Advertisement

Surface Properties and Cellular Energetics of Bacteria in Response to the Presence of Hydrocarbons

  • Hermann J. Heipieper
  • Milva Pepi
  • Thomas Baumgarten
  • Christian Eberlein
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Many toxic hydrocarbons that are present as environmental pollutants are potential substrates for bacteria; other, very hydrophobic hydrocarbons exhibit extremely low water solubility and are poorly bioavailable. The development of specific adaptive mechanisms to the toxicity as well as the low bioavailability of these substrates allows many bacteria to cope with such challenges. Strategies of bacteria to increase the accessibility of these compounds are modifications of their cell surfaces or the release of biosurfactants. Both “strategies” aim at an increased accessibility of the compounds, either by the reduction of surface tension or by allowing a direct hydrophobic-hydrophobic interaction between cell surface and the substrates. The toxicity of hydrocarbons is mainly caused by their permeabilizing effect on the cytoplasmic membranes leading also to a loss of ATP and a decrease in the proton gradient. Bacteria are able to modify their cellular energetics in order to adapt to the presence of toxic hydrocarbons by activating their electron transport phosphorylation systems allowing homeostasis of ATP level and energy charge in the presence of the toxic conditions, however, at the price of a reduced growth yield.

References

  1. Arias-Barrau E, Sandoval A, Olivera ER, Luengo JM, Naharro G (2005) A two-component hydroxylase involved in the assimilation of 3-hydroxyphenyl acetate in Pseudomonas putida. J Biol Chem 280:26435CrossRefPubMedGoogle Scholar
  2. Atkinson DE, Walton GM (1967) Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. J Biol Chem 342:3239–3241Google Scholar
  3. Baldi F et al (1999) Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes. Appl Environ Microbiol 65:2041–2048PubMedPubMedCentralGoogle Scholar
  4. Baldi F et al (2003) Envelope glycosylation determined by lectins in microscopy sections of Acinetobacter venetianus induced by diesel fuel. Res Microbiol 154:417–424CrossRefPubMedGoogle Scholar
  5. Baumgarten T, Heipieper HJ (2016) Outer membrane vesicle secretion: from envelope stress to biofilm formation. In: de Bruijn FJ (ed) Stress and environmental control of gene expression in bacteria. Wiley-Blackwell, New York, pp 1322–1327Google Scholar
  6. Baumgarten T et al (2012a) Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl Environ Microbiol 78:6217–6224.  https://doi.org/10.1128/aem.01525-12CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baumgarten T et al (2012b) Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E. Appl Microbiol Biotechnol 93:837–845.  https://doi.org/10.1007/s00253-011-3442-9CrossRefPubMedGoogle Scholar
  8. Chapman AG, Fall L, Atkinson DE (1971) Adenylate energy charge in Escherichia coli during growth and starvation. J Bacteriol 108:1072–1086PubMedPubMedCentralGoogle Scholar
  9. de Bont JAM (1998) Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol 16:493–499CrossRefGoogle Scholar
  10. de Carvalho CCCR, Wick LY, Heipieper HJ (2009) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82:311–320CrossRefPubMedGoogle Scholar
  11. de Carvalho CCCR, Fischer MA, Kirsten S, Wurz B, Wick LY, Heipieper HJ (2016) Adaptive response of Rhodococcus opacus PWD4 to salt and phenolic stress on the level of mycolic acids. AMB Express 6:8.  https://doi.org/10.1186/s13568-016-0241-9CrossRefGoogle Scholar
  12. Dorobantu LS, Bhattacharjee S, Foght JM, Gray MR (2008) Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity. Langmuir 24:4944–4951CrossRefPubMedGoogle Scholar
  13. Heipieper HJ, Keweloh H, Rehm HJ (1991) Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl Environ Microbiol 57:1213–1217PubMedPubMedCentralGoogle Scholar
  14. Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis-unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852PubMedPubMedCentralGoogle Scholar
  15. Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JAM (1994) Mechanisms behind resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415CrossRefGoogle Scholar
  16. Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973CrossRefPubMedGoogle Scholar
  17. Hori K, Watanabe H, Ishii S, Tanji Y, Unno H (2008) Monolayer adsorption of a “bald” mutant of the highly adhesive and hydrophobic bacterium Acinetobacter sp strain tol 5 to a hydrocarbon surface. Appl Environ Microbiol 74:2511–2517CrossRefPubMedPubMedCentralGoogle Scholar
  18. Isken S, Derks A, Wolffs PFG, de Bont JAM (1999) Effect of organic solvents on the yield of solvent-tolerant Pseudomonas putida S12. Appl Environ Microbiol 65:2631–2635PubMedPubMedCentralGoogle Scholar
  19. Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177:3998–4008CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kadurugamuwa JL, Lam JS, Beveridge TJ (1993) Interaction of gentamicin with the A band and B band lipopolysaccharides of Pseudomonas aeruginosa and its possible lethal effect. Antimicrob Agents Chemother 37:715–721CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kang ZW, Yeung A, Foght JM, Gray MR (2008) Mechanical properties of hexadecane-water interfaces with adsorbed hydrophobic bacteria. Colloids Surf B: Biointerfaces 62:273–279CrossRefPubMedGoogle Scholar
  22. Kayser A, Weber J, Hecht V, Rinas U (2005) Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology 151:693–706CrossRefPubMedGoogle Scholar
  23. Kelly NM, MacDonald MH, Martin N, Nicas T, Hancock REW (1990) Comparison of the outer membrane protein and lipopolysaccharide profiles of mucoid and nonmucoid Pseudomonas aeruginosa. J Clin Microbiol 28:2017–2021PubMedPubMedCentralGoogle Scholar
  24. Kobayashi H, Uematsu K, Hirayama H, Horikoshi K (2000) Novel toluene elimination system in a toluene-tolerant microorganism. J Bacteriol 182:6451–6455CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. In: Gotteseman S, Harwood CS (eds) Annual review of microbiology. Annual Reviews, Palo Alto, pp 163–184Google Scholar
  26. Lambert PA, Hammond SM (1973) Potassium fluxes, first indication of membrane damage in micro-organisms. Biochem Biophys Res Commun 54:796–799CrossRefPubMedGoogle Scholar
  27. Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Anton Leeuw Int J Gen Mol Microbiol 74:59–70CrossRefGoogle Scholar
  28. Loffhagen N, Babel W (1985) pH-linked control of energy charge in Acetobacter methanolicus sp. MB 70. J Basic Microbiol 25:575–580CrossRefGoogle Scholar
  29. Lundin A, Hasenson M, Persson J, Pousette A (1986) Estimation of biomass in growing cell lines by adenosine triphosphate assay. Methods Enzymol 133:27–44CrossRefPubMedGoogle Scholar
  30. Makin SA, Beveridge TJ (1996a) The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 142:299–307CrossRefPubMedGoogle Scholar
  31. Makin SA, Beveridge TJ (1996b) Pseudomonas aeruginosa PAO1 ceases to express serotype-specific lipopolysaccharide at 45°C. J Bacteriol 178:3350–3352CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mashburn-Warren LM, Whiteley M (2006) Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 61:839–846CrossRefPubMedGoogle Scholar
  33. Misic C, Giani M, Povero P, Polimene L, Fabiano M (2005) Relationships between organic carbon and microbial components in a Tyrrhenian area (Isola del Giglio) affected by mucilages. Sci Total Environ 353:350–359CrossRefPubMedGoogle Scholar
  34. Navon-Venezia S et al (1995) Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol 61:3240–3244PubMedPubMedCentralGoogle Scholar
  35. Neumann G et al (2006) Energetics and surface properties of Pseudomonas putida DOT-T1E in a two-phase fermentation system with 1-decanol as second phase. Appl Environ Microbiol 72:4232–4238CrossRefPubMedPubMedCentralGoogle Scholar
  36. Norman RS, Frontera-Suau R, Morris PJ (2002) Variability in Pseudomonas aeruginosa lipopolysaccharide expression during crude oil degradation. Appl Environ Microbiol 68:5096–5103CrossRefPubMedPubMedCentralGoogle Scholar
  37. Osterreicher-Ravid D, Ron EZ, Rosenberg E (2000) Horizontal transfer of an exopolymer complex from one bacterial species to another. Environ Microbiol 2:366–372CrossRefPubMedGoogle Scholar
  38. Pines O, Gutnick D (1986) Role for emulsan in growth of Acinetobacter calcoaceticus RAG-1 on crude oil. Appl Environ Microbiol 51:661–663PubMedPubMedCentralGoogle Scholar
  39. Pinkart HC, Wolfram JW, Rogers R, White DC (1996) Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene. Appl Environ Microbiol 62:1129–1132PubMedPubMedCentralGoogle Scholar
  40. Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252CrossRefPubMedGoogle Scholar
  41. Rosenberg M (2006) Microbial adhesion to hydrocarbons: twenty-five years of doing MATH. FEMS Microbiol Lett 262:129–134CrossRefPubMedGoogle Scholar
  42. Rosenberg E, Ron EZ (1997) Bioemulsans: microbial polymeric emulsifiers. Curr Opin Biotechnol 8:313–316CrossRefPubMedGoogle Scholar
  43. Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162CrossRefPubMedGoogle Scholar
  44. Rosenberg M, Rosenberg E (1981) Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. J Bacteriol 148:51–57PubMedPubMedCentralGoogle Scholar
  45. Sabra W, Lunsdorf H, Zeng AP (2003) Alterations in the formation of lipopolysaccharide and membrane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress conditions. Microbiology 149:2789–2795CrossRefPubMedGoogle Scholar
  46. Schwechheimer C, Kuehn MJ (2015) Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13:605–619.  https://doi.org/10.1038/nrmicro3525CrossRefPubMedPubMedCentralGoogle Scholar
  47. Segura A et al (2004) Enzymatic activation of the cis-trans isomerase and transcriptional regulation of efflux pumps in solvent tolerance in Pseudomonas putida. In: Ramos JL (ed) The pseudomonads. Kluwer Press, Dordrecht, pp 479–508CrossRefGoogle Scholar
  48. Segura A et al (2005) Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J Bacteriol 187:5937–5945CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sikkema J, de Bont JA, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028PubMedGoogle Scholar
  50. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedPubMedCentralGoogle Scholar
  51. Tashiro Y, Ichikawa S, Nakajima-Kambe T, Uchiyama H, Nomura N (2010a) Pseudomonas quinolone signal affects membrane vesicle production in not only Gram-negative but also Gram-positive bacteria. Microbes Environ 25:120–125.  https://doi.org/10.1264/jsme2.ME09182CrossRefPubMedGoogle Scholar
  52. Tashiro Y et al (2010b) Variation of physiochemical properties and cell association activity of membrane vesicles with growth phase in Pseudomonas aeruginosa. Appl Environ Microbiol 76:3732–3739.  https://doi.org/10.1128/aem.02794-09CrossRefPubMedPubMedCentralGoogle Scholar
  53. Tashiro Y, Uchiyama H, Nomura N (2012) Multifunctional membrane vesicles in Pseudomonas aeruginosa. Environ Microbiol 14:1349–1362.  https://doi.org/10.1111/j.1462-2920.2011.02632.xCrossRefPubMedGoogle Scholar
  54. Toren A, Orr E, Paitan Y, Ron EZ, Rosenberg E (2002) The active component of the bioemulsifier alasan from Acinetobacter radioresistens KA53 is an OmpA-like protein. J Bacteriol 184:165–170CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tran QH, Unden G (1998) Changes in the proton potential and the cellular energetics of Escherichia coli during growth by aerobic and anaerobic respiration or by fermentation. Eur J Biochem 251:538CrossRefPubMedGoogle Scholar
  56. Van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB (1987a) Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53:1898–1901PubMedPubMedCentralGoogle Scholar
  57. Van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB (1987b) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53:1893–1897PubMedPubMedCentralGoogle Scholar
  58. Vaneechoutte M et al (1999) Oil-degrading Acinetobacter strain RAG-1 and strains described as ‘Acinetobacter venetianus sp nov.’ belong to the same genomic species. Res Microbiol 150:69–73CrossRefPubMedGoogle Scholar
  59. Volkers RJM, de Jong AL, Hulst AG, van Baar BLM, de Bont JAM, Wery J (2006) Chemostat-based proteomic analysis of toluene-affected Pseudomonas putida S12. Environ Microbiol 8:1674–1679CrossRefPubMedGoogle Scholar
  60. Walzer G, Rosenberg E, Ron EZ (2006) The Acinetobacter outer membrane protein A (OmpA) is a secreted emulsifier. Environ Microbiol 8:1026–1032CrossRefPubMedGoogle Scholar
  61. Wick LY, de Munain AR, Springael D, Harms H (2002a) Responses of Mycobacterium sp LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385CrossRefPubMedGoogle Scholar
  62. Wick LY, Wattiau P, Harms H (2002b) Influence of the growth substrate on the mycolic acid profiles of mycobacteria. Environ Microbiol 4:612–616CrossRefPubMedGoogle Scholar
  63. Wick LY, Pasche N, Bernasconi SM, Pelz O, Harms H (2003) Characterization of multiple-substrate utilization by anthracene-degrading Mycobacterium frederiksbergense LB501T. Appl Environ Microbiol 69:6133–6142CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hermann J. Heipieper
    • 1
  • Milva Pepi
    • 2
  • Thomas Baumgarten
    • 3
  • Christian Eberlein
    • 1
  1. 1.Department Environmental BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
  2. 2.Stazione Zoologica Anton DohrnVilla ComunaleNaplesItaly
  3. 3.Center for Biomembrane Research, Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden

Personalised recommendations