Skip to main content

Physicochemical Basic Principles for Solid Dosage Forms

  • Living reference work entry
  • First Online:
  • 217 Accesses

Abstract

To achieve an efficient solid dosage form in terms of pharmacokinetics as well as pharmaceutics, parameters such as bioavailability, manufacturability, and stability are of utmost importance. These factors in turn are influenced and/or are dependent on varied important solid-state properties. Physicochemical properties such as, but not limited to, crystalline and amorphous properties of molecular solids, fundamental properties of powders, and the relationships between solubility, permeability, partitioning, diffusion rates of dissolution, and release mechanisms play a crucial role in determining the overall characteristics of the final solid dosage form. In addition, specialized inherent (morphology) and induced (particle size) properties are central to the performance of solid dosage forms. This chapter delivers an account of basic physicochemical principles involved in formulation and development of solid dosage forms as well as provides a critical overview of these factors affecting the final dosage forms’ production and therapeutic outcomes.

This is a preview of subscription content, log in via an institution.

References

  • Aaltonen J, Allesø M, Mirza S et al (2009) Solid form screening – a review. Eur J Pharm Biopharm 71(1):23–37

    Article  CAS  Google Scholar 

  • Airaksinen S, Luukkonen P, Jørgensen A et al (2003) Effects of excipients on hydrate formation in wet masses containing theophylline. J Pharm Sci 92:516–528

    Article  CAS  Google Scholar 

  • Aulton ME (2007) Aulton’s pharmaceutics: the design and manufacture of medicines, 3rd edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Banerjee A, Qi J, Gogoi R (2016) Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control Release 238:176–185

    Article  CAS  Google Scholar 

  • Bell L, Labuza TP (2000) Moisture sorption: practical aspects of isotherm measurement and use, 2nd edn. American Association of Cereal Chemists, St Paul

    Google Scholar 

  • Callahan JC, Cleary GW, Elefant M et al (1982) Equilibrium moisture content of pharmaceutical excipients. Drug Dev Ind Pharm 8:355–369

    Article  CAS  Google Scholar 

  • Champion JA, Mitragotri S (2009) Shape induced inhibition of phagocytosis of polymer particles. Pharm Res 26:244–249

    Article  CAS  Google Scholar 

  • Choonara BF, Choonara YE, Kumar P (2014) A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol Adv 32:1269–1282

    Article  CAS  Google Scholar 

  • Darji MA, Lalge RM, Marathe SP et al (2017) Excipient stability in oral solid dosage forms: a review. AAPS PharmSciTech 19(1):12–26

    Article  Google Scholar 

  • Davies TD, Peck GE, Stowell JG et al (2004) Modeling and monitoring of polymorphic transformations during the drying phase of wet granulation. Pharm Res 21(5):860–866

    Article  Google Scholar 

  • Dawoodbhai S, Rhodes CT (1989) The effect of moisture on powder flow and on compaction and physical stability of tablets. Drug Dev Ind Pharm 15:1577–1600

    Article  CAS  Google Scholar 

  • Hancock BC, Parks M (2000) What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res 17:397–404

    Article  CAS  Google Scholar 

  • Hancock BC, Zografi G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86(1):1–12

    Article  CAS  Google Scholar 

  • Healy AM, Worku ZA, Kumar D et al (2017) Pharmaceutical solvates, hydrates and amorphous forms: a special emphasis on cocrystals. Adv Drug Deliv Rev 117:25–46

    Article  CAS  Google Scholar 

  • Kaneniwa N, Yamaguchi T, Watari N et al (1984) Hygroscopicity of carbamazepine crystalline powders. Yakugaku Zasshi 104(2):184–190

    Article  CAS  Google Scholar 

  • Khadaka P, Ro J, Kim H et al (2014) Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci 9(6):304–316

    Article  Google Scholar 

  • Li D, Zhuang J, He H et al (2017) Influence of particle geometry on gastrointestinal transit and absorption following oral administration. ACS Appl Mater Interfaces 9(49):42492–42502

    Article  CAS  Google Scholar 

  • Lopez FL, Ernest TB, Tuleu C et al (2015) Formulation approaches to pediatric oral drug delivery: benefits and limitations of current platforms. Expert Opin Drug Deliv 12(11):1727–1740

    Article  CAS  Google Scholar 

  • Market Research Report: Oral solid dosage pharmaceutical formulation market Published by Future Market Insights Available at https://www.futuremarketinsights.com/reports/oral-solid-dosage-pharmaceutical-formulation-market. Last accessed 20 Feb 2018

  • Morris KR, Griesser UJ, Eckhardt CJ et al (2001) Theoretical approaches to physical transformations of active pharmaceutical ingredients during manufacturing processes. Adv Drug Deliv Rev 48:91–114

    Article  CAS  Google Scholar 

  • Murugan K, Choonara YE, Kumar P et al (2015) Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures. Int J Nanomedicine 10:2191–2206

    Google Scholar 

  • Naversnik K, Bohanec S (2008) Predicting drug hydrolysis based on moisture uptake in various packaging designs. Eur J Pharm Sci 35:447–456

    Article  CAS  Google Scholar 

  • Otsuka M, Ishii M, Matsuda Y (2003) Effect of surface modification on hydration kinetics of carbamazepine anhydrate using isothermal microcalorimetry. AAPS PharmSciTech 4(1):33–41

    Article  Google Scholar 

  • Plapied L, Duhem N, des Rieux A et al (2011) Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci 16:228–237

    Article  CAS  Google Scholar 

  • Pouton CW (2006) Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci 29(3–4):278–287

    Article  CAS  Google Scholar 

  • Pritchard J, Warman M (2011) Physical morphology and spectroscopic classification in the development of pharmaceutical powders. Am Pharm Rev 14(4):110–115

    Google Scholar 

  • Rogers AJ, Hashemi A, Ierapetritou MG (2013) Modeling of particulate processes for the continuous manufacture of solid-based pharmaceutical dosage forms. Processes 1(2):67–127

    Article  CAS  Google Scholar 

  • Savjani KT, Gajjar AK, Savjani JK (2012) Drug solubility: importance and enhancement techniques. ISRN Pharm. http://doi.org/10.5402/2012/195727

    Article  Google Scholar 

  • Sharpe LA, Daily AM, Horava SD (2014) Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv 11(6):901–915

    Article  CAS  Google Scholar 

  • Shekhawat PB, Pokharkar VB (2017) Understanding peroral absorption: regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles. Acta Pharm Sin B 7(3):260–280

    Article  Google Scholar 

  • Sinko PJ (2011) Martin’s physical pharmacy and pharmaceutical sciences, physical chemical and biopharmaceutical principles. In: The pharmaceutical sciences, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Szunyogh T, Ambrus R, Szabóné RP (2011) Importance of particle size decrease in the preformulation. Acta Pharm Hung 81(1):29–36

    PubMed  Google Scholar 

  • Waterman KC, Adami RC (2005) Accelerated aging: prediction of chemical stability of pharmaceuticals. Int J Pharm 293:101–125

    Article  CAS  Google Scholar 

  • Wibroe PP, Anselmo AC, Nilsson PH (2017) Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nat Nanotechnol 12:589–594

    Article  CAS  Google Scholar 

  • Wikström H, Marsac PJ, Taylor LS (2005) In-line monitoring of hydrate formation during wet granulation using Raman spectroscopy. J Pharm Sci 94:209–219

    Article  Google Scholar 

  • Yu L (2001) Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev 48(1):27–42

    Article  CAS  Google Scholar 

  • Zhang GGZ, Law D, Schmitt EA (2004) Phase transformation considerations during process development and manufacture of solid oral dosage forms. Adv Drug Deliv Rev 56:371–390

    Article  CAS  Google Scholar 

  • Zografi G (1988) States of water associated with solids. Drug Dev Ind Pharm 14:1905–1926

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation (NRF) of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viness Pillay .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kumar, P., Pradeep, P., Indermun, S., Govender, M., Choonara, Y.E., Pillay, V. (2019). Physicochemical Basic Principles for Solid Dosage Forms. In: Pathak, Y., Araújo dos Santos, M., Zea, L. (eds) Handbook of Space Pharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-50909-9_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50909-9_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50909-9

  • Online ISBN: 978-3-319-50909-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics