Skip to main content

Firebreak and Fuelbreak

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agee JK, Bahro B, Finney M, Omi P, Sapsis DB, Skinner CN, van Wagtendonk JW, Weatherspoon CP (2000) The use of shaded fuelbreaks in landscape fire management. Forest Ecol Manag 127:55–66. https://doi.org/10.1016/S0378-1127(99)00116-4

    Article  Google Scholar 

  • Alexandridis A, Vakalis D, Siettos CI, Bafas GV (2008) A cellular automata model for forest fire spread prediction: the case of the wildfire that swept through Spetses Island in 1990. Appl Math Comput 204:191–201. https://doi.org/10.1016/j.amc.2008.06.046

    Article  MathSciNet  MATH  Google Scholar 

  • Alexandridis A, Russo L, Vakalis D, Bafas GV, Siettos CI (2011) Wildland fire spread modelling using cellular automata: evolution in large-scale spatially heterogeneous environments under fire suppression tactics. Int J Wildland Fire 20:633–647. https://doi.org/10.1071/WF09119

    Article  Google Scholar 

  • Bahro B, Barber KH, Sherlock JW, Yasuda DA (2007) Stewardship and fireshed assessment: a process for designing a landscape fuel treatment strategy. In: Powers RF (Ed) Restoring fire-adapted ecosystems: proceedings of the 2005 national silviculture workshop, USDA Forest Service Pacific Southwest Research Station, General Technical Report PSW-GTR-203, pp 41–54

    Google Scholar 

  • Duane A, Piqué M, Castellnou M, Brotons L (2015) Predictive modelling of fire occurrences from different fire spread patterns in Mediterranean landscapes. Int J Wildl Fire 24(3):407–418. https://doi.org/10.1071/WF14040

    Article  Google Scholar 

  • Duguy B, Alloza J, Vallejo R, Roder A, Hill J (2007) Modeling the effects of landscape fuel treatments on fire growth and behavior in a Mediterranean landscape (eastern Spain). Int J Wildl Fire 16:619–632. https://doi.org/10.1071/WF06101

    Article  Google Scholar 

  • Evaggelidis IN, Siettos CI, Russo P, Russo L (2015) Complex network theory criterion to distribute fuel breaks for the hazard control of fire spread in forests. AIP Conf Proc 1648:100005

    Article  Google Scholar 

  • Fernandes PM, Davies GM, Ascoli D, Fernández C, Moreira F, Rigolot E, Stoof CR, Vega JA, Molina D (2013) Prescribed burning in southern Europe: developing fire management in a dynamic landscape. Front Ecol Environ 11(s1). https://doi.org/10.1890/120298

  • Finney MA (1998) FARSITE: fire area simulator – model development and evaluation. USDA Forest Service, Rocky Mountain Research Station, Technical Report RP-4

    Google Scholar 

  • Finney MA (2006) An overview of FlamMap fire modeling capabilities. In: Andrews PL, Butler BW (comps) Fuels management-how to measure success: conference proceedings. Portland, 28–30 Mar 2006, pp 213–220; Proceedings RMRS-P-41, USDA Forest Service, Rocky Mountain Research Station, Fort Collins, 809 pp

    Google Scholar 

  • Gill AM, Stephens SL (2009) Scientific and social challenges for the management of fire-prone wildland–urban interfaces. Environ Res Lett 4:034014. https://doi.org/10.1088/1748-9326/4/3/034014

    Article  Google Scholar 

  • Hillier FS, Lieberman GJ (1990) Introduction to operations research, 8th edn. McGraw-Hill, New York

    MATH  Google Scholar 

  • Hof J, Omi P, Bevers M, Laven R (2000) A timing oriented approach to spatial allocation of fire management effort. For Sci 46(3):442–451. https://doi.org/10.1093/forestscience/46.3.442

    Article  Google Scholar 

  • Mansourian S, Vallauri D, Dudley N (2005) Forest reforestation in landscapes: beyond planting trees. Springer, New York

    Book  Google Scholar 

  • Martell D (2007) Forest fire management. In: Weintraub A, Romero CC, Bjorndal T, Epstein RR, Miranda J (eds) Handbook of operations research in natural resources, International series in operations research & management science. Springer, New York, pp 489–509

    Chapter  Google Scholar 

  • McIver J, Erickson K, Youngblood A (2012) Principal short-term findings of the National Fire and fire surrogate study. Gen tech rep PNW-GTR-860. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, p 210

    Book  Google Scholar 

  • Miller SR, Wuerzer T, Vos J, Lindquist E, Mowery M, Holfeltz T, Stephens B, Grad A (2016) Planning for wildfire in the wildland-urban Interface: a resource guide for Idaho communities. University of Idaho, Available at SSRN: https://ssrn.com/abstract=2845046 or https://doi.org/10.2139/ssrn.2845046

  • Minas JP, Hearne JW (2016) An optimization model for aggregation of prescribed burn units. TOP 24(1):180–195. https://doi.org/10.1007/s11750-015-0383-y

    Article  MathSciNet  MATH  Google Scholar 

  • Minas J, Hearne J, Handmer J (2012) A review of operations research methods applicable to wildfire management. Int J Wildl Fire 21(3):189–196. https://doi.org/10.1071/WF10129

    Article  Google Scholar 

  • Minas J, Hearne J, Martell D (2013) An integrated optimization model for fuel management and fire suppression preparedness planning. Ann Oper Res 232(1):201–215. https://doi.org/10.1007/s10479-012-1298-8

    Article  MathSciNet  MATH  Google Scholar 

  • Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E, Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E (2011) Landscape–wildfire interactions in southern Europe: implications for landscape management. J Environ Manag 92(10):2389–2402. https://doi.org/10.1016/j.jenvman.2011.06.028

    Article  Google Scholar 

  • Palma CD, Cui W, Martell DL, Robak D, Weintraub A (2007) Assessing the impact of stand-level harvests on the flammability of forest landscapes. Int J Wildl Fire 16(5):584–592. https://doi.org/10.1071/WF06116

    Article  Google Scholar 

  • Radeloff VC, Hammer RB, Stewart SI, Fried JS, Holcomb SS, McKeefry JF (2005) The wildland–urban interface in the United States. Ecol Appl 15(3):799–805. https://doi.org/10.1890/04-1413

    Article  Google Scholar 

  • Rigolot E, Castelli L, Cohen M, Costa M, Duché Y (2004) Recommendations for fuel-break design and fuel management at the wildland urban interface: an empirical approach in South Eastern France. Institute of Mediterranean forest ecosystems and forest products warm international workshop, Athènes, 2004, pp 131–142

    Google Scholar 

  • Russo L, Russo P, Evaggelidis IN, Siettos CI (2015) Complex network statistics to the design of fire breaks for the control of fire spreading. Chem Eng Trans 43:2353–2358. https://doi.org/10.3303/CET1543393

    Article  Google Scholar 

  • Russo L, Russo P, Siettos CI (2016) A complex network theory approach for the spatial distribution of fire breaks in heterogeneous forest landscapes for the control of wildland fires. PlosOne 11(10):e0163226. https://doi.org/10.1371/journal.pone.0163226

    Article  Google Scholar 

  • Rytwinski A, Crowe KA (2010) A simulation-optimization model for selecting the location of fuel-breaks to minimize expected losses from forest fires. For Ecol Manag 260(1):1–11. https://doi.org/10.1016/j.foreco.2010.03.013

    Article  Google Scholar 

  • Stephens SL (1998) Evaluation of the effects of silviculture and fuel treatments on potential fire behaviour in the sierra Nevada mixed- conifer forests. For Ecol Manag 105:21–35. https://doi.org/10.1016/S0378-1127(97)00293-4

    Article  Google Scholar 

  • Sullivan AL (2009) Wildland surface fire spread modelling, 1990–2007. 3: simulation and mathematical analogue models. Int J Wildl Fire 18(4):387–403. https://doi.org/10.1071/WF06143

    Article  Google Scholar 

  • Tasmanian Fire Service (2005) Guidelines for development in bushfire prone areas of Tasmania, p 24 https://www.fire.tas.gov.au/publications/Bush_Guide.pdf

  • Vacchiano G, Ascoli D (2015) An implementation of the Rothermel fire spread model in the R programming language. Fire Technol 51(3):523–535. https://doi.org/10.1007/s1069

    Article  Google Scholar 

  • Wei Y (2012) Optimize landscape fuel treatment locations to create control opportunities for future fires. Can J For Res 42(6):1002–1014. https://doi.org/10.1139/x2012-051

    Article  Google Scholar 

  • Wei Y, Rideout D, Kirsch A (2008) An optimization model for locating fuel treatments across a landscape to reduce expected fire losses. Can J For Res 38(4):868–877. https://doi.org/10.1139/X07-162

    Article  Google Scholar 

  • Winter GJ, Vogt C, Fried JS (2002) Fuel treatments at the wildland-urban interface: common concerns in diverse regions. J For 100(1):15–21. https://doi.org/10.1093/jof/100.1.15

    Article  Google Scholar 

  • Xanthopoulos G, Bushey C, Arnol C, Caballero D (2011) Characteristics of wildland–urban interface areas in Mediterranean Europe, North America and Australia and differences between them. In: Proceedings of the 1st international conference in safety and crisis management in the construction, tourism and SME sectors (1st CoSaCM), pp 24–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Russo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ascoli, D., Russo, L., Giannino, F., Siettos, C., Moreira, F. (2018). Firebreak and Fuelbreak. In: Manzello, S. (eds) Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires. Springer, Cham. https://doi.org/10.1007/978-3-319-51727-8_70-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51727-8_70-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51727-8

  • Online ISBN: 978-3-319-51727-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics