Skip to main content

Motor Control and Muscle Tone Problems in Cerebral Palsy

  • Living reference work entry
  • First Online:
Cerebral Palsy
  • 289 Accesses

Abstract

Children with cerebral palsy (CP) have a large variety of motor impairments, all of which are secondary to the encephalopathy. These impairments, which directly emanate from the encephalopathy and the disability that results, are well recognized as specific problems; however, the pathophysiology connecting the encephalopathy to the impairment and the disability is not well defined. Motor control affects all of the systems which require muscles for control including oral motor function, eye movement, and other various body segments which are controlled by muscles. The treatment goal for children with CP is to allow them to function in their environment, and ideally in the larger society, to the best of their abilities. The definition of motor control means the central nervous system is conceiving and then developing the program to be performed by the musculoskeletal system. The execution of this movement should be smooth, efficient, and with the required accuracy. This means that the muscles are required to have the proper tension or tone in preparation of response. Pathologic abnormalities of motor control develop into movement disorders. Movement disorders include dystonia, athetosis, chorea, hemiballismus, and tremors. Abnormalities of muscle tone range from hypotonia to hypertonia also known as spasticity. The goal of this chapter is to develop a theoretical understanding of central nervous system motor control and the importance of muscle tone. The definition of the pathologic states and treatment options will be briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barry MJ, VanSwearingen JM, Albright AL (1999) Reliability and responsiveness of the Barry-Albright Dystonia Scale. Dev Med Child Neurol 41:404–411

    Article  CAS  PubMed  Google Scholar 

  • Benfer KA, Weir KA, Bell KL, Ware RS, Davies PS, Boyd RN (2014) Oropharyngeal dysphagia in preschool children with cerebral palsy: oral phase impairments. Res Dev Disabil 35:3469–3481

    Article  PubMed  Google Scholar 

  • Bobath K, Bobath B (1957) Control of motor function in the treatment of cerebral palsy. Physiotherapy 43:295–303

    PubMed  CAS  Google Scholar 

  • Burke RE, Fahn S, Marsden CD, Bressman SB, Moskowitz C, Friedman J (1985) Validity and reliability of a rating scale for the primary torsion dystonias. Neurology 35:73–77

    Article  CAS  PubMed  Google Scholar 

  • Connolly KJ, Forssberg H (1997) Neurophysiology & neuropsychology of motor development. London, Mac Keith Press

    Google Scholar 

  • Dietz V, Berger W (1995) Cerebral palsy and muscle transformation. Dev Med Child Neurol 37:180–184

    Article  CAS  PubMed  Google Scholar 

  • Ego C, Orban de Xivry JJ, Nassogne MC, Yuksel D, Lefevre P (2014) Spontaneous improvement in oculomotor function of children with cerebral palsy. Res Dev Disabil 36C:630–644

    PubMed  Google Scholar 

  • Engsberg JR, Ross SA, Olree KS, Park TS (2000) Ankle spasticity and strength in children with spastic diplegic cerebral palsy. Dev Med Child Neurol 42:42–47

    Article  CAS  PubMed  Google Scholar 

  • Fahn S, Bressman SB, Marsden CD (1998) Classification of dystonia. Adv Neurol 78:1–10

    Article  CAS  PubMed  Google Scholar 

  • Fee JW Jr, Miller F (2004) The leg drop pendulum test performed under general anesthesia in spastic cerebral palsy. Dev Med Child Neurol 46:273–281

    Article  PubMed  Google Scholar 

  • Gleick J (2008) Chaos: making a new science. Penguin Books, New York

    Google Scholar 

  • Jameson R, Rech C, Garreau de Loubresse C (2010) Cervical myelopathy in athetoid and dystonic cerebral palsy: retrospective study and literature review. Eur Spine J 19:706–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Lesny I, Nachtmann M, Stehlik A, Tomankova A, Zajidkova J (1990) Disorders of memory of motor sequences in cerebral palsied children. Brain Dev 12:339–341

    Article  CAS  PubMed  Google Scholar 

  • Lin JP, Brown JK, Walsh EG (1996) The maturation of motor dexterity: or why Johnny can’t go any faster. Dev Med Child Neurol 38:244–254

    Article  CAS  PubMed  Google Scholar 

  • Martins AC (2015) Using the international classification of functioning, disability and health (ICF) to address facilitators and barriers to participation at work. Work 50:585–593

    PubMed  Google Scholar 

  • Miller F, Slomczykowski M, Cope R, Lipton GE (1999) Computer modeling of the pathomechanics of spastic hip dislocation in children. J Pediatr Orthop 19:486–492

    Article  CAS  PubMed  Google Scholar 

  • Nass R (1983) Ontogenesis of hemispheric specialization: apraxia associated with congenital left hemisphere lesions. Percept Mot Skills 57:775–782

    Article  CAS  PubMed  Google Scholar 

  • Nie J, Linkens DA (1995) Fuzzy-neural control: principles, algorithms, and applications. New York, Prentice Hall

    Google Scholar 

  • Nishihara N, Tanabe G, Nakahara S, Imai T, Murakawa H (1984) Surgical treatment of cervical spondylotic myelopathy complicating athetoid cerebral palsy. J Bone Joint Surg (Br) 66:504–508

    Article  CAS  Google Scholar 

  • O’Reilly DE, Walentynowicz JE (1981) Etiological factors in cerebral palsy: an historical review. Dev Med Child Neurol 23:633–642

    Article  PubMed  Google Scholar 

  • Onari K (2000) Surgical treatment for cervical spondylotic myelopathy associated with athetoid cerebral palsy. J Orthop Sci 5:439–448

    Article  CAS  PubMed  Google Scholar 

  • Porter E, Gleick J, Russek J (2001) Nature’s chaos. Little, Brown and Company, Boston

    Google Scholar 

  • Robinson KG, Mendonca JL, Militar JL, Theroux MC, Dabney KW, Shah SA, Miller F, Akins RE (2013) Disruption of basal lamina components in neuromotor synapses of children with spastic quadriplegic cerebral palsy. PLoS One 8:e70288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloot LH, Bar-On L, van der Krogt MM, Aertbelien E, Buizer AI, Desloovere K, Harlaar J (2017) Motorized versus manual instrumented spasticity assessment in children with cerebral palsy. Dev Med Child Neurol 59:145–151

    Article  PubMed  Google Scholar 

  • Sussman MD, Shriners Hospitals for Crippled Children, Pediatric Orthopaedic Society of North America (1992) The Diplegic child: evaluation and management. American Academy of Orthopaedic Surgeons, Rosemont

    Google Scholar 

  • Trejos H, Araya R (1990) Stereotactic surgery for cerebral palsy. Stereotact Funct Neurosurg 54–55:130–135

    Article  PubMed  Google Scholar 

  • Vidailhet M (2013) Treatment of movement disorders in dystonia-choreoathetosis cerebral palsy. Handb Clin Neurol 111:197–202

    Article  PubMed  Google Scholar 

  • Ziv I, Blackburn N, Rang M, Koreska J (1984) Muscle growth in normal and spastic mice. Dev Med Child Neurol 26:94–99

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freeman Miller .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Miller, F. (2018). Motor Control and Muscle Tone Problems in Cerebral Palsy. In: Miller, F., Bachrach, S., Lennon, N., O'Neil, M. (eds) Cerebral Palsy. Springer, Cham. https://doi.org/10.1007/978-3-319-50592-3_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50592-3_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50592-3

  • Online ISBN: 978-3-319-50592-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics