Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires

Living Edition
| Editors: Samuel L. Manzello

Atmospheric Turbulence

  • Warren E. HeilmanEmail author
  • Craig B. Clements
  • Shiyuan Zhong
  • Kenneth L. Clark
  • Xindi Bian
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-51727-8_137-1

Synonyms

Definition

Atmospheric turbulence is irregular fluctuations occurring in atmospheric air flow. These fluctuations are random and continuously changing and are superimposed on the mean motion of the air (American Meteorological Society 2018).

Introduction

It has long been established that the behavior of wildland fires and the dispersion of smoke during wildland fire events are influenced by ambient and fire-induced winds (Crosby 1949; Byram and Nelson 1951; Byram 1954; Gifford 1957; Rothermel 1972; Raupach 1990; Beer 1991). Fundamentally, ambient and fire-induced winds affect the horizontal and vertical convective flux of heat in the fire environment and the ability of spreading fires to transfer heat convectively to potential fuels (Rothermel 1972). The transport of firebrands away from active burning locations and the opportunity for spotting ignitions are also governed by the ambient and...

This is a preview of subscription content, log in to check access.

References

  1. Alexander ME, Stocks BJ, Wutton BM, Flannigan MD, Todd JB, Butler BW, Lanoville RA (1998) The international crown fire modeling experiment: an overview and progress report. Second Symposium on Fire and Forest Meteorology, American Meteorological Society, pp 20–23Google Scholar
  2. American Meteorological Society (2018) Turbulence. Glossary of meteorology. Available online at http://glossary.ametsoc.org/wiki/turbulence
  3. Amiro BD (1990) Drag coefficients and turbulence spectra within three boreal forest canopies. Bound-Layer Meteorol 52:227–246CrossRefGoogle Scholar
  4. Baldocchi DD, Meyers TP (1988) A spectral and lag-correlation analysis of turbulence in a deciduous forest canopy. Bound-Layer Meteorol 45:31–58CrossRefGoogle Scholar
  5. Banta RM, Olivier LD, Holloway ET, Kropfli RA, Bartram BW, Cupp RE, Post MJ (1992) Smoke column observations from two forest fires using Doppler lidar and Doppler radar. J Appl Meteorol 31:1328–1349CrossRefGoogle Scholar
  6. Batchelor GK (1950) The application of the similarity theory of turbulence to atmospheric diffusion. Q J R Meteorol Soc 76:133–146CrossRefGoogle Scholar
  7. Beer T (1991) The interaction of wind and fire. Bound-Layer Meteorol 54:287–308CrossRefGoogle Scholar
  8. Berman S (1965) Estimating the longitudinal wind spectrum near the ground. Q J R Meteorol Soc 91:302–317CrossRefGoogle Scholar
  9. Best AC (1935) Transfer of heat and momentum in lowest layers of the atmosphere. Geophysical Memoris, Meteorological Office in London, England, no 65Google Scholar
  10. Biltoft CA (2001) Some thoughts on local isotropy and the 4/3 lateral to longitudinal velocity spectrum ratio. Bound-Layer Meteorol 100:393–404CrossRefGoogle Scholar
  11. Busch NE, Panofsky HA (1968) Recent spectra of atmospheric turbulence. Q J R Meteorol Soc 94:132–148CrossRefGoogle Scholar
  12. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189CrossRefGoogle Scholar
  13. Byram, GM (1954) Atmospheric conditions related to blowup fires. Station paper no. 35, USDA Forest Service, Southeastern Forest Experiment Station, AshevilleGoogle Scholar
  14. Byram GM, Martin RE (1970) The modeling of fire whirlwinds. For Sci 16:386–399Google Scholar
  15. Byram GM, Nelson RM (1951) The possible relation of air turbulence to erratic fire behavior in the southeast. Fire Control Notes 12:1–8Google Scholar
  16. Byron-Scott RAD (1990) The effects of ridge-top and lee-slope fires upon rotor motions in the lee of a steep ridge. Math Comput Model 13:103–112CrossRefGoogle Scholar
  17. Canfield JM, Linn RR, Sauer JA, Finney M, Forthofer J (2014) A numerical investigation of the interplay between fireline length, geometry, and rate of spread. Agric For Meteorol 189–190:48–59CrossRefGoogle Scholar
  18. Charland AM, Clements CB (2013) Kinematic structure of a wildland fire plume observed by Doppler lidar. J Geophys Res - Atmos 118:1–13CrossRefGoogle Scholar
  19. Church CF, Snow JT (1985) Observations of vortices produced by the Météotron. J Rech Atmosph 19:455–467Google Scholar
  20. Church CR, Snow JT, Dessens J (1980) Intense atmospheric vortices associated with a 1000 MW fire. Bull Am Meteorol Soc 61:682–694CrossRefGoogle Scholar
  21. Clark TL, Jenkins MA, Coen JL, Packham DR (1996a) A coupled atmosphere-fire model: role of the convective Froude number and dynamic fingering at the fireline. Int J Wildland Fire 6:177–190CrossRefGoogle Scholar
  22. Clark TL, Jenkins MA, Coen JL, Packham DR (1996b) A coupled atmosphere-fire model: convective feedback on fire-line dynamics. J Appl Meteorol 35:875–901CrossRefGoogle Scholar
  23. Clark TL, Coen J, Latham D (2004) Description of a coupled atmosphere-fire model. Int J Wildland Fire 13:49–63CrossRefGoogle Scholar
  24. Clarke RH, Dyer AJ, Brook RR, Reid DG, Troup AJ (1971) The Wangara experiment: boundary layer data. Technical paper no 19, CSIRO, Division of Meteorological Physics, Aspendale, 362 ppGoogle Scholar
  25. Clements CB (2010) Thermodynamic structure of a grass fire plume. Int J Wildland Fire 19:895–902CrossRefGoogle Scholar
  26. Clements CB, Seto D (2015) Observations of fire-atmosphere interactions and near-surface heat transport on a slope. Bound-Layer Meteorol 154:409–426CrossRefGoogle Scholar
  27. Clements CB, Zhong S, Goodrick S, Li J, Potter BE, Bian X, Heilman WE, Charney JJ, Perna R, Jang M, Lee D, Patel M, Street S, Aumann G (2007) Observing the dynamics of wildland grass fires. Bull Am Meteorol Soc 88:1369–1382CrossRefGoogle Scholar
  28. Clements CB, Zhong S, Bian X, Heilman WE (2008) First observations of turbulence generated by grass fires. J Geophys Res 113:D22102. https://doi.org/10.1029/2008JD010014CrossRefGoogle Scholar
  29. Clements CB, Davis B, Seto D, Contezac J, Kochanski A, Fillipi J-B, Lareau N, Barboni B, Butler B, Krueger S, Ottmar R, Vihnanek R, Heilman WE, Flynn J, Jenkins MA, Mandel J, Teske C, Jimenez D, O’Brien J, Lefer B (2015) Overview of the 2013 FireFlux-II grass fire field experiment. In: Viegas DX (ed) Advances in forest fire research. Coimbra University Press, Coimbra, pp 392–400Google Scholar
  30. Clements CB, Lareau NP, Seto D, Contezac J, Davis B, Teske C, Zajkowski TJ, Hudak AT, Bright BC, Dickinson MB, Butler BW, Jimenez D, Hiers JK (2016) Fire weather conditions and fire-atmosphere interactions observed during low-intensity prescribed fires – RxCADRE 2012. Int J Wildland Fire 25:90–101CrossRefGoogle Scholar
  31. Coen J, Mahalingam S, Daily J (2004) Infrared imagery of crown-fire dynamics during FROSTFIRE. J Appl Meteorol 43:1241–1259CrossRefGoogle Scholar
  32. Coen JL, Cameron M, Michalakes J, Patton EG, Riggan PJ, Yedinak KM (2013) WRF-fire: coupled weather-wildland fire modeling with the weather research and forecasting model. J Appl Meteorol 52:16–38CrossRefGoogle Scholar
  33. Counihan J (1975) Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880–1972. Atmos Environ 9:871–905CrossRefGoogle Scholar
  34. Crosby JS (1949) Vertical wind currents and fire behavior. Fire Control Notes 10:12–15Google Scholar
  35. Cunningham P, Goodrick SL, Hussaini MY, Linn RR (2005) Coherent vertical structures in numerical simulations of buoyant plumes from wildland fires. Int J Wildland Fire 14:61–75CrossRefGoogle Scholar
  36. Deacon EL (1955) Gust variation with height up to 150 m. Q J R Meteorol Soc 81:562–573CrossRefGoogle Scholar
  37. Dupuy J-L, Morvan D (2005) Numerical study of a crown fire spreading toward a fuel break using a multiphase physical model. Int J Wildland Fire 14:141–151CrossRefGoogle Scholar
  38. Dyer AJ, Hicks BB (1970) Flux-gradient relationships in the constant flux layer. Q J R Meteorol Soc 96:715–721CrossRefGoogle Scholar
  39. Emori RI, Saito K (1982) Model experiment of a hazardous forest fire whirl. Fire Technol 18:319–327CrossRefGoogle Scholar
  40. Finnigan J (2000) Turbulence in plant canopies. Ann Rev Fluid Mech 32:519–571zbMATHCrossRefGoogle Scholar
  41. Forthofer JM, Goodrick SL (2011) Review of vortices in wildland fire. J Combust 2011: Article ID 984363. https://doi.org/10.1155/2011/984363CrossRefGoogle Scholar
  42. Gifford F (1957) Relative atmospheric diffusion of smoke puffs. J Meteorol 14:410–414CrossRefGoogle Scholar
  43. Goldie AHR (1925) Gustiness of wind in particular cases. Q J R Meteorol Soc 51:357–362CrossRefGoogle Scholar
  44. Graham HE (1955) Fire whirlwinds. Bull Amer Meteorol Soc 36:99–103CrossRefGoogle Scholar
  45. Haines DA (1982) Horizontal roll vortices and crown fires. J Appl Meteorol 21:751–763CrossRefGoogle Scholar
  46. Haines DA (1988) A lower atmospheric severity index for wildland fires. Nat Weather Dig 13:23–27Google Scholar
  47. Haines DA, Smith MC (1983) Wind tunnel generation of horizontal roll vortices over a differentially heated surface. Nature 306:351–352CrossRefGoogle Scholar
  48. Haines DA, Smith MC (1987) Three types of horizontal vortices observed in wildland mass and crown fires. J Clim Appl Meteorol 26:1624–1637CrossRefGoogle Scholar
  49. Haines DA, Smith MC (1992) Simulation of the collapse of bent-over vortex pairs observed in wildland fires. For Sci 38:68–79Google Scholar
  50. Haugen DA, Kaimal JC, Bradley EF (1971) An experimental study of Reynolds stress and heat flux in the atmospheric surface layer. Q J R Meteorol Soc 97:168–180CrossRefGoogle Scholar
  51. Heilman WE (1992) Atmospheric simulations of extreme surface heating episodes on simple hills. Int J Wildland Fire 2:99–114CrossRefGoogle Scholar
  52. Heilman WE (1994) Simulations of buoyancy-generated horizontal roll vortices over multiple heating lines. For Sci 40:601–617Google Scholar
  53. Heilman WE, Bian X (2010) Turbulent kinetic energy during wildfires in the north central and northeastern US. Int J Wildland Fire 19:346–363CrossRefGoogle Scholar
  54. Heilman WE, Bian X (2013) Climatic variability of near-surface turbulent kinetic energy over the United States: implications for fire-weather predictions. J Appl Meteorol Climatol 52:753–771CrossRefGoogle Scholar
  55. Heilman WE, Fast JD (1992) Simulations of horizontal roll vortex development above lines of extreme surface heating. Int J Wildland Fire 2:55–68CrossRefGoogle Scholar
  56. Heilman WE, Zhong S, Hom JL, Charney JJ, Kiefer MT, Clark KL, Skowronski N, Bohrer G, Lu W, Liu Y, Kremens R, Bian X, Gallagher M, Patterson M, Nikolic J, Chatziefstratiou T, Stegall C, Forbus K (2013) Development of modeling tools for predicting smoke dispersion from low-intensity fires. Final Report, U.S. Joint Fire Science Program, Project 09-1-04-1. Available: http://www.firescience.gov/projects/09-1-04-1/project/09-1-04-1_final_report.pdf
  57. Heilman WE, Liu Y, Urbanski S, Kovalev V, Mickler R (2014) Wildland fire emissions, carbon, and climate: plume rise, atmospheric transport, and chemistry processes. For Ecol Manage 317:70–79CrossRefGoogle Scholar
  58. Heilman WE, Clements CB, Seto D, Bian X, Clark KL, Skowronski NS, Hom JL (2015) Observations of fire-induced turbulence regimes during low-intensity wildland fires in forested environments: implications for smoke dispersion. Atmos Sci Lett 16:453–460CrossRefGoogle Scholar
  59. Heilman WE, Bian X, Clark KL, Skowronski NS, Hom JL, Gallagher MR (2017) Atmospheric turbulence observations in the vicinity of surface fires in forested environments. J Appl Meteorol Clim 56:3133–3150CrossRefGoogle Scholar
  60. Hess GD, Hicks BB, Yamada T (1981) The impact of the Wangara experiment. Bound-Layer Meteorol 20:135–174CrossRefGoogle Scholar
  61. Hicks BB (1976) Wind-profile relationships from the ‘Wangara’ experiment. Q J R Meteorol Soc 102:535–551Google Scholar
  62. Hoffman CM, Linn R, Parsons R, Sieg C, Winterkamp J (2015) Modeling spatial and temporal dynamics of wind flow and potential fire behavior following a mountain pine beetle outbreak in a lodgepole pine forest. Agric For Meteorol 204:79–93CrossRefGoogle Scholar
  63. Jenkins MA, Clark TL, Coen J (2001) Coupling atmospheric and fire models. In: Johnson EA, Miyanishi K (eds) Forest fires. Behavior and ecological effects. Academic, San Diego, pp 257–302Google Scholar
  64. Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface layer turbulence. Q J R Meteorol Soc 98:563–589CrossRefGoogle Scholar
  65. Kiefer MT, Zhong S, Heilman WE, Charney JJ, Bian X (2013) Evaluation of an ARPS-based canopy flow modeling system for use in future operational smoke prediction efforts. J Geophys Res - Atmos 118:6175–6188CrossRefGoogle Scholar
  66. Kiefer MT, Heilman WE, Zhong S, Charney JJ, Bian X, Skowronski NS, Hom JL, Clark KL, Patterson M, Gallagher MR (2014) Multiscale simulation of a prescribed fire event in the New Jersey pine barrens using ARPS-CANOPY. J Appl Meteorol Climatol 53:793–812CrossRefGoogle Scholar
  67. Kiefer MT, Heilman WE, Zhong S, Charney JJ, Bian X (2015) Mean and turbulent flow downstream of a low-intensity fire: influence of canopy and background atmospheric conditions. J Appl Meteorol Climatol 54:42–57CrossRefGoogle Scholar
  68. Kiefer MT, Heilman WE, Zhong S, Charney JJ, Bian X (2016) A study of the influence of forest gaps on fire-atmosphere interactions. Atmos Chem Phys 16:8499–8509CrossRefGoogle Scholar
  69. Kiefer MT, Zhong S, Heilman WE, Charney JJ, Bian X (2018) A numerical study of atmospheric perturbations induced by heat from a wildland fire: sensitivity to vertical canopy structure and heat source strength. J Geophys Res - Atmos 123:2555–2572CrossRefGoogle Scholar
  70. Kolmogorov N (1941) The local structure of turbulence in incompressible fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30:299Google Scholar
  71. Koo E, Pagni PJ, Weise DR, Woycheese JP (2010) Firebrands and spotting ignition in large-scale fires. Int J Wildland Fire 19:818–843CrossRefGoogle Scholar
  72. Koo E, Linn RR, Pagni PJ, Edminster CB (2012) Modelling firebrand transport in wildfires using HIGRAD/FIRETEC. Int J Wildland Fire 21:396–417CrossRefGoogle Scholar
  73. Linn R, Reisner J, Colman JJ, Winterkamp J (2002) Studying wildfire behavior using FIRETEC. Int J Wildland Fire 11:233–246CrossRefGoogle Scholar
  74. Liu Y, Goodrick S, Achtemeier G, Jackson WA, Qu JJ, Wang W (2009) Smoke incursions into urban areas: simulation of a Georgia prescribed burn. Int J Wildland Fire 18:336–348CrossRefGoogle Scholar
  75. Lumley JL, Panofsky HA (1964) The structure of atmospheric turbulence. Interscience, New York, 239 ppGoogle Scholar
  76. McRae DJ, Flannigan MD (1990) Development of large vortices on prescribed fires. Can J For Res 20:1878–1887CrossRefGoogle Scholar
  77. Mell W, Jenkins MA, Gould J, Cheney P (2007) A physics-based approach to modelling grassland fires. Int J Wildland Fire 16:1–22CrossRefGoogle Scholar
  78. Mesinger F, DeMego G, Kalnay E, Mitchell K, Shafran PC, Ebusuzaki W, Jović D, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W (2006) North American regional reanalysis. Bull Am Meteorol Soc 87:343–360CrossRefGoogle Scholar
  79. Meyers TP, Baldocchi DD (1991) The budgets of turbulent kinetic energy and Reynolds stress within and above a deciduous forest. Agric For Meteorol 53:207–222CrossRefGoogle Scholar
  80. Morvan D, Dupuy JL (2004) Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation. Combust Flame 138:199–210CrossRefGoogle Scholar
  81. Mueller E, Mell W, Simeoni A (2014) Large eddy simulation of forest canopy flow for wildland fire modeling. Can J For Res 44:1534–1544CrossRefGoogle Scholar
  82. Noble IR, Bary GAV, Gill AM (1980) McArthur’s fire-danger meters expressed as equations. Aust J Ecol 5:201–203CrossRefGoogle Scholar
  83. Ottmar RD, Hiers JK, Butler BW, Clements CB, Dickinson MB, Hudak AT, O’Brien JJ, Potter BE, Rowell EM, Strand TM, Zajkowski TJ (2016) Measurements, datasets and preliminary results from the RxCADRE project – 2008, 2011 and 2012. Int J Wildland Fire 25:1–9CrossRefGoogle Scholar
  84. Panofsky HA, McCormick RA (1954) Properties of the spectrum of atmospheric turbulence at 100 m. Q J R Meteorol Soc 80:557–558CrossRefGoogle Scholar
  85. Pimont F, Dupuy J-L, Linn RR, Dupont S (2009) Validation of FIRETEC wind-flows over a canopy and a fuel break. Int J Wildland Fire 18:775–790CrossRefGoogle Scholar
  86. Pimont F, Dupuy J-L, Linn RR, Dupont S (2011) Impacts of tree canopy structure on wind flows and fire propagation simulated with FIRETEC. Ann For Sci 68:523–530CrossRefGoogle Scholar
  87. Radke LF, Clark TL, Coen JL, Walther CA, Lockwood RN, Riggan PJ, Brass JA, Higgins RG (2000) The wildfire experiment (WiFE): observations with airborne remote sensors. Can J Remote Sens 26:406–417CrossRefGoogle Scholar
  88. Raupach MR (1990) Similarity analysis of the interaction of bushfire plumes with ambient winds. Math Comput Model 13:113–121CrossRefGoogle Scholar
  89. Raupach MR, Thom AS (1981) Turbulence in and above plant canopies. Annu Rev Fluid Mech 13:97–129zbMATHCrossRefGoogle Scholar
  90. Rawson HER (1913) Atmospheric waves, eddies and vortices. Aeronaut J 17:245–256Google Scholar
  91. Reisner JM, Wynne S, Margolin L, Linn RR (2000) Coupled atmospheric–fire modeling employing the method of averages. Mon Weather Rev 128:3683–3691CrossRefGoogle Scholar
  92. Richarson LF (1920) The supply of energy to and from atmospheric eddies. Proc R Soc A: Math Phys Eng Sci 97:354–373CrossRefGoogle Scholar
  93. Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126:941–990CrossRefGoogle Scholar
  94. Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. Research paper INT-115, USDA Forest Service, Intermountain Forest and Range Experiment Station, OgdenGoogle Scholar
  95. Seto D, Clements CB (2011) Fire whirl evolution observed during a valley wind-sea breeze reversal. J Combust 2011: Article ID 569475. https://doi.org/10.1155/2011/569475CrossRefGoogle Scholar
  96. Seto D, Clements CB, Heilman WE (2013) Turbulence spectra measured during fire front passage. Agric For Meteorol 169:195–210CrossRefGoogle Scholar
  97. Seto D, Strand TM, Clements CB, Thistle H, Mickler R (2014) Wind and plume thermodynamic structures during low-intensity subcanopy fires. Agric For Meteorol 198-199:53–61CrossRefGoogle Scholar
  98. Sharples JJ, McRae RHD, Wilkes SR (2012) Wind-terrain effects on the propagation of wildfires in rugged terrain: fire channelling. Int J Wildland Fire 21:282–296CrossRefGoogle Scholar
  99. Shaw WN (1914) Wind gusts and the structure of aerial disturbances. Aeronaut J 18:172–203Google Scholar
  100. Shaw RH, Silversides RH, Thurtell GW (1974) Some observations of turbulence and turbulent transport within and above plant canopies. Bound-Layer Meteorol 5:429–449CrossRefGoogle Scholar
  101. Shaw RH, Hartog GD, Neumann HH (1988) Influence of foliar density and thermal stability on profiles of Reynolds stress and turbulence intensity in a deciduous forest. Bound-Layer Meteorol 45:391–409CrossRefGoogle Scholar
  102. Simpson CC, Sharples JJ, Evans JP, McCabe MF (2013) Large eddy simulation of atypical wildland fire spread on leeward slopes. Int J Wildland Fire 22:599–614CrossRefGoogle Scholar
  103. Simpson CC, Sharples JJ, Evans JP (2016) Sensitivity of atypical lateral fire spread to wind and slope. Geophys Res Lett 43:1744–1751CrossRefGoogle Scholar
  104. Skamarock, WC, Klemp, JB, Dudhia, J, Gill, DO, Barker, DM, Wang, W, Powers JG (2005) A description of the advanced research WRF version 2. NCAR Technical Note NCAR/TN–468+STR. National Center for Atmospheric Research, BoulderGoogle Scholar
  105. Strand TM, Rorig M, Yedinak K, Seto D, Allwine E, Garcia FA, O’Keefe, P, Checan VC, Mickler R, Clements C, Lamb B (2013) Sub-canopy transport and dispersion of smoke: a unique observation dataset and model evaluation. Final report, U.S. Joint Fire Science Program, Project 09-1-04-2. Available: http://www.firescience.gov/projects/09-1-04-2/project/09-1-04-2_final_report.pdf
  106. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, DordrechtzbMATHCrossRefGoogle Scholar
  107. Sullivan AL (2009) Wildland surface fire spread modelling, 1990–2007. 1: physical and quasi-physical models. Int J Wildland Fire 18:349–368CrossRefGoogle Scholar
  108. Sun R, Krueger SK, Jenkins MA, Zulauf MA, Charney JJ (2009) The importance of fire-atmosphere coupling and boundary-layer turbulence to wildfire spread. Int J Wildland Fire 18:50–60CrossRefGoogle Scholar
  109. Taylor GI (1938) The spectrum of turbulence. Proc Roy Soc Lond Ser A Math Phys Sci 164:476–490zbMATHCrossRefGoogle Scholar
  110. Vickers D, Thomas CK (2013) Some aspects of the turbulence kinetic energy and fluxes above and beneath a tall open pine forest canopy. Agric For Meteorol 181:143–151CrossRefGoogle Scholar
  111. Wilson NR, Shaw RH (1977) A higher-order closure model for canopy flow. J Appl Meteorol 16:1197–1205CrossRefGoogle Scholar
  112. Wyngaard JC (1992) Atmospheric turbulence. Annu Rev Fluid Mech 24:205–233zbMATHCrossRefGoogle Scholar
  113. Wyngaard JC, Coté OR (1971) The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J Atmos Sci 28:190–201CrossRefGoogle Scholar
  114. Xue M, Droegemeier KK, Wong V (2000) The advanced regional prediction system (ARPS) – a multi-scale nonhydrostatic atmosphere simulation and prediction model. Part I: model dynamics and verification. Meteorol Atmos Phys 75:463–485CrossRefGoogle Scholar
  115. Xue M, Droegemeier KK, Wong V, Shapiro A, Brewster K, Carr F, Weber D, Liu Y, Wang D (2001) The advanced regional prediction system (ARPS) – a multi-scale nonhydrostatic atmosphere simulation and prediction tool. Part II: model physics and applications. Meteorol Atmos Phys 76:143–165CrossRefGoogle Scholar
  116. Zulauf MA (2001) Modeling the effects of boundary layer circulations generated by cumulus convection and leads on large-scale surface fluxes. PhD dissertation, University of UtahGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Warren E. Heilman
    • 1
    Email author
  • Craig B. Clements
    • 2
  • Shiyuan Zhong
    • 3
  • Kenneth L. Clark
    • 4
  • Xindi Bian
    • 1
  1. 1.USDA Forest ServiceNorthern Research StationLansingUSA
  2. 2.Department of Meteorology and Climate ScienceSan José State UniversitySan JoséUSA
  3. 3.Department of Geography, Environment, and Spatial SciencesMichigan State UniversityEast LansingUSA
  4. 4.USDA Forest ServiceNorthern Research StationNew LisbonUSA

Section editors and affiliations

  • Kuibin Zhou
    • 1
  1. 1.Nanjing Tech UniversityNanjingChina