Advertisement

Membrane Composition and Modifications in Response to Aromatic Hydrocarbons in Gram-Negative Bacteria

  • Álvaro Ortega
  • Ana Segura
  • Patricia Bernal
  • Cecilia Pini
  • Craig Daniels
  • Juan Luis Ramos
  • Tino Krell
  • Miguel A. Matilla
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Bacterial cells are surrounded by a cellular envelope composed of the cytoplasmic membrane and the cell wall. The cytoplasmic membrane is a phospholipid bilayer that provides an appropriate matrix for membrane proteins involved in many different cellular processes. Membrane lipid composition can change in response to different environmental challenges such as the presence of toxic compounds (e.g., aromatic hydrocarbons). The changes in membrane fluidity induced by stressors are counteracted by the bacteria through variations in the length of fatty acids, in the degree of saturation, and in the cis/trans configuration of the unsaturated fatty acids. The presence of cyclopropane fatty acids and changes in phospholipid head groups has also been shown to be involved in this stress response. The adaptive alterations of the main membrane phospholipids and fatty acids present in the cytoplasmic membrane are the subject of this chapter.

References

  1. Arendt W, Hebecker S, Jager S, Nimtz M, Moser J (2012) Resistance phenotypes mediated by aminoacyl-phosphatidylglycerol synthases. J Bacteriol 194:1401–1416CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arendt W, Groenewold MK, Hebecker S, Dickschat JS, Moser J (2013) Identification and characterization of a periplasmic aminoacyl-phosphatidylglycerol hydrolase responsible for Pseudomonas aeruginosa lipid homeostasis. J Biol Chem 288:24717–24730CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arias-Cartin R, Grimaldi S, Arnoux P, Guigliarelli B, Magalon A (2012) Cardiolipin binding in bacterial respiratory complexes: structural and functional implications. Biochim Biophys Acta 1817:1937–1949CrossRefPubMedGoogle Scholar
  4. Baumgarten T, Vazquez J, Bastisch C, Veron W, Feuilloley MG, Nietzsche S, Wick LY, Heipieper HJ (2012) Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E. Appl Microbiol Biotechnol 93:837–845CrossRefPubMedGoogle Scholar
  5. Bernal P, Munoz-Rojas J, Hurtado A, Ramos JL, Segura A (2007a) A Pseudomonas putida cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality. Environ Microbiol 9:1135–1145CrossRefPubMedGoogle Scholar
  6. Bernal P, Segura A, Ramos JL (2007b) Compensatory role of the cis-trans-isomerase and cardiolipin synthase in the membrane fluidity of Pseudomonas putida DOT-T1E. Environ Microbiol 9:1658–1664CrossRefPubMedGoogle Scholar
  7. Chang YY, Cronan JE Jr (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 33:249–259CrossRefPubMedGoogle Scholar
  8. Cronan JE, Rock CO (1996) Biosynthesis of membrane lipids. In: Neidhart FC, Curtis R III, Ingraham JL, Link ECC, Low KB, Magasanik WS, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DCGoogle Scholar
  9. Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P (1999) The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie Van Leeuwenhoek 76:159–184CrossRefPubMedGoogle Scholar
  10. DiRusso CC, Black PN, Weimar JD (1999) Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog Lipid Res 38:129–197CrossRefPubMedGoogle Scholar
  11. Dowhan W (2013) A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. Biochim Biophys Acta 1831:471–494CrossRefPubMedGoogle Scholar
  12. Geiger O, Lopez-Lara IM, Sohlenkamp C (2013) Phosphatidylcholine biosynthesis and function in bacteria. Biochim Biophys Acta 1831:503–513CrossRefPubMedGoogle Scholar
  13. Geske T, Vom Dorp K, Dormann P, Holzl G (2013) Accumulation of glycolipids and other non-phosphorous lipids in Agrobacterium tumefaciens grown under phosphate deprivation. Glycobiology 23:69–80CrossRefPubMedGoogle Scholar
  14. Ghorbal SK, Chatti A, Sethom MM, Maalej L, Mihoub M, Kefacha S, Feki M, Landoulsi A, Hassen A (2013) Changes in membrane fatty acid composition of Pseudomonas aeruginosa in response to UV-C radiations. Curr Microbiol 67:112–117CrossRefPubMedGoogle Scholar
  15. Hancock R, Karunaratne D, Bernegger-Egli C (1994) Molecular organization and structural role of outer membrane macromolecules. In: Ghuysen JM, Hakenbeck R (eds) Bacterial cell wall. Elsevier, Amsterdam, pp 263–279CrossRefGoogle Scholar
  16. Hannich JT, Umebayashi K, Riezman H (2011) Distribution and functions of sterols and sphingolipids. Cold Spring Harb Perspect Biol 3:a004697CrossRefGoogle Scholar
  17. Heipieper HJ, Meinhardt F, Segura A (2003) The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett 229:1–7CrossRefPubMedGoogle Scholar
  18. Heipieper HJ, Neumann G, Kabelitz N, Kastner M, Richnow HH (2004) Carbon isotope fractionation during cis-trans isomerization of unsaturated fatty acids in Pseudomonas putida. Appl Microbiol Biotechnol 66:285–290CrossRefPubMedGoogle Scholar
  19. Inoue K, Matsuzaki H, Matsumoto K, Shibuya I (1997) Unbalanced membrane phospholipid compositions affect transcriptional expression of certain regulatory genes in Escherichia coli. J Bacteriol 179:2872–2878CrossRefPubMedPubMedCentralGoogle Scholar
  20. Junker F, Ramos JL (1999) Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-T1E. J Bacteriol 181:5693–5700PubMedPubMedCentralGoogle Scholar
  21. Kadner R (1996) Cytoplasmic membrane. In: Neidhardt FC, Curtis R III, Ingrahanm JL, Link ECC, Low KB, Magasanik WS, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and Molecular Biology. ASM Press, Washington, DCGoogle Scholar
  22. Loffhagen N, Härtig C, Geyer W, Voyevoda M, Harms H (2007) Competition between cis, trans and cyclopropane fatty acid formation and its impact on membrane fluidity. Eng Life Sci 7:67–74CrossRefGoogle Scholar
  23. Matsumoto K, Kusaka J, Nishibori A, Hara H (2006) Lipid domains in bacterial membranes. Mol Microbiol 61:1110–1117CrossRefPubMedGoogle Scholar
  24. Moser R, Aktas M, Fritz C, Narberhaus F (2014) Discovery of a bifunctional cardiolipin/phosphatidylethanolamine synthase in bacteria. Mol Microbiol 92:959–972CrossRefPubMedGoogle Scholar
  25. Munoz-Rojas J, Bernal P, Duque E, Godoy P, Segura A, Ramos JL (2006) Involvement of cyclopropane fatty acids in the response of Pseudomonas putida KT2440 to freeze-drying. Appl Environ Microbiol 72:472–477CrossRefPubMedPubMedCentralGoogle Scholar
  26. Murinova S, Dercova K (2014) Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. Int J Microbiol 2014:873081CrossRefPubMedPubMedCentralGoogle Scholar
  27. Nowak A, Mrozik A (2016) Facilitation of co-metabolic transformation and degradation of monochlorophenols by Pseudomonas sp. CF600 and changes in its fatty acid composition. Water Air Soil Pollut 227:83CrossRefPubMedPubMedCentralGoogle Scholar
  28. Poger D, Mark AE (2015) A ring to rule them all: the effect of cyclopropane fatty acids on the fluidity of lipid bilayers. J Phys Chem B 119:5487–5495CrossRefPubMedGoogle Scholar
  29. Ramos JL, Duque E, Huertas MJ, Haidour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177:3911–3916CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ramos JL, Duque E, Rodriguez-Herva JJ, Godoy P, Haidour A, Reyes F, Fernandez-Barrero A (1997) Mechanisms for solvent tolerance in bacteria. J Biol Chem 272:3887–3890CrossRefPubMedGoogle Scholar
  31. Schweizer HP (2004) Fatty acid biosynthesis and biologically significant acyl transfer reactions in Pseudomonads. In: Ramos J-L (ed) Pseudomonas. Biosynthesis of macromolecules and molecular metabolism. Kluwer/Plenum Publishers, New York, pp 83–109Google Scholar
  32. Sikkema J, de Bont JA, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028PubMedGoogle Scholar
  33. Tan BK, Bogdanov M, Zhao J, Dowhan W, Raetz CR, Guan Z (2012) Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proc Natl Acad Sci U S A 109:16504–16509CrossRefPubMedPubMedCentralGoogle Scholar
  34. Vences-Guzman MA, Geiger O, Sohlenkamp C (2012) Ornithine lipids and their structural modifications: from A to E and beyond. FEMS Microbiol Lett 335:1–10CrossRefPubMedGoogle Scholar
  35. Whitfield C, Trent MS (2014) Biosynthesis and export of bacterial lipopolysaccharides. Annu Rev Biochem 83:99–128CrossRefPubMedGoogle Scholar
  36. Yao J, Rock CO (2013) Phosphatidic acid synthesis in bacteria. Biochim Biophys Acta 1831:495–502CrossRefPubMedGoogle Scholar
  37. Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233CrossRefPubMedGoogle Scholar
  38. Zhou A, Baidoo E, He Z, Mukhopadhyay A, Baumohl JK, Benke P, Joachimiak MP, Xie M, Song R, Arkin AP et al (2013) Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution. ISME J 7:1790–1802CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zoradova S, Dudasova H, Lukacova L, Dercova K, Certik M (2011) The effect of polychlorinated biphenyls (PCBs) on the membrane lipids of Pseudomonas stutzeri. Int Biodeterior Biodegradation 65:1019–1023CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Álvaro Ortega
    • 1
  • Ana Segura
    • 1
  • Patricia Bernal
    • 2
  • Cecilia Pini
    • 3
  • Craig Daniels
    • 4
  • Juan Luis Ramos
    • 1
  • Tino Krell
    • 1
  • Miguel A. Matilla
    • 1
  1. 1.Department of Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
  2. 2.Imperial College LondonLondonUK
  3. 3.Shionogi LimitedLondonUK
  4. 4.Developmental and Stem Cell Biology ProgramBrain Tumour Research Centre, The Hospital for Sick ChildrenTorontoCanada

Personalised recommendations