Skip to main content

Space Motion Sickness

  • Living reference work entry
  • First Online:
Handbook of Space Pharmaceuticals

Abstract

Space motion sickness is a challenging entity with difficulties in prevention and treatment yet critical for successful space operations. The aim of this chapter is to provide a quick reference on the therapeutic options and to give new ideas for emerging research pathways, based on the common consensus of space motion sickness. Basic sensory conflict theory of motion sickness is presented, along with theories attuned to space motion sickness. Epidemiological data isolate space motion sickness from other physiological shortcomings in space. Prevention and training are somehow successful, but pharmacological treatment is still needed. A review of classes of medication, along with their effectiveness and operationally critical side effects, is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akbarian S, Grüsser O-J, Guldin WO (1994) Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey. J Comp Neurol 339:421–437

    Article  CAS  PubMed  Google Scholar 

  • Akiduki H, Nishiike S, Watanabe H et al (2003) Visual-vestibular conflict induced by virtual reality in humans. Neurosci Lett 340:197–200

    Article  CAS  PubMed  Google Scholar 

  • Allum JHJ, Honegger F, Pfaltz CR (1989) The role of stretch and vestibulo-spinal reflexes in the generation of human equilibrating reactions. In: Progress in brain research. Elsevier, pp 399–409. https://www.ncbi.nlm.nih.gov/pubmed/2634279

  • Asher BF, Seidman M, Snyderman C (2001) Complementary and alternative medicine in otolaryngology. Laryngoscope 111:1383–1389

    Article  CAS  PubMed  Google Scholar 

  • Bles W, Bos JE, De Graaf B et al (1998) Motion sickness: only one provocative conflict? Brain Res Bull 47:481–487

    Article  CAS  PubMed  Google Scholar 

  • Bos JE, Bles W (1998) Modelling motion sickness and subjective vertical mismatch detailed for vertical motions. Brain Res Bull 47:537–542

    Article  CAS  PubMed  Google Scholar 

  • Boyd JL, Du B, Vaksman Z et al (2007) Relative bioavailability of scopolamine dosage forms and interaction with dextroamphetamine. J Gravitational Physiol J Int Soc Gravitational Physiol 14:P107–P108

    Google Scholar 

  • Brizzee KR, Ordy JM, Mehler WR (1980) Effect of ablation of area postrema on frequency and latency of motion sickness-induced emesis in the squirrel monkey. Physiol Behav 24:849–853

    Article  CAS  PubMed  Google Scholar 

  • Buckey JC Jr, Alvarenga DL, MacKenzie TA (2007) Chlorpheniramine and ephedrine in combination for motion sickness. J Vestib Res 17:301–311

    PubMed  Google Scholar 

  • Cevette MJ, Stepanek J, Cocco D et al (2012) Oculo-vestibular recoupling using galvanic vestibular stimulation to mitigate simulator sickness. Aviat Space Environ Med 83:549–555

    Article  PubMed  Google Scholar 

  • Cha Y-H, Brodsky J, Ishiyama G et al (2008) Clinical features and associated syndromes of mal de debarquement. J Neurol 255:1038

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung B, Vaitkus P (1998) Perspectives of electrogastrography and motion sickness. Brain Res Bull 47:421–431

    Article  CAS  PubMed  Google Scholar 

  • Cheung BS, Heskin R, Hofer KD (2003) Failure of cetirizine and fexofenadine to prevent motion sickness. Ann Pharmacother 37:173–177

    Article  CAS  PubMed  Google Scholar 

  • Counil L, Kerlirzin Y, Dietrich G (2012) Cognitive style in attainment of an upside-down posture in water with and without vision. Percept Mot Skills 114:51–58

    Article  PubMed  Google Scholar 

  • Cowings PS (1990) Autogenic-feedback training-a treatment for motion and space sickness

    Google Scholar 

  • Cowings PS, Kellar MA, Folen RA et al (2001) Autogenic feedback training exercise and pilot performance: enhanced functioning under search-and-rescue flying conditions. Int J Aviat Psychol 11:303–315

    Article  CAS  PubMed  Google Scholar 

  • Cowings PS, Toscano WB (2000) Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms. J Clin Pharmacol 40:1154–1165

    CAS  PubMed  Google Scholar 

  • Dahl E, Offer-Ohlsen D, Lillevold PE, Sandvik L (1984) Transdermal scopolamine, oral meclizine, and placebo in motion sickness. Clin Pharmacol Ther 36:116–120

    Article  CAS  PubMed  Google Scholar 

  • Davis JR, Jennings RT, Beck BG, Bagian JP (1993) Treatment efficacy of intramuscular promethazine for space motion sickness. Aviat Space Environ Med 64:230–233

    CAS  PubMed  Google Scholar 

  • Davis JR, Vanderploeg JM, Santy PA et al (1988) Space motion sickness during 24 flights of the space shuttle. Aviat Space Environ Med 59(12):1185–9. https://www.ncbi.nlm.nih.gov/pubmed/3240221

  • De Waele C, Baudonnière P, Lepecq J et al (2001) Vestibular projections in the human cortex. Exp Brain Res 141:541–551

    Article  PubMed  Google Scholar 

  • Diamond SG, Markham CH (1991) Prediction of space motion sickness susceptibility by disconjugate eye torsion in parabolic flight. Aviat Space Environ Med 62(3):201–5. https://www.ncbi.nlm.nih.gov/pubmed/2012564

  • Diaz-Artiles A, Priesol AJ, Clark TK et al (2017) The impact of oral promethazine on human whole-body motion perceptual thresholds. J Assoc Res Otolaryngol 18:581–590

    Article  PubMed  PubMed Central  Google Scholar 

  • Dieterich M, Brandt T (1995) Vestibulo-ocular reflex. Curr Opin Neurol 8:83–88

    Article  CAS  PubMed  Google Scholar 

  • Estrada A, LeDuc PA, Curry IP et al (2007) Airsickness prevention in helicopter passengers. Aviat Space Environ Med 78:408–413

    PubMed  Google Scholar 

  • Ezzo J, Streitberger K, Schneider A (2006) Cochrane systematic reviews examine P6 acupuncture-point stimulation for nausea and vomiting. J Altern Complement Med 12:489–495. https://doi.org/10.1089/acm.2006.12.489

    Article  PubMed  Google Scholar 

  • Gianaros PJ, Muth ER, Mordkoff JT et al (2001) A questionnaire for the assessment of the multiple dimensions of motion sickness. Aviat Space Environ Med 72:115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gil A, Nachum Z, Tal D, Shupak A (2012) A comparison of cinnarizine and transdermal scopolamine for the prevention of seasickness in naval crew: a double-blind, randomized, crossover study. Clin Neuropharmacol 35:37–39

    Article  CAS  PubMed  Google Scholar 

  • Golding JF, Arun S, Wortley E et al (2009) Off-vertical axis rotation of the visual field and Nauseogenicity. Aviat Space Environ Med 80:516–521. https://doi.org/10.3357/ASEM.2433.2009

    Article  PubMed  Google Scholar 

  • Golding JF, Stott JRR (1997) Comparison of the effects of a selective muscarinic receptor antagonist and hyoscine (scopolamine) on motion sickness, skin conductance and heart rate. Br J Clin Pharmacol 43:633–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon CR, Doweck I, Nachum Z et al (2003) Evaluation of betahistine for the prevention of seasickness: effect on vestibular function, psychomotor performance and efficacy at sea. J Vestib Res 13:103–111

    PubMed  Google Scholar 

  • Gordon CR, Gonen A, Nachum Z et al (2001) The effects of dimenhydrinate, cinnarizine and transdermal scopolamine on performance. J Psychopharmacol (Oxf) 15:167–172

    Article  CAS  Google Scholar 

  • Gorgiladze GI, Samarin GI, Brianov II (1986) Interlabyrinthine asymmetry, vestibular dysfunction and space motion sickness. Kosm Biol Aviakosm Med 20:19–31

    CAS  PubMed  Google Scholar 

  • Graybiel A, Knepton J (1976) Sopite syndrome: a sometimes sole manifestation of motion sickness. Aviat Space Environ Med 47:873–882

    CAS  PubMed  Google Scholar 

  • Graybiel A, Miller EF II, Homick JL (1975) Individual differences in susceptibility to motion sickness among six Skylab astronauts. Acta Astronaut 2:155–174

    Article  CAS  PubMed  Google Scholar 

  • Griffin MJ, Newman MM (2004) Visual field effects on motion sickness in cars. Aviat Space Environ Med 75:739–748

    PubMed  Google Scholar 

  • Grigoriev AI, Egorov AD, Nichiporuk IA (1988) Neurohumoral mechanism of space motion sickness. Acta Astronaut 17:167–172

    Article  CAS  PubMed  Google Scholar 

  • Guedry FE Jr (1970) Conflicting sensory orientation cues as a factor in motion sickness. NASA Spec Publ 187(45)

    Google Scholar 

  • Gurovskiy NN, Bryanov II, Yegorov AD (1975) Changes in the vestibular function during space flight. Acta Astronaut 2:207–216

    Article  CAS  PubMed  Google Scholar 

  • Harm DL, Parker DE (1993) Perceived self-orientation and self-motion in microgravity, after landing and during preflight adaptation training. J Vestib Res 3:297–305

    CAS  PubMed  Google Scholar 

  • Heer M, Paloski WH (2006) Space motion sickness: incidence, etiology, and countermeasures. Auton Neurosci Basic Clin 129:77–79

    Article  Google Scholar 

  • Hilbig R, Anken RH, Sonntag G et al (2002) Effects of altered gravity on the swimming behaviour of fish. Adv Space Res 30:835–841

    Article  CAS  PubMed  Google Scholar 

  • Holling HE, Mcardle B, Trotter WR (1944) Prevention of seasickness by drugs. Lancet 243:127–129

    Article  Google Scholar 

  • Holmes SR, Griffin MJ (2001) Correlation between heart rate and the severity of motion sickness caused by optokinetic stimulation. J Psychophysiol 15:35

    Article  Google Scholar 

  • Holmes SR, King S, Stott JR, Clemes S (2002) Facial skin pallor increases during motion sickness. J Psychophysiol 16:150

    Article  Google Scholar 

  • Jaju BP, Wang SC (1971) Effects of diphenhydramine and dimenhydrinate on vestibular neuronal activity of cat: a search for the locus of their antimotion sickness action. J Pharmacol Exp Ther 176:718–724

    CAS  PubMed  Google Scholar 

  • Jennings RT (1998) Managing space motion sickness. J Vestib Res 8:67–70

    Article  CAS  PubMed  Google Scholar 

  • Jennings T (1990) Space adaptation syndrome is caused by elevated intracranial pressure. Med Hypotheses 32:289–291

    Article  CAS  PubMed  Google Scholar 

  • Kellogg RS, Kennedy RS, Graybiel A (1965) Motion sickness symptomatology of labyrinthine defective and normal subjects during zero gravity maneuvers. Aerosp Med

    Google Scholar 

  • Kennedy RS, Fowlkes JE, Berbaum KS, Lilienthal MG (1992) Use of a motion sickness history questionnaire for prediction of simulator sickness. Aviat Space Environ Med 63:588–593

    CAS  PubMed  Google Scholar 

  • Kirsten EB, Sharma JN (1976) Microiontophoresis of acetylcholine, histamine and their antagonists on neurones in the medial and lateral vestibular nuclei of the cat. Neuropharmacology 15:743–753

    Article  CAS  PubMed  Google Scholar 

  • Klöcker N, Hanschke W, Toussaint S, Verse T (2001) Scopolamine nasal spray in motion sickness: a randomised, controlled, and crossover study for the comparison of two scopolamine nasal sprays with oral dimenhydrinate and placebo. Eur J Pharm Sci 13:227–232. https://doi.org/10.1016/S0928-0987(01)00107-5

    Article  PubMed  Google Scholar 

  • Kohl RL (1987) Failure of metoclopramide to control emesis or nausea due to stressful angular or linear acceleration. Aviat Space Environ Med 58(2):125–31. https://www.ncbi.nlm.nih.gov/pubmed/3827787

  • Kohl RL, Calkins DS, Mandell AJ (1986) Arousal and stability: the effects of five new sympathomimetic drugs suggest a new principle for the prevention of space motion sickness. Aviat Space Environ Med 57(2):137–43. https://www.ncbi.nlm.nih.gov/pubmed/3513752

  • Kohl RL, Lewis MR (1987) Mechanisms underlying the antimotion sickness effects of psychostimulants. Aviat Space Environ Med 58:1215–1218

    CAS  PubMed  Google Scholar 

  • Lackner JR (2014) Motion sickness: more than nausea and vomiting. Exp Brain Res 232:2493–2510. https://doi.org/10.1007/s00221-014-4008-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Lackner JR, DiZio P (2006) Space motion sickness. Exp Brain Res 175:377–399

    Article  PubMed  Google Scholar 

  • Lackner JR, Graybiel A (1994) Use of promethazine to hasten adaptation to provocative motion. J Clin Pharmacol 34:644–648

    Article  CAS  PubMed  Google Scholar 

  • Luetje CM, Wooten J (1996) Clinical manifestations of transdermal scopolamine addiction. ENT-Ear Nose Throat J 75(4):210–4. https://www.ncbi.nlm.nih.gov/pubmed/8935644

  • Marcus DA, Furman JM (2005) Prevention of motion sickness with rizatriptan: a double-blind, placebo-controlled pilot study. Med Sci Monit 12:PI1–PI7

    PubMed  Google Scholar 

  • Marshall-Bowman K, Barratt MR, Gibson CR (2013) Ophthalmic changes and increased intracranial pressure associated with long duration spaceflight: an emerging understanding. Acta Astronaut 87:77–87

    Article  CAS  Google Scholar 

  • Matsnev EI, Yakovleva IY, Tarasov IK et al (1983) Space motion sickness: phenomenology, countermeasures, and mechanisms. Aviat Space Environ Med 54(4):312–7. https://www.ncbi.nlm.nih.gov/pubmed/6847567

  • Matsuoka I, Domino EF, Morimoto M (1975) Effects of cholinergic agonists and antagonists on nucleus vestibularis lateralis unit discharge to vestibular nerve stimulation in the cat. Acta Otolaryngol (Stockh) 80:422–428

    Article  CAS  Google Scholar 

  • McClure JA, Lycett P, Baskerville JC (1982) Diazepam as an anti-motion sickness drug. J Otolaryngol 11:253–259

    CAS  PubMed  Google Scholar 

  • Merfeld DM (2003) Rotation otolith tilt-translation reinterpretation (ROTTR) hypothesis: a new hypothesis to explain neurovestibular spaceflight adaptation. J Vestib Res 13:309–320

    PubMed  Google Scholar 

  • Money KE (1970) Motion sickness. Physiol Rev 50:1–39

    Article  CAS  PubMed  Google Scholar 

  • Moore ST, Dilda V, MacDougall HG (2011) Galvanic vestibular stimulation as an analogue of spatial disorientation after spaceflight. Aviat Space Environ Med 82:535–542

    Article  PubMed  Google Scholar 

  • Mulavara AP, Kofman IS, De Dios YE et al (2015) Using low levels of stochastic vestibular stimulation to improve locomotor stability. Front Syst Neurosci 9:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Mullen TJ, Berger RD, Oman CM, Cohen RJ (1998) Human heart rate variability relation is unchanged during motion sickness. J Vestib Res 8:95–105

    Article  CAS  PubMed  Google Scholar 

  • Murray JB (1997) Psychophysiological aspects of motion sickness. Percept Mot Skills 85:1163–1167

    Article  CAS  PubMed  Google Scholar 

  • Muth ER, Elkins AN (2007) High dose ondansetron for reducing motion sickness in highly susceptible subjects. Aviat Space Environ Med 78:686–692

    PubMed  Google Scholar 

  • Nachum Z, Shupak A, Letichevsky V et al (2004) Mal de debarquement and posture: reduced reliance on vestibular and visual cues. Laryngoscope 114:581–586

    Article  PubMed  Google Scholar 

  • Nicholson AN, Stone BM, Turner C, Mills SL (2002) Central effects of cinnarizine: restricted use in aircrew. Aviat Space Environ Med 73:570–574

    CAS  PubMed  Google Scholar 

  • Oman CM (1990) Motion sickness: a synthesis and evaluation of the sensory conflict theory. Can J Physiol Pharmacol 68:294–303

    Article  CAS  PubMed  Google Scholar 

  • Oman CM (1989) Sensory conflict in motion sickness: an observer theory approach

    Google Scholar 

  • Oman CM, Lichtenberg BK, Money KE, McCoy RK (1986) MIT/Canadian vestibular experiments on the Spacelab-1 mission: 4. Space motion sickness: symptoms, stimuli, and predictability. Exp Brain Res 64:316–334

    Article  CAS  PubMed  Google Scholar 

  • Otto B, Riepl RL, Otto C et al (2006) μ-Opiate receptor agonists–a new pharmacological approach to prevent motion sickness? Br J Clin Pharmacol 61:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paloski WH, Black FO, Metter EJ (2004) Postflight balance control recovery in an elderly astronaut: a case report. Otol Neurotol 25:53–56

    Article  PubMed  Google Scholar 

  • Paloski WH, Black FO, Reschke MF et al (1993) Vestibular ataxia following shuttle flights: effects of microgravity on otolith-mediated sensorimotor control of posture. Am J Otol 14:9–17

    CAS  PubMed  Google Scholar 

  • Parker DE (1998) The relative roles of the otolith organs and semicircular canals in producing space motion sickness. J Vestib Res 8:57–59

    Article  CAS  PubMed  Google Scholar 

  • Parker DE, Tjernström O, Ivarsson A et al (1983) Physiological and behavioral effects of tilt-induced body fluid shifts. Aviat Space Environ Med 54(5):402–9. https://www.ncbi.nlm.nih.gov/pubmed/6870733

  • Paul MA, MacLellan M, Gray G (2005) Motion-sickness medications for aircrew: impact on psychomotor performance. Aviat Space Environ Med 76:560–565

    PubMed  Google Scholar 

  • Paule MG, Chelonis JJ, Blake DJ, Dornhoffer JL (2004) Effects of drug countermeasures for space motion sickness on working memory in humans. Neurotoxicol Teratol 26:825–837. https://doi.org/10.1016/j.ntt.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  • Pavlik AE, Inglis JT, Lauk M et al (1999) The effects of stochastic galvanic vestibular stimulation on human postural sway. Exp Brain Res 124:273–280

    Article  CAS  PubMed  Google Scholar 

  • Peterson BW, Goldberg J, Bilotto G, Fuller JH (1985) Cervicocollic reflex: its dynamic properties and interaction with vestibular reflexes. J Neurophysiol 54:90–109

    Article  CAS  PubMed  Google Scholar 

  • Previc FH (2018) Intravestibular balance and motion sickness. Aerosp Med Hum Perform 89:130–140

    Article  PubMed  Google Scholar 

  • Pyykkö I, Schalen L, Jäntti V, ans MM (1983) A reduction of Vestibulo-visual integration during transdermally administered scopolamine and dimenhydrinate: a presentation of gain control theory in motion sickness. Acta Otolaryngol (Stockh) 96:167–173

    Article  Google Scholar 

  • Reason JT (1978) Motion sickness adaptation: a neural mismatch model. J R Soc Med 71:819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reschke MF (1990) Statistical prediction of space motion sickness. In: Motion and space motion sickness. CRC Press, Boca Raton, pp 263–316

    Google Scholar 

  • Reschke MF, Bloomberg JJ, Harm DL et al (1998) Posture, locomotion, spatial orientation, and motion sickness as a function of space flight. Brain Res Rev 28:102–117

    Article  CAS  PubMed  Google Scholar 

  • Reschke MF, Somers JT, Leigh RJ, Jones GM (2006) A countermeasure for space motion sickness

    Google Scholar 

  • Schmäl F (2013) Neuronal mechanisms and the treatment of motion sickness. Pharmacology 91:229–241

    Article  PubMed  CAS  Google Scholar 

  • SCHMEDTJE J, Oman CM, Letz R, Baker EL (1988) Effects of scopolamine and dextroamphetamine on human performance. Aviat Space Environ Med 59:407–410

    CAS  PubMed  Google Scholar 

  • Seibel K, Schaffler K, Reitmeir P (2002) A randomised, placebo-controlled study comparing two formulations of dimenhydrinate with respect to efficacy in motion sickness and sedation. Arzneimittelforschung 52:529–536

    CAS  PubMed  Google Scholar 

  • Shupak A, Gordon CR (2006) Motion sickness: advances in pathogenesis, prediction, prevention, and treatment. Aviat Space Environ Med 77:1213–1223

    PubMed  Google Scholar 

  • Spinks A, Wasiak J (2011) Scopolamine (hyoscine) for preventing and treating motion sickness. Cochrane Libr 15(6):CD002851. https://doi.org/10.1002/14651858.CD002851.pub4

  • Stern RM, Koch KL, Stewart WR, Lindblad IM (1987) Spectral analysis of tachygastria recorded during motion sickness. Gastroenterology 92:92–97

    Article  CAS  PubMed  Google Scholar 

  • Stroud KJ, Harm DL, Klaus DM (2005) Preflight virtual reality training as a countermeasure for space motion sickness and disorientation. Aviat Space Environ Med 76:352–356

    PubMed  Google Scholar 

  • Takahashi M, Ogata M, Miura M (1997) The significance of motion sickness in the vestibular system. J Vestib Res 7:179–187

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Ogata M, Miura M (1995) Teleology of motion sickness. Acta Otolaryngol (Stockh) 115:130–133

    Article  CAS  Google Scholar 

  • Takeda N, Morita M, Hasegawa S et al (1993) Neuropharmacology of motion sickness and emesis: a review. Acta Otolaryngol (Stockh) 113:10–15

    Article  Google Scholar 

  • Takeda N, Morita M, Horii A et al (2001) Neural mechanisms of motion sickness. J Med Investig 48:44–59

    CAS  Google Scholar 

  • Tascioglu AB (2005) Brief review of vestibular system anatomy and its higher order projections. Neuroanatomy 4:24–27

    Google Scholar 

  • Thornton W, Bonato F (2017) Space motion sickness and vestibular adaptation to weightlessness. In: The human body and weightlessness. Springer, pp 31–55. https://books.google.ro/books?hl=ro&lr=&id=PeU5DwAAQBAJ&oi=fnd&pg=PR6&dq=Thornton+W,+Bonato+F+(2017)+Space+motion+sickness+and+vestibular+adaptation+to+weightlessness.+757+In:+The+human+body+and+weightlessness.+Springer,+pp+31%E2%80%9355&ots=quWjmcYerh&sig=l5HONy7UW77bg8rHwhZGcBfO16s&redir_esc=y#v=onepage&q&f=false

  • Tyler DB, Bard P (1949) Motion sickness. Physiol Rev 29:311–369

    Article  CAS  PubMed  Google Scholar 

  • Uno A, Takeda N, Horii A et al (1997) Histamine release from the hypothalamus induced by gravity change in rats and space motion sickness. Physiol Behav 61:883–887

    Article  CAS  PubMed  Google Scholar 

  • Von Baumgarten R, Benson A, Berthoz A et al (1984) Effects of rectilinear acceleration and optokinetic and caloric stimulations in space. Science 225:208–212

    Article  Google Scholar 

  • Wan H, Hu S, Wang J (2003) Correlation of phasic and tonic skin-conductance responses with severity of motion sickness induced by viewing an optokinetic rotating drum. Percept Mot Skills 97:1051–1057

    Article  PubMed  Google Scholar 

  • Wang J-J, Dutia MB (1995) Effects of histamine and betahistine on rat medial vestibular nucleus neurones: possible mechanism of action of anti-histaminergic drugs in vertigo and motion sickness. Exp Brain Res 105:18–24

    Article  CAS  PubMed  Google Scholar 

  • Webb CM, Estrada A, Athy JR (2013) Motion sickness prevention by an 8-Hz stroboscopic environment during air transport. Aviat Space Environ Med 84:177–183

    Article  PubMed  Google Scholar 

  • Wilkins AJ, Evans BJ (2010) Visual stress, its treatment with spectral filters, and its relationship to visually induced motion sickness. Appl Ergon 41:509–515

    Article  PubMed  Google Scholar 

  • Wilpizeski Chester R, Lowry Louis D, Goldman Wendy S (2009) Motion-induced sickness following bilateral ablation of area Postrema in squirrel monkeys. Laryngoscope 96:1221–1225. https://doi.org/10.1002/lary.1986.96.11.1221

    Article  Google Scholar 

  • Wood CD, Cramer DB, Graybiel A (1981) Antimotion sickness drug efficacy. Otolaryngol Neck Surg 89:1041–1044

    Article  CAS  Google Scholar 

  • Wood CD, Graybiel A (1970) A theory of motion sickness based on pharmacological reactions. Clin Pharmacol Ther 11:621–629

    Article  CAS  PubMed  Google Scholar 

  • Wood CD, Stewart JJ, Wood MJ, Mims M (1992) Effectiveness and duration of intramuscular antimotion sickness medications. J Clin Pharmacol 32:1008–1012

    Article  CAS  PubMed  Google Scholar 

  • Woodard D, Knox G, Myers KJ et al (1993) Phenytoin as a countermeasure for motion sickness in NASA maritime operations. Aviat Space Environ Med 64:363–366

    CAS  PubMed  Google Scholar 

  • Zamora-López G, Zhou C, Kurths J (2011) Exploring brain function from anatomical connectivity. Front Neurosci 5:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Peng Z, Yang M et al (2005) Observation of the morphology and calcium content of vestibular otoconia in rats after simulated weightlessness. Acta Otolaryngol (Stockh) 125:1039–1042

    Article  CAS  Google Scholar 

  • Zhang L-F, Hargens AR (2014) Intraocular/intracranial pressure mismatch hypothesis for visual impairment syndrome in space. Aviat Space Environ Med 85:78–80

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Macovei .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Macovei, A. (2019). Space Motion Sickness. In: Pathak, Y., Araújo dos Santos, M., Zea, L. (eds) Handbook of Space Pharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-50909-9_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50909-9_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50909-9

  • Online ISBN: 978-3-319-50909-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics