Skip to main content

Effects of Spaceflight on the Vestibular System

  • Living reference work entry
  • First Online:
Book cover Handbook of Space Pharmaceuticals

Abstract

Here on Earth, the vestibular system provides sensory information to assist with orientation and motion perception, balance, locomotion, stabilizing eye movements, and various other functions. In orbital spaceflight, the microgravity environment results in altered vestibular cues, particularly to the otolith organs. Fortunately, the central nervous system is able to reinterpret the altered vestibular cues and adapt to the microgravity environment within a few days. However, these microgravity-induced vestibular adaptations are inappropriate upon return to Earth or another gravity-rich environment (e.g., the Moon or Mars). Various conceptual hypotheses have been proposed for the vestibular reinterpretation in microgravity. These hypotheses make specific predictions for how orientation and motion perception are altered immediately upon landing while still adapted to microgravity. This chapter reviews the evidence from previous studies that have investigated orientation and motion perception in astronauts post-flight. The data is limited by operational concerns but suggests that tilt perception may be partially misinterpreted as translation, particularly for higher-frequency (i.e., faster) tilts, though a sense of tilt remains. In addition, tilt is often overestimated, particularly at lower frequencies (i.e., slower or static tilts), while translation is overestimated at higher frequencies. These findings are assessed in light of previous conceptual hypotheses for vestibular reinterpretation to microgravity. The operational impacts of astronauts’ impaired sensorimotor function are reviewed. Proposed neurovestibular countermeasures are summarized, particularly in the context of future crewed Mars exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aubert H (1861) Eine Scheinbare Bedeutende Drehung von Objekten bei Neigung des Kopfes nach rechts oder links. Arch Pathol Anat 20:381–393

    Article  Google Scholar 

  • Batson CD, Brady RA, Peters BT, Ploutz-Snyder RJ, Mulavara AP, Cohen HS, Bloomberg JJ (2011) Gait training improves performance in healthy adults exposed to novel sensory discordant conditions. Exp Brain Res 209(4):515–524

    Article  PubMed  Google Scholar 

  • Berger M, Mescheriakov S, Molokanova E, Lechner-Steinleitner S, Seguer N, Kozlovskaya I (1997) Pointing arm movements in short- and long-term spaceflights. Aviat Space Environ Med 68(9):781–787

    CAS  PubMed  Google Scholar 

  • Bermudez Rey MC, Clark TK, Wang W, Leeder T, Bian Y, Merfeld DM (2016) Vestibular perceptual thresholds increase above the age of 40. Front Neurol 7:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloomberg JJ, Feiveson AH, Laurie S, Lee SMC, Mulavara AP, Peters BT, Platts SH, Ploutz-Snyder LL, Reschke MF, Ryder JW, Stenger MB, Taylor LC, Wood SJ (2015a) NASA’s Functional Task Test: providing information for an integrated countermeasure system. In: Proceedings of the 20th IAA humans in space symposium, Prague

    Google Scholar 

  • Bloomberg JJ, Peters BT, Cohen HS, Mulavara AP (2015b) Enhancing astronaut performance using sensorimotor adaptability training. Front Syst Neurosci 9:129

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloomberg JJ, Reschke MF, ClĂ©ment GR, Mulavara AP, Taylor LC (2016) Evidence report: risk of impaired control of spacecraft/associated systems and decreased mobility due to vestibular/sensorimotor alterations associated with space flight. N. H. R. P. H. H. C. Element. NASA, Houston

    Google Scholar 

  • Bock O, Weigelt C, Bloomberg JJ (2010) Cognitive demand of human sensorimotor performance during an extended space mission: a dual-task study. Aviat Space Environ Med 81(9):819–824

    Article  PubMed  Google Scholar 

  • Bortolami SB, Pierobon A, Dizio P, Lackner JR (2006) Localization of the subjective vertical during roll, pitch, and recumbent yaw body tilt. Exp Brain Res 173(3):364–373

    Article  PubMed  Google Scholar 

  • Boyle R, Mensinger AF, Yoshida K, Usui S, Intravaia A, Tricas T, Highstein SM (2001) Neural readaptation to earth’s gravity following return from space. J Neurophysiol 86(4):2118–2122

    Article  CAS  PubMed  Google Scholar 

  • Boyle R, Popoca Y, Varelas J (2014) Functional and structural changes in otolith structures from micro- to hyper-gravity in vertebrates. NASA Human Research Program Investigator’s workshop, Galveston

    Google Scholar 

  • Brady T, Paschall S (2010) The challenge of safe lunar landing. In: IEEE Aerospace conference, Big Sky

    Google Scholar 

  • Cheung BSK, Howard IP, Money KE (1991) Visually-induced sickness in normal and bilaterally labyrinthine-defective subjects. Aviat Space Environ Med 62(6):527–531

    CAS  PubMed  Google Scholar 

  • Clark TK, Newman MC, Merfeld DM, Young LR (2014) Pilot control and stabilization of a rate-controlled vehicle in hyper-gravity. In: IEEE Aerospace conference, Big Sky

    Google Scholar 

  • Clark TK, Newman MC, Merfeld DM, Oman CM, Young LR (2015a) Human manual control performance in hyper-gravity. Exp Brain Res 233:1409–1420

    Article  PubMed  Google Scholar 

  • Clark TK, Newman MC, Oman CM, Merfeld DM, Young LR (2015b) Human perceptual overestimation of whole-body roll tilt in hyper-gravity. J Neurophysiol 113(7):2062–2077

    Article  PubMed  Google Scholar 

  • Clark TK, Newman MC, Oman CM, Merfeld DM, Young LR (2015c) Modeling human perception of orientation in altered gravity. Front Syst Neurosci 9:68

    Article  PubMed  PubMed Central  Google Scholar 

  • ClĂ©ment G, Bukley A (2007) Artificial gravity. Springer Science & Business Media, New York

    Book  Google Scholar 

  • ClĂ©ment G, Wood SJ (2012) Motion perception during tilt and translation after space flight. Acta Astronaut 92(1):48–52. https://doi.org/10.1016/j.actaastro.2012.03.011

    Article  Google Scholar 

  • ClĂ©ment G, Wood SJ (2013) Eye movements and motion perception during off-vertical axis rotation after spaceflight. J Vestib Res 23(1):13–22

    PubMed  Google Scholar 

  • ClĂ©ment G, Wood SJ (2014) Rocking or rolling – perception of ambiguous motion after returning from space. PLoS One 9(10):e111107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ClĂ©ment G, Darlot C, Petropoulos A, Berthoz A (1995) Eye-movements and motion perception induced by off-vertical axis rotation (OVAR) at small angles of tilt after spaceflight. Acta Otolaryngol 115(5):603–609

    Article  PubMed  Google Scholar 

  • ClĂ©ment G, Wood SJ, Reschke MF, Berthoz A, Igarashi M (1999) Yaw and pitch visual-vestibular interaction in weightlessness. J Vestib Res 9(3):207–220

    PubMed  Google Scholar 

  • ClĂ©ment G, Moore ST, Raphan T, Cohen B (2001) Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight. Exp Brain Res 138(4):410–418

    Article  PubMed  Google Scholar 

  • ClĂ©ment G, Denise P, Reschke MF, Wood SJ (2007) Human ocular counter-rolling and roll tilt perception during off-vertical axis rotation after spaceflight. J Vestib Res 17(5–6):209–215

    PubMed  Google Scholar 

  • ClĂ©ment G, Skinner A, Lathan C (2013) Distance and size perception in astronauts during long-duration spaceflight. Life 3(4):524–537

    Article  PubMed  PubMed Central  Google Scholar 

  • ClĂ©ment G, Bukley A, Paloski WH (2015) Artificial gravity as a countermeasure for mitigating physiological deconditioning during long-duration space missions. Front Syst Neurosci 9:92

    PubMed  PubMed Central  Google Scholar 

  • Diaz-Artiles A, Priesol AJ, Clark TK, Sherwood DP, Oman CM, Young LR, Karmali F (2017) The impact of oral promethazine on human whole-body motion perceptual thresholds. J Assoc Res Otolaryngol 18(4):581–590

    Article  PubMed  PubMed Central  Google Scholar 

  • Dizio P, Lackner JR, Evanoff JN (1987) The influence of gravitoinertial force level on oculomotor and perceptual responses to Coriolis, cross-coupling stimulation. Aviat Space Environ Med 58(9):A218–A223

    CAS  PubMed  Google Scholar 

  • Duda KR, Vasquez RA, Middleton AJ, Hansberry ML, Newman DJ, Jacobs SE, West JJ (2015) The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration. Front Syst Neurosci 9:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugation. J Neurophysiol 39(5):970–984

    Article  CAS  PubMed  Google Scholar 

  • Fetsch CR, Pouget A, DeAngelis GC, Angelaki DE (2012) Neural correlates of reliability-based cue weighting during multisensory integration. Nat Neurosci 15(1):146–U185

    Article  CAS  Google Scholar 

  • Francis Reynolds R, Osler CJ (2012) Galvanic vestibular stimulation produces sensations of rotation consistent with activation of semicircular canal afferents. Front Neurol 3(104):1–2

    Google Scholar 

  • Galvan-Garza RC, Clark TK, Mulavara AP, Oman CM (2018) Exhibition of stochastic resonance in vestibular tilt motion perception. Brain Stimul 11:716

    Article  CAS  PubMed  Google Scholar 

  • Ginsberg AP, Vanderploeg JM (1987) Vision in space: near vision acuity and contrast sensitivity. In: Bungo MW, Bagian TM, Bowman MA, Levitan BM (eds) Results of the life sciences DSO conducted aboard the Space Shuttle. NASA, Houston

    Google Scholar 

  • Goel R, Kofman I, Jeevarajan J, De Dios Y, Cohen HS, Bloomberg JJ, Mulavara AP (2015) Using low levels of stochastic vestibular stimulation to improve balance function. PLoS One 10(8):e0136335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldberg JM, Fernandez C (1971) Physiology of peripheral neurons innervating semicircular canals of squirrel monkey. I. Resting discharge and response to constant angular accelerations. J Neurophysiol 34(4):635–660

    Article  CAS  PubMed  Google Scholar 

  • Grabherr L, Nicoucar K, Mast FW, Merfeld DM (2008) Vestibular thresholds for yaw rotation about an earth-vertical axis as a function of frequency. Exp Brain Res 186(4):677–681

    Article  PubMed  Google Scholar 

  • Guedry FE, Montague EK (1961) Quantitative evaluation of the vestibular Coriolis reaction. Aerosp Med 32:487–500

    Google Scholar 

  • Harm DL, Parker DE (1993) Perceived self-orientation and self-motion in microgravity, after landing and during preflight adaptation training. J Vestib Res 3(3):297–305

    CAS  PubMed  Google Scholar 

  • Harm DL, Reschke MF, Parker DE (1999) Visual-vestibular integration motion perception reporting (DSO 604 OI-1). In: Sawin CF, Taylor GR, Smith WL (eds) Extended duration orbiter medical project final report. NASA Johnson Space Center, Houston, pp 5.2.1–5.2.12

    Google Scholar 

  • Harris LR, Jenkin M, Jenkin H, Zacher JE, Dyde RT (2017) The effect of long-term exposure to microgravity on the perception of upright. NPJ Microgravity 3:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Horak FB, Jones-Rycewicz C, Black FO, Shumwaycook A (1992) Effects of vestibular rehabilitation on dizziness and imbalance. Otolaryngol Head Neck Surg 106(2):175–180

    CAS  PubMed  Google Scholar 

  • Howard, I. P. (1982). Human visual orientation. Chichester; New York: J. Wiley

    Google Scholar 

  • Karmali F, Lim K, Merfeld DM (2014) Visual and vestibular perceptual thresholds each demonstrate better precision at specific frequencies and also exhibit optimal integration. J Neurophysiol 111:2393

    Article  PubMed  Google Scholar 

  • Lackner JR, Dizio P (1994) Rapid adaptation to Coriolis-force perturbations of arm trajectory. J Neurophysiol 72(1):299–313

    Article  CAS  PubMed  Google Scholar 

  • Lackner JR, Dizio P (2006) Space motion sickness. Exp Brain Res 175(3):377–399

    Article  PubMed  Google Scholar 

  • Lackner JR, Graybiel A (1986) The effective intensity of Coriolis, cross-coupling stimulation is gravitoinertial force dependent – implications for space motion sickness. Aviat Space Environ Med 57(3):229–235

    CAS  PubMed  Google Scholar 

  • Layne CS, Mulavara AP, Preutt CJ, McDonald PV, Kozlovskaya IB, Bloomberg JJ (1998) The use of inflight foot pressure as a countermeasure to neuromuscular degradation. Acta Astronaut 42:231–246

    Article  CAS  PubMed  Google Scholar 

  • Lim K, Karmali F, Nicoucar K, Merfeld DM (2017) Perception precision of passive body tilt is consistent with statistically optimal cue integration. J Neurophysiol 117(5):2037–2052

    Article  PubMed  PubMed Central  Google Scholar 

  • McCluskey R, Clark JB, Stepaniak P (2001) Correlation of Space Shuttle landing performance with cardiovascular and neurological dysfunction resulting from spaceflight. NASA Bioastronautics Roadmap. NASA, Houston

    Google Scholar 

  • McCusker A, Bretl K, Dixon JB, Clark TK (2017) A protocol to eliminate the cross-coupled illusion during centrifuge artificial gravity. Aerospace Medical Association 88th scientific meeting, Denver

    Google Scholar 

  • Merfeld DM (1996) Effect of spaceflight on ability to sense and control roll tilt: human neurovestibular studies on SLS-2. J Appl Physiol 81(1):50–57

    Article  CAS  PubMed  Google Scholar 

  • Merfeld DM (2003) Rotation otolith tilt-translation reinterpretation (ROTTR) hypothesis: a new hypothesis to explain neurovestibular spaceflight adaptation. J Vestib Res 13(4–6):309–320

    PubMed  Google Scholar 

  • Merfeld DM (2012) Spatial orientation and the vestibular system. In: Sensation and perception. Sinauer Associates, Sunderland

    Google Scholar 

  • Merfeld DM, Zupan LH (2002) Neural processing of gravitoinertial cues in humans. III. Modeling tilt and translation responses. J Neurophysiol 87(2):819–833

    Article  CAS  PubMed  Google Scholar 

  • Merfeld DM, Zupan L, Peterka RJ (1999) Humans use internal models to estimate gravity and linear acceleration. Nature 398(6728):615–618

    Article  CAS  PubMed  Google Scholar 

  • Mergner T, Huber W, Becker W (1997) Vestibular-neck interaction and transformation of sensory coordinates. J Vestib Res 7(4):347–367

    Article  CAS  PubMed  Google Scholar 

  • Mindell DA (2008) Digital Apollo: human and machine in spaceflight. Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Moore ST, MacDougall HG, Lesceu X, Speyer JJ, Wuyts F, Clark JB (2008) Head-eye coordination during simulated orbiter landing. Aviat Space Environ Med 79(9):888–898

    Article  PubMed  Google Scholar 

  • Mulavara AP, Feiveson AH, Fiedler J, Cohen H, Peters BT, Miller C, Brady R, Bloomberg JJ (2010) Locomotor function after long-duration space flight: effects and motor learning during recovery. Exp Brain Res 202(3):649–659

    Article  PubMed  Google Scholar 

  • Mulavara AP, Kofman I, De Dios Y, Miller C, Peters BT, Goel R, Galvan-Garza R, Bloomberg JJ (2015) Using low levels of stochastic vestibular stimulation to improve locomotor stability. Front Syst Neurosci 9:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller GE (1916) Uber das Aubertsche Phanomen. Z Sinnesphysiol 49:109–246

    Google Scholar 

  • Neubauer JC (2000) Classifying spatial disorientation mishaps using different definitions – analysis of five years of USAF Class A mishaps. IEEE Eng Med Biol Mag 19(2):28–34

    Article  CAS  PubMed  Google Scholar 

  • Oman CM (2012) Are evolutionary hypotheses for motion sickness “just-so” stories? J Vestib Res 22(2–3):117–127

    PubMed  Google Scholar 

  • Paloski WH, Oman CM, Bloomberg JJ, Reschke MF, Wood SJ, Harm DL, Peters BT, Mulavara AP, Locke JP, Stone LS (2008) Risk of sensory-motor performance failures affecting vehicle control during space missions: a review of the evidence. J Gravit Physiol 15(2):1–29

    Google Scholar 

  • Parker DE (2003) Spatial perception changes associated with space flight: implications for adaptation to altered inertial environments. J Vestib Res 13(4–6):331–343

    PubMed  Google Scholar 

  • Parker DE, Reschke MF, Arrott AP, Homick JL, Lichtenberg BK (1985) Otolith tilt-translation reinterpretation following prolonged weightlessness – implications for preflight training. Aviat Space Environ Med 56(6):601–606

    CAS  PubMed  Google Scholar 

  • Reschke MF, Parker DE (1987) Effects of prolonged weightlessness on self-motion perception and eye-movements evoked by roll and pitch. Aviat Space Environ Med 58(9):A153–A158

    CAS  PubMed  Google Scholar 

  • Reschke MF, Bloomberg JJ, Harm DL, Huebner WP, Krnavek JM, Paloski WH (1999) Visual-vestibular integration as a function of adaptation to space flight and return to Earth (DSO 604 OI-3). In: Sawin CF, Taylor GR, Smith WL (eds) Extended duration orbiter medical project final report. NASA, Houston, pp 5.3.1–5.3.41

    Google Scholar 

  • Reschke MF, Bloomberg JJ, Paloski WH, Mulavara AP, Feiveson AH, Harm DL (2009) Postural reflexes, balance control, and functional mobility with long-duration head-down bed rest. Aviat Space Environ Med 80(5):A45–A54

    Article  PubMed  Google Scholar 

  • Reschke MF, Cohen HS, Cerisano JM, Clayton JA, Cromwell R, Danielson RW, Hwang EY, Tingen C, Allen JR, Tomko DL (2014) Effects of sex and gender on adaptation to space: neurosensory systems. J Womens Health 23(11):959–962

    Article  Google Scholar 

  • Rittweger J, Bareille MP, ClĂ©ment G, Linnarsson D, Paloski WH, Wuyts F, Zange J, Angerer O (2015) Short-arm centrifugation as a partially effective musculoskeletal countermeasure during 5-day head-down tilt bed rest-results from the BRAG1 study. Eur J Appl Physiol 115(6): 1233–1244

    Article  PubMed  Google Scholar 

  • Roller CA, Cohen HS, Kimball KT, Bloomberg JJ (2001) Variable practice with lenses improves visuo-motor plasticity. Cogn Brain Res 12(2):341–352

    Article  CAS  Google Scholar 

  • Ross MD (1993) Morphological changes in rat vestibular system following weightlessness. J Vestib Res 3:241–251

    CAS  PubMed  Google Scholar 

  • Ross MD (1994) A spaceflight study of synaptic plasticity in adult rate vestibular maculas. Acta Otolaryngol 114(516):3–14

    Article  Google Scholar 

  • Ross MD (2000) Changes in ribbon synapses and rough endoplasmic reticulum of rat utricular macular hair cells in weightlessness. Acta Otolaryngol 120(4):490–499

    Article  CAS  PubMed  Google Scholar 

  • Roy JE, Cullen KE (2004) Dissociating self-generated from passively applied head motion: neural mechanisms in the vestibular nuclei. J Neurosci 24(9):2102–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rupert AH (2000) Tactile situation awareness system: proprioceptive prostheses for sensory deficiencies. Aviat Space Environ Med 71(9):A92–A99

    CAS  PubMed  Google Scholar 

  • Schöne H (1964) On the role of gravity in human spatial orientation. Aerosp Med 35:764–772

    Google Scholar 

  • Shelhamer M, Clendaniel RA (2002) Context-specific adaptation of saccade gain. Exp Brain Res 146(4):441–450

    Article  PubMed  Google Scholar 

  • Sipes WE, Lessard CS (2000) A spatial disorientation survey of experienced instructor pilots – obtaining more complete information regarding the incidence and prevalence of SD illusions. IEEE Eng Med Biol Mag 19(2):35–42

    Article  CAS  PubMed  Google Scholar 

  • Stone RW, Letko W (1965) Some observations on the stimulation of the vestibular system of man in a rotating environment. In: Graybiel A (ed) The role of vestibular organs in the exploration of space. NASA SP-77. NASA, Washington, DC, pp 263–277

    Google Scholar 

  • Tsiolkovsky KE (1911) The exploration of the universe with reaction machines. NASA technical translation: collected works of K. E. Tsiolkovsky, vol 2. NASA, Washington, DC, pp 118–180

    Google Scholar 

  • Vincent G, Gruber J, Reed B, Newman MC, Clark TK (2016) Observer model analysis of orientation perception during artificial gravity stimulation via centrifugation versus linear sled. In: 32nd American Society of Gravitational and Space Research conference, Cleveland

    Google Scholar 

  • Vingerhoets RAA, Van Gisbergen JAM, Medendorp WP (2007) Verticality perception during off-vertical axis rotation. J Neurophysiol 97(5):3256–3268

    Article  CAS  PubMed  Google Scholar 

  • Wertheim AH, Mesland BS, Bles W (2001) Cognitive suppression of tilt sensations during linear horizontal self-motion in the dark. Perception 30(6):733–741

    Article  CAS  PubMed  Google Scholar 

  • Wood SJ, Reschke MF, Sarmiento LA, ClĂ©ment G (2007) Tilt and translation motion perception during off-vertical axis rotation. Exp Brain Res 182(3):365–377

    Article  PubMed  Google Scholar 

  • Wood SJ, Paloski WH, Clark JB (2015) Assessing sensorimotor function following ISS with computerized dynamic posturography. Aerosp Med Hum Perform 86(12):A45–A53

    Article  PubMed  Google Scholar 

  • Yates BJ, Kerman IA (1998) Post-spaceflight orthostatic intolerance, possible relationship to microgravity-induced plasticity in the vestibular system. Brain Res Rev 28(1–2):73–82

    Article  CAS  PubMed  Google Scholar 

  • Yates BJ, Bolton PS, Macefield VG (2014) Vestibulo-sympathetic responses. Compr Physiol 4(2):851–887

    Article  PubMed  PubMed Central  Google Scholar 

  • Young LR, Oman CM, Watt DGD, Money KE, Lichtenberg BK (1984) Spatial orientation in weightlessness and readaptation to Earth’s gravity. Science 225(4658):205–208

    Article  CAS  PubMed  Google Scholar 

  • Young LR, Hecht H, Lyne LE, Sienko KH, Cheung CC, Kavelaars J (2001) Artificial gravity: head movements during short-radius centrifugation. Acta Astronaut 49(3–10):215–226

    Article  CAS  PubMed  Google Scholar 

  • Yuan P, Koppelmans V, Reuter-Lorenz P, De Dios Y, Gadd N, Wood SJ, Riascos R, Kofman IS, Bloomberg JJ, Mulavara AP, Seidler RD (2018) Vestibular brain changes within 70 days of head down bed rest. Hum Brain Mapp 39(7):2753–2763

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torin K. Clark .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Clark, T.K. (2019). Effects of Spaceflight on the Vestibular System. In: Pathak, Y., AraĂşjo dos Santos, M., Zea, L. (eds) Handbook of Space Pharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-50909-9_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50909-9_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50909-9

  • Online ISBN: 978-3-319-50909-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics