article  Google Scholar 

  • Donovan GH, Rideout DB (2003) An integer programming model to optimize resource allocation for wildfire containment. For Sci 49(2):331–335

    Google Scholar 

  • Donovan GH, Noordijk P, Radeloff VC Gonzalez-Caban A (ed) (2008) Estimating the impact of proximity of houses on wildfire suppression costs in Oregon and Washington, proceedings of the second international symposium on fire economics, planning, and policy: a global view, Albany, 19–22 Apr 2004. (U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, General Technical Report PSW-GTR-208

    Google Scholar 

  • Donovan GH, Prestemon JP, Gebert K (2011) The effect of newspaper coverage and political pressure on wildfire suppression costs. Soc Nat Resour 24(8):785–798

    Article  Google Scholar 

  • Duff TJ, Tolhurst KG (2015) Operational wildfire suppression modelling: A review evaluating development, state of the art and future directions. Int J Wildland Fire 24(6):735–748

    Article  Google Scholar 

  • FAMWEB (2018) National Fire and Aviation Management Web Applications: SIT Reports. Available at https://fam.nwcg.gov/fam-web/. Accessed Dec 2018

  • Finney MA, Grenfell IC, McHugh CW (2009) Modeling containment of large wildfires using generalized linear mixed-model analysis. For Sci 55(3):249–255

    Google Scholar 

  • Flannigan M, Logan K, Amiro B, Skinner W, Stocks B (2005) Future area burned in Canada. Clim Chang 72(1):1–16

    Article  Google Scholar 

  • Forest Service – U.S. Department of Agriculture (2017) Forest Service Manual (FSM) Directive Issuances, Series 5000 — Protection and Development. Available at: https://www.fs.fed.us/im/directives/dughtml/fsm_5000.html. Accessed on 10 Apr 2018

  • Fried JS, Gilless JK, Spero J (2006) Analysing initial attack on wildland fires using stochastic simulation. Int J Wildland Fire 15(1):137–146

    Article  Google Scholar 

  • Gebert KM, Black AE (2012) Effect of suppression strategies on federal wildland fire expenditures. J For 110(2):65–73

    Google Scholar 

  • Gebert KM, Calkin DE, Yoder J (2007) Estimating suppression expenditures for individual large wildland fires. West J Appl For 22(3):188–196

    Article  Google Scholar 

  • Gebert KM, Calkin DE, Huggett RJ, Abt KL (2008) Economic analysis of federal wildfire management programs. In: Holmes TP, Prestemon JP, Abt K (eds) The economics of forest disturbances: wildfires, storms and invasive species. Springer, Dordrecht, pp 295–322

    Chapter  Google Scholar 

  • Gude PH, Jones K, Rasker R, Greenwood MC (2013) Evidence for the effect of homes on wildfire suppression costs. Int J Wildland Fire 22(4):537–548

    Article  Google Scholar 

  • Hand MS, Gebert KM, Liang J, Calkin DE, Thompson MP, Zhou M (2014) Economics of wildfire management: the development and application of suppression expenditure models. Springer, Dordrecht

    Book  Google Scholar 

  • Hand MS, Thompson MP, Calkin DE (2016) Examining heterogeneity and wildfire management expenditures using spatially and temporally descriptive data. J For Econ 22:80–102

    Google Scholar 

  • Hand M, Katuwal H, Calkin DE, Thompson MP (2017) The influence of incident management teams on the deployment of wildfire suppression resources. Int J Wildland Fire 26(7):615–629

    Article  Google Scholar 

  • Haynes HJG, Stein GP (2017) U.S. Fire Department Profile–2015. National Fire Protection Association, Quincy

    Google Scholar 

  • Houtman RM, Montgomery CA, Gagnon AR, Calkin DE, Dietterich TG, McGregor S, Crowley M (2013) Allowing a wildfire to burn: estimating the effect on future fire suppression costs. Int J Wildland Fire 22(7):871–882

    Article  Google Scholar 

  • Katuwal H, Dunn CJ, Calkin DE (2017) Characterising resource use and potential inefficiencies during large-fire suppression in the western US. Int J Wildland Fire 26(7):604–614

    Article  Google Scholar 

  • Liang J, Calkin DE, Gebert KM, Venn TJ, Silverstein RP (2008) Factors influencing large wildland fire suppression expenditures. Int J Wildland Fire 17(5):650–659

    Article  Google Scholar 

  • McCaw WL (2013) Managing forest fuels using prescribed fire – a perspective from southern Australia. For Ecol Manag 294:217–224

    Article  Google Scholar 

  • McLennan J, Birch A, Cowlishaw S, Hayes P (2009) Maintaining volunteer firefighter numbers: Adding value to the retention coin. Aust J Emerg Manage 24(2):40–47

    Google Scholar 

  • Mell WE, Manzello SL, Maranghides A, Butry D, Rehm RG (2010) The wildland–urban interface fire problem – current approaches and research needs. Int J Wildland Fire 19(2):238–251

    Article  Google Scholar 

  • Montiel-Molina C (2013) Comparative assessment of wildland fire legislation and policies in the European Union: towards a fire framework directive. Forest Policy Econ 29:1–6

    Article  Google Scholar 

  • Morgan G (2009) Asia and Australasia wildfire management: a regional perspective. In: Gonzalez-Caban A (Technical Coordinator) Proceedings of the third international symposium on fire economics, planning, and policy: common problems and approaches, Carolina, Puerto Rico, 29 Apr−2 May 2008, pp 8–23. (General Technical Report PSW-GTR-227, U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station)

    Google Scholar 

  • Naughton HT, Barnett K (2017) Final report: Spatiotemporal evaluation of fuel treatment and previous wildfire effects on suppression costs. Joint fire science program, project ID: 14-5-01-25. U.S. Government

    Google Scholar 

  • O’Connor CD, Calkin DE, Thompson MP (2017) An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management. Int J Wildland Fire 26(7):587–597

    Article  Google Scholar 

  • Parks SA, Miller C, Holsinger LM, Baggett LS, Bird BJ (2016) Wildland fire limits subsequent fire occurrence. Int J Wildland Fire 25(2):182–190

    Article  Google Scholar 

  • Petrovic N, Carlson JM (2012) A decision-making framework for wildfire suppression. Int J Wildland Fire 21(8):927–937

    Article  Google Scholar 

  • Plucinski MP (2012) Factors affecting containment area and time of Australian Forest fires featuring aerial suppression. For Sci 58(4):390–398

    Google Scholar 

  • Plucinski MP (2013) Modelling the probability of Australian grassfires escaping initial attack to aid deployment decisions. Int J Wildland Fire 22(4):459–468

    Article  Google Scholar 

  • Plucinski MP, Pastor E (2013) Criteria and methodology for evaluating aerial wildfire suppression. Int J Wildland Fire 22(8):1144–1154

    Article  Google Scholar 

  • Plucinski MP, Gould JS, McCarthy GJ, Hollis JJ (2007) The effectiveness and efficiency of aerial fire-fighting in Australia: Part 1. Bushfire CRC Technical Report No A0701. Available at http://www.bushfirecrc.com/sites/default/files/managed/resource/aerial_suppression_report_final_web.pdf.

  • Prestemon JP, Donovan GH (2008) Forecasting resource-allocation decisions under climate uncertainty: fire suppression with assessment of net benefits of research. Am J Agric Econ 90(4):1118–1129

    Article  Google Scholar 

  • Prestemon JP, Abt K, Gebert K (2008) Suppression cost forecasts in advance of wildfire seasons. For Sci 54(4):381–396

    Google Scholar 

  • Rideout DB, Wei Y, Kirsch AG, Botti SJ (2008) Toward a unified economic theory of fire program analysis with strategies for empirical modelling. In: Holmes TP, Prestemon JP, Abt K (eds) The economics of forest disturbances: wildfires, storms and invasive species. Springer, Dordrecht, pp 361–380

    Chapter  Google Scholar 

  • Rodriguez y Silva F, Molina JR (2016) Los incendios forestales en España en un contexto de cambio climático: Información y herramientas para la adaptación (INFOADAPT). Memoria final del proyecto. Fundación Biodiversidad. Ministerio de Agricultura, Pesca, Alimentación y Medio Ambiente. Universidad de Castilla-La Mancha

    Google Scholar 

  • Rodriguez y Silva F, Molina JR, Rodriguez J (2014) The efficiency analysis of the fire control operations using VISUAL-SEVEIF tool. In: Viegas DX (ed) Advances in forest fire research. Imprensa da Universidade de Coimbra, Coimbra, pp 1883–1894

    Google Scholar 

  • Steering Committee for the Review of Government Service Provision (SCRGSP) (2015) Report on Government Services 2015, vol. D, Chapter 9, Fire and ambulance services. Productivity Commission, Canberra ACT. Available at https://www.pc.gov.au/research/ongoing/report-on-government-services/2015

  • Stockmann KD, Burchfield J, Calkin DE, Venn TJ (2010) Guiding preventative wildland fire mitigation policy and decisions with an economic modeling system. Forest Policy Econ 12(2):147–154

    Article  Google Scholar 

  • Stonesifer CS, Calkin DE, Thompson MP, Stockmann KD (2016) Fighting fire in the heat of the day: an analysis of operational and environmental conditions of use for large airtankers in United States fire suppression. Int J Wildland Fire 25(5):520–533

    Article  Google Scholar 

  • Taylor MH, Meador AJS, Kim Y-S, Rollins K, Will H (2015) The economics of ecological restoration and hazardous fuel reduction treatments in the ponderosa pine Forest ecosystem. For Sci 61(6):988–1008

    Google Scholar 

  • Thomas DS, Butry DT (2014) Areas of the U.S. wildland-urban interface threatened by wildfire during the 2001-2010 decade. Nat Hazards 71(3):1561–1585

    Article  Google Scholar 

  • Thompson MP (2014) Social, institutional, and psychological factors affecting wildfire incident decision making. Soc Nat Resour 27(6):1–9

    Article  MathSciNet  Google Scholar 

  • Thompson MP, Anderson NM (2015) Modeling fuel treatment impacts on fire suppression cost savings: a review. Calif Agric 69(3):164–170

    Article  Google Scholar 

  • Thompson MP, Calkin DE, Finney MA, Gebert KM, Hand MS (2013a) A risk-based approach to Wildland fire budgetary planning. For Sci 59(1):63–77

    Google Scholar 

  • Thompson MP, Calkin DE, Herynk J, McHugh CW, Short KC (2013b) Airtankers and wildfire management in the US Forest Service: examining data availability and exploring usage and cost trends. Int J Wildland Fire 22(2):223–233

    Article  Google Scholar 

  • Thompson MP, Vaillant NM, Haas JR, Gebert KM, Stockmann KD (2013c) Quantifying the potential impacts of fuel treatments on wildfire suppression costs. J For 111(1):49–58

    Google Scholar 

  • Thompson MP, Haas JR, Finney MA, Calkin DE, Hand MS, Browne MJ, Halek M, Short KC, Grenfell IC (2015) Development and application of a probabilistic method for wildfire suppression cost modeling. Forest Policy Econ 50:249–258

    Article  Google Scholar 

  • Thompson MP, Riley KL, Loeffler D, Haas JR (2017) Modeling fuel treatment leverage: Encounter rates, risk reduction, and suppression cost impacts. Forests 8(12):469

    Article  Google Scholar 

  • Williams J, Albright D, Hoffmann AA, Eritsov A, Moore PF, Mendes De Morais JC, Leonard M, San Miguel-Ayanz J, Xanthopoulos G, van Lierop P (2011) Findings and implications from a coarse-scale global assessment of recent selected mega-fires. In: FAO at the Vth international Wildland fire conference, Sun City, 9–13 May 2011, pp 27–40. (Forestry Department, Fire Management Division Working Paper FM/27/E, Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Wotton BM, Nock CA, Flannigan MD (2010) Forest fire occurrence and climate change in Canada. Int J Wildland Fire 19(3):253–271

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronique Florec .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Florec, V., Thompson, M.P., Rodríguez y Silva, F. (2019). Cost of Suppression. In: Manzello, S. (eds) Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires. Springer, Cham. https://doi.org/10.1007/978-3-319-51727-8_96-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51727-8_96-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51727-8

  • Online ISBN: 978-3-319-51727-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics