Skip to main content

Ignition Sources

  • Living reference work entry
  • First Online:

Synonyms

Fire causes; Fire ignition; Human ignitions; Natural ignitions; Wildfire ignitions

Definition

Any ignition of natural or human origin (direct or indirect) that can provoke a wildfire.

Introduction

Fires have been burning on earth largely since the origin of plants as the existence of fire depends on a combination of fuel, sufficient oxygen levels, and a heat source (Pausas and Keeley 2009). Natural heat sources to spark fires, primarily lightning, but also including other natural events, such as volcanoes or meteors, have existed through the history of the planet. Over time, the extent and frequency of fires have oscillated according to changes in climate and vegetation. Early in the Quaternary, high climate seasonality favored fire expansion in southern Europe as it did in many other ecosystems of the northern and southern hemispheres. Later, during the Neolithic Age, humans began affecting the fire regime by accidentally or deliberately setting and stopping fires and by...

This is a preview of subscription content, log in via an institution.

References

  • Alexandrian D, Esnault F, Calabri G (1999) Forest fires in the Mediterranean area. Unasylva 197(50):35–41

    Google Scholar 

  • Anderson RS, Byrd BF (1998) Late-Holocene vegetation changes from the Las Flores Creek coastal lowlands, San Diego County, California. Madrono 45:171–182

    Google Scholar 

  • Balch JK, Bradley BA, Abatzoglou JT, Nagy RC, Fusco EJ, Mahood AL (2017) Human-started wildfires expand the fire niche across the United States. Proc Natl Acad Sci 114(11):2946–2951

    Article  Google Scholar 

  • Bonora L, Conese C, Lampin C, Martin P, Martínez J, Molina D, Salas J (2002) Towards methods for investigating on wildland fire causes. Euro-Mediterranean Wildland Fire Laboratory, a “wall-less” Laboratory for Wildland Fire Sciences and Technologies in the Euro-Mediterranean Region. Deliverable D-05-02

    Google Scholar 

  • Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA, D’Antonio CM, DeFries R, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Mack M, Moritz MA, Pyne S, Roos CI, Scott AC, Sodhi NS, Swetnam TW (2011) The human dimension of fire regimes on Earth. J Biogeogr 38:2223–2236

    Article  Google Scholar 

  • Bryant C (2008) Understanding bushfire: trends in deliberate vegetation fires in Australia. Technical and background paper 27. 35p

    Google Scholar 

  • Camia A, Durrant T, San-Miguel-Ayanz J (2013) Harmonized classification scheme of fire causes in the EU adapted for the European Fire Database of EFFIS. JRC scientific and policy reports, Luxembourg, publication office of the EU

    Google Scholar 

  • Carmona-Moreno C, Belward A, Malingreau JP, Hartley A, García-Alegre M, Antonovskiy M, Buchshtaber V, Pivoravov V (2005) Characterizing interannual variations in global fire calendar using data from Earth observing satellites. Glob Chang Biol 11:1537–1555

    Article  Google Scholar 

  • Cdfdata.fire.ca.gov (2018) Statistics & events. [online] Available at: http://cdfdata.fire.ca.gov/incidents/incidents_statsevents. Accessed 2 Mar 2018

  • Collins KM, Penman TD, Price OF (2016) Some wildfire ignition causes pose more risk of destroying houses than others. PLoS One 11(9):e0162083

    Article  Google Scholar 

  • Conedera M, Cesti G, Pezzatti GB, Zumbrunnen T, Spinedi F (2006) Lightning induced fires in the Alpine Region: an increasing problem. In: V international conference on forest fire research, Coimbra

    Article  Google Scholar 

  • Cruz MG, Sullivan AL, Gould JS, Sims NC, Bannister AJ, Hollis JJ, Hurley RJ (2012) Anatomy of a catastrophic wildfire: the Black Saturday Kilmore East fire in Victoria, Australia. For Ecol Manag 284:269–285

    Article  Google Scholar 

  • Cwfis.cfs.nrcan.gc.ca (2018) Canadian National Fire Database/Canadian Wildland Fire Information System/Natural Resources Canada. [online] Available at: http://cwfis.cfs.nrcan.gc.ca/ha/nfdb. Accessed 7 Mar 2018

  • Doherty JJ, Anderson SAJ, Pearce G (2008) An analysis of wildfire records in New Zealand: 1991–2007. (Scion report). Scion, Christchurch

    Google Scholar 

  • Ellis S, Kanowski P, Whelan R (2004) National inquiry into bushfire mitigation and management. Commonwealth of Australia, Canberra

    Google Scholar 

  • FAO (1999) Report on public policies affecting forest fires. FAO forestry paper 138. Food and Agriculture Organization of the United Nations, Rome, 369pp

    Google Scholar 

  • Gammage B (2011) The biggest estate on earth how aborigines made Australia. Allen & Unwin, Crows Nest, N.S.W

    Google Scholar 

  • Ganteaume A, Guerra F (2018) Explaining the spatio-seasonal variation of fires by their causes: the case of southeastern France. Appl Geogr 90:69–81

    Article  Google Scholar 

  • Ganteaume A, Jappiot M (2013) What causes large fires in Southern France. For Ecol Manag 294:76–85

    Article  Google Scholar 

  • Ganteaume A, Jappiot M, Long M, Lampin-Maillet C, Duché Y, Savazzi R, Bonora L, Conese C, Piwnicki J, Ubysz B, Szczygiel R, Galante M, Ferreira A, Suarez-Beltran J (2009) State of the art (Final Report). Deliverable D 1.2. Contract number 384 340 “Determination of forest fire causes and harmonization for reporting them”. European Commission-JRC, p 278

    Google Scholar 

  • Ganteaume A, Camia A, Jappiot M, San Miguel-Ayanz J, Long-Fournel M, Lampin C (2012) A review of the main driving factors of forest fire ignition over Europe. Environ Manag 51(3):651–662

    Article  Google Scholar 

  • Genton MG, Butry DT, Gumpertz ML, Prestemon JP (2006) Spatio-temporal analysis of wildfire ignitions in the St Johns River Water Management District, Florida. Int J Wildland Fire 15:87–97

    Article  Google Scholar 

  • Gonzalez-Olabarria J, Brotons L, Gritten D, Tudela A, Angel Teres J (2012) Identifying location and causality of fire ignition hotspots in a Mediterranean region. Int J Wildland Fire 21:905–914

    Article  Google Scholar 

  • Granström A (1993) Spatial and temporal variation in lightning ignitions in Sweden. Journal of Vegetation Science 4:737–744

    Article  Google Scholar 

  • Gude PH, Jones K, Rasker R, Greenwood MC (2013) Evidence for the effect of homes on wildfire suppression costs. Int J Wildland Fire 22(4):537–548

    Article  Google Scholar 

  • Johnson EA (1992) Fire and vegetation dynamics. Studies from the North American boreal forest. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW (2012) Fire in mediterranean ecosystems ecology, evolution and management. Cambridge University Press, Cambridge, UK. 528p

    Google Scholar 

  • Lovreglio R, Leone V, Giaquinto P, Notarnicola A (2006) New tools for the analysis of fire causes and their motivations: the Delphi technique. For Ecol Manag 234(1):18–33

    Article  Google Scholar 

  • Mann ML, Batllori E, Moritz MA, Waller EK, Berck P, Flint AL, Flint LE, Dolfi E (2016) Incorporating anthropogenic influences into fire probability models: effects of human activity and climate change on fire activity in California. PLoS One 11(4):e0153589

    Article  Google Scholar 

  • Martínez J, Vega-Garcia C, Chuvieco E (2009) Human-caused wildfire risk rating for prevention planning in Spain. J Environ Manag 90:1241–1252

    Article  Google Scholar 

  • Moreira F, Vaz P, Catry F, Silva JS (2009) Regional variations in wildfire susceptibility of land-cover types in Portugal: implications for landscape management to minimize fire hazard. Int J Wildland Fire 18:563–574

    Article  Google Scholar 

  • Müller MM, Vacik H, Diendorfer G, Arpaci A, Formayer H, Gossow H (2013) Analysis of lightning-induced forest fires in Austria. Theor Appl Climatol 111:183–193

    Article  Google Scholar 

  • Nash CH, Johnson EA (1996) Synoptic climatology of lightning-caused forest fires in subalpine and boreal forests. Can J For Res 26:1859–1874

    Article  Google Scholar 

  • Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. Bioscience 59:593–601

    Article  Google Scholar 

  • Penman TD, Bradstock RA, Price O (2013) Modelling the determinants of ignition in the Sydney Basin, Australia: implications for future management. Int J Wildland Fire 22:469–478

    Article  Google Scholar 

  • Podur J, Martell DL, Csillag F (2003) Spatial patterns of lightning caused forest fires in Ontario, 1976–1998. Ecol Model 164:1–20

    Article  Google Scholar 

  • Pyne SJ (2001) Fire in America. Princeton University Press, Princeton

    Google Scholar 

  • Radeloff VC, Hammer RB, Stewart SI, Fried JS, Holcomb SS, McKeefry JF (2005) The wildland–urban interface in the United States. Ecol Appl 15(3):799–805

    Article  Google Scholar 

  • Renkin RA, Despain DG (1992) Fuel moisture, forest type, and lightning-caused fire in Yellowstone National Park. Can J For Res 22:37–45

    Article  Google Scholar 

  • San-Miguel-Ayanz J, Camia A (2010) Forest fires. In: Mapping the impacts of natural hazards and technological accidents in Europe: an overview of the last decade. EEA Technical report No 13/2010, Publications Office of the European Union, Luxembourg, pp 49–55

    Google Scholar 

  • Stocks BJ, Mason JA, Todd JB, Bosch EM, Wotton BM (2003) Large forest fires in Canada, 1959–1997. J Geophys Res 108:FFR5-1–FFR5-12

    Google Scholar 

  • Syphard AD, Keeley JE (2015) Location, timing and extent of wildfire vary by cause of ignition. Int J Wildland Fire 24(1):37–47

    Article  Google Scholar 

  • Syphard AD, Radeloff VC, Keeley JE, Hawbaker TJ, Clayton MK, Stewart SI, Hammer RB (2007) Human influence on California fire regimes. Ecol Appl 17(5):1388–1402

    Article  Google Scholar 

  • Syphard AD, Radeloff VC, Keuler NS, Taylor RS, Hawbaker TJ, Stewart SI, Clayton MK (2008) Predicting spatial patterns of fire on a southern California landscape. Int J Wildland Fire 17(5):602–613

    Article  Google Scholar 

  • Syphard AD, Radeloff VC, Hawbaker TJ, Stewart SI (2009) Conservation threats due to human-caused increases in fire frequency in Mediterranean-climate ecosystems. Conserv Biol 23(3):758–769

    Article  Google Scholar 

  • Syphard AD, Keeley JE, Pfaff AH, Ferschweiler K (2017) Human presence diminishes the importance of climate in driving fire activity across the United States. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1713885114

  • United Nations Economic Commission for Europe Forest fire statistics (2011) UNECE Timber Committee, United Nations, Report ECE/TIM/BULL/2002/4

    Google Scholar 

  • Vannière B, Colombaroli D, Chapron E, Leroux A, Tinner W, Magny M (2008) Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy). Quat Sci Rev 27:1181–1196

    Article  Google Scholar 

  • Vazquez A, Moreno JM (1998) Patterns oflightning-, and people-caused fires in peninsular Spain. Int. J. Wildland Fires 8(2):103–115

    Article  Google Scholar 

  • Weber R (1999) Bushfire causes. Paper presented at Paper presented at the FIRE! The Australian experience conference, Adelaide

    Google Scholar 

  • Wilson C (2009) Why start wildfires? The motivation behind arsons and accidents. Northland DOC, Unpublished report

    Google Scholar 

  • Yang J, He HS, Shifley SR, Gustafson EJ (2007) Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands. For Sci 53:1–15

    Google Scholar 

  • Yegres LE (1998) Control de Incendios forestales en Venezuela. Presented at the First South American Seminar/Fifth Technical Meeting on the Control of Forest Fires, Belo Horizonte, 29/06-07/02, 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Ganteaume .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ganteaume, A., Syphard, A.D. (2018). Ignition Sources. In: Manzello, S. (eds) Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires. Springer, Cham. https://doi.org/10.1007/978-3-319-51727-8_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51727-8_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51727-8

  • Online ISBN: 978-3-319-51727-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics