Skip to main content

Temperature

  • Living reference work entry
  • First Online:
Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires

Synonyms

Catalysis; Conduction error; Fine wire thermocouples; Nusselt number correlations; Radiation correction; Time constant

Definition

Temperature has been defined (via the zeroth law) as the observable which is the same for two systems in thermal equilibrium. Using a microscopic point of view, it has also been seen to represent the energy per degree of freedom. From the macroscopic point of view, the temperature is defined as the inverse of the rate of entropy with internal energy if volume and number of particles are held constant in a given system.

Introduction

The temperature in chemically reacting flows serves as an important parameter to characterize wildland fire behavior, intensity, and effects. Understanding the temperature in reacting flows is essential for an accurate understanding of chemical reaction rates and heat transfer. Temperature measurement is also critical in many manufacturing processes and is the most widely measured process variable.

Fine wire thermocouples...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andrews PL, Queen LP (2001) Fire modeling and information system technology. Int J Wildland Fire 10(4):343–352

    Article  Google Scholar 

  • Andrews G, Bradley D, Hundy G (1972) Hot wire anemometer calibration for measurements of small gas velocities. Int J Heat Mass Tran 15(10):1765–1786

    Article  Google Scholar 

  • Ang J, Pagni P, Mataga T, Margle J, Lyons VJ (1988) Temperature and velocity profiles in sooting free convection diffusion flames. AIAA J 26(3):323–329

    Article  Google Scholar 

  • Ballantyne A, Moss J (1977) Fine wire thermocouple measurements of fluctuating temperature. Combust Sci Technol 17(1–2):63–72

    Article  Google Scholar 

  • Bradley D, Matthews K (1968) Measurement of high gas temperatures with fine wire thermocouples. J Mech Eng Sci 10(4):299–305

    Article  Google Scholar 

  • Bradley D, Lau A, Lau A, Missaghi M (1989) Response of compensated thermocouples to fluctuating temperatures: computer simulation, experimental results and mathematical modelling. Combust Sci Technol 64(1–3):119–134

    Article  Google Scholar 

  • Burton KA, Ladouceur H, Fleming J (1992) An improved noncatalytic coating for thermocouples. Combust Sci Technol 81(1–3):141–145

    Article  Google Scholar 

  • Butler B, Cohen J, Latham D, Schuette R, Sopko P, Shannon K, Jimenez D, Bradshaw L (2004) Measurements of radiant emissive power and temperatures in crown fires. Can J Forest Res 34(8):1577–1587

    Article  Google Scholar 

  • Collis D, Williams M (1959) Two-dimensional convection from heated wires at low reynolds numbers. J Fluid Mech 6(03):357–384. http://dx.doi.org/10.1017/S0022112059000696

    Article  Google Scholar 

  • Finney MA, Cohen JD, Forthofer JM, McAllister SS, Gollner MJ, Gorham DJ, Saito K, Akafuah NK, Adam BA, English JD (2015) Role of buoyant flame dynamics in wildfire spread. Proc Natl Acad Sci 112(32):9833–9838

    Article  Google Scholar 

  • Grosshandler W, Engle M, Russell A (1980) Emissivity of thermocouples for combustion measurements, Paper WSS/CI, pp 80–21

    Google Scholar 

  • Hayhurst A, Kittelson D (1977) Heat and mass transfer considerations in the use of electrically heated thermocouples of iridium versus an iridium/rhodium alloy in atmospheric pressure flames. Combust Flame 28:301–317

    Article  Google Scholar 

  • Heitor M, Moreira A (1993) Thermocouples and sample probes for combustion studies. Progress Energy Combust Sci 19(3):259–278

    Article  Google Scholar 

  • Heitor M, Taylor A, Whitelaw J (1985) Simultaneous velocity and temperature measurements in a premixed flame. Exp Fluids 3(6):323–339

    Article  Google Scholar 

  • Hibshman RJI (1998) An experimental study of soot formation in dual mode laminar wolfhard-parker flames, Ph.D. thesis, Virginia Tech

    Google Scholar 

  • Incropera FP (2011) Fundamentals of heat and mass transfer. Wiley, Hoboken

    Google Scholar 

  • Kaskan W (1957) The dependence of flame temperature on mass burning velocity. In: Symposium (international) on combustion, vol 6. Elsevier, pp 134–143

    Article  Google Scholar 

  • Kent J (1970) A noncatalytic coating for platinum-rhodium thermocouples. Combust Flame 14(2): 279–281

    Article  Google Scholar 

  • Kramers H (1946) Heat transfer from spheres to flowing media. Physica 12(2–3):61–80

    Article  Google Scholar 

  • Lockwood F, Moneib H (1980) Fluctuating temperature measurements in a heated round free jet. Combust Sci Technol 22(1–2):63–81

    Article  Google Scholar 

  • Lockwood F, Odidi A (1975) Measurement of mean and fluctuating temperature and of ion concentration in round free-jet turbulent diffusion and premixed flames. In: Symposium (international) on combustion, vol 15. Elsevier, pp 561–571

    Article  Google Scholar 

  • Marcelli T, Santoni PA, Simeoni A, Leoni E, Porterie B (2004) Fire spread across pine needle fuel beds: characterization of temperature and velocity distributions within the fire plume. Int J Wildland Fire 13(1):37–48

    Article  Google Scholar 

  • Miles P, Gouldin F (1993) Determination of the time constant of fine-wire thermocouples for compensated temperature measurements in premixed turbulent flames. Combust Sci Technol 89(1–4):181–199

    Article  Google Scholar 

  • Morandini F, Silvani X, Rossi L, Santoni P-A, Simeoni A, Balbi J-H, Rossi JL, Marcelli T (2006) Fire spread experiment across Mediterranean shrub: influence of wind on flame front properties. Fire Safety J 41(3):229–235

    Article  Google Scholar 

  • Peterson R, Laurendeau N (1985) The emittance of yttrium-beryllium oxide thermocouple coating. Combust Flame 60(3):279–284

    Article  Google Scholar 

  • Petit C, Gajan P, Lecordier J-C, Paranthoen P (1982) Frequency response of fine wire thermocouple. J Phys E: Sci Instrum 15(7):760

    Article  Google Scholar 

  • Pollock DD (1991) Thermocouples theory and practice, Technical report. CRC Press, Boca Raton. ISBN: 0-8493-4243-0

    Google Scholar 

  • Ranz W, Marshall WR (1952) Evaporation from drops. Chem Eng Prog 48(3):141–146

    Google Scholar 

  • Santoni PA, Simeoni A, Rossi JL, Bosseur F, Morandini F, Silvani X, Balbi J-H, Cancellieri D, Rossi L (2006) Instrumentation of wildland fire: characterisation of a fire spreading through a Mediterranean shrub. Fire Safety J 41(3):171–184

    Article  Google Scholar 

  • Sasaki S, Masuda H, Higano M, Hishinuma N (1994) Simultaneous measurements of specific heat and total hemispherical emissivity of Chromel and Alumel by a transient calorimetric technique. Int J Thermophys 15(3):547–565

    Article  Google Scholar 

  • Shaddix CR (1999) Correcting thermocouple measurements for radiation loss-a critical review. In: 1999 33rd national heat transfer conference, Albuquerque

    Google Scholar 

  • Singh AV, Gollner MJ (2015) A methodology for estimation of local heat fluxes in steady laminar boundary layer diffusion flames. Combust Flame 162(5):2214–2230. https://doi.org/10.1016/j.combustflame.2015.01.019

    Article  Google Scholar 

  • Whitaker S (1972) Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AIChE J 18(2):361–371

    Article  Google Scholar 

  • Yule A, Taylor D, Chigier N (1978) Thermocouple signal processing and on-line digital compensation. J Energy 2(4):223–231

    Article  Google Scholar 

  • Zhuang J, Leuckel W (1998) A modified two-sensor-method for the measurement of high gas temperature facing surroundings with different surface temperatures. Combust Sci Technol 139(1):229–247

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay V. Singh .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Singh, A.V. (2018). Temperature. In: Manzello, S. (eds) Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires. Springer, Cham. https://doi.org/10.1007/978-3-319-51727-8_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51727-8_39-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51727-8

  • Online ISBN: 978-3-319-51727-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics