Extrusion Pumps for Hydrocarbons: An Efficient Evolutionary Strategy to Confer Resistance to Hydrocarbons

  • Matilde Fernández
  • Craig Daniels
  • Vanina García
  • Bilge Hilal Cadirci
  • Ana Segura
  • Juan Luis Ramos
  • Tino Krell
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Efflux pumps of the RND family are primarily involved in the extrusion of hydrocarbons. These pumps, specific to gram-negative bacteria, are composed of three components. Two components are transmembrane proteins located in the inner and outer membrane whereas the third one spans the periplasm connecting the other two subunits. The large part of information available on RND pumps is related to their capacity to extrude antibiotics. Structural data indicate that substrate binding may occur preferentially in the periplasm at the inner membrane protein.


  1. Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628CrossRefPubMedGoogle Scholar
  2. Daniels C, del Castillo T, Krell T, Segura A, Busch A, Lacal J, Ramos JL (2009) Cellular ecophysiology: genetics and genomics of accessing and exploiting hydrocarbons. In: Handbook of hydrocarbons and lipid microbiology, vol 2. Chapter 44, Springer-Verlag Berlin Heidelberg (Germany)Google Scholar
  3. Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T, Venter H, Chiu W, Luisi BF (2014) Structure of the AcrAB–TolC multidrug efflux pump. Nature 509:512–515CrossRefPubMedPubMedCentralGoogle Scholar
  4. Eda S, Maseda H, Nakae T (2003) An elegant means of self-protection in Gram-negative bacteria by recognizing and extruding xenobiotics from the periplasmic space. J Biol Chem 278:2085–2088CrossRefPubMedGoogle Scholar
  5. Fernández M, Duque E, Pizarro-Tobías P, van Dillewijin P, Wittich RM, Ramos JL (2009) Microbial responses to xenobiotic compounds. Identification of genes that allow Pseudomonas putida KT2440 to cope with 2,4,6-trinitrotoluene. Microb Biotechnol 2:287–294CrossRefPubMedPubMedCentralGoogle Scholar
  6. Godoy P, Molina-Henares AJ, de la Torre J, Duque E, Ramos JL (2010) Characterization of the RND family of multidrug efflux pumps: in silico to in vivo confirmation of four functionally distinct subgroups. Microb Biotechnol 3:691–700CrossRefPubMedPubMedCentralGoogle Scholar
  7. Guazzaroni ME, Krell T, Felipe A, Ruiz R, Meng C, Zhang X, Gallegos MT, Ramos JL (2005) The multidrug efflux regulator TtgV recognizes a wide range of structurally different effectors in solution and complexed with target DNA: evidence from isothermal titration calorimetry. J Biol Chem 280:20887–20893CrossRefPubMedGoogle Scholar
  8. Hayashi K, Nakashima R, Sakurai K, Kitagawa K, Yamasaki S, Nishino K, Yamaguchi A (2015) AcrB-AcrA fusion proteins that act as multidrug efflux transporters. J Bacteriol 198:332–342CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hernández-Mendoza A, Quinto C, Segovia L, Pérez-Rueda E (2007) Ligand-binding prediction in the resistance-nodulation-cell division (RND) proteins. Comput Biol Chem 31:115–123CrossRefPubMedGoogle Scholar
  10. Isken S, de Bont JA (1996) Active efflux of toluene in a solvent-resistant bacterium. J Bacteriol 178:6056–6058CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kieboom J, Dennis JJ, de Bont JAM, Zylstra G (1998) Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 273:85–91CrossRefPubMedGoogle Scholar
  12. Minagawa S, Inami H, Kato T, Sawada S, Yasuki T, Miyairi S, Horikawa M, Okuda J, Gotoh N (2012) RND-type efflux pump system MexAB-OprM of Pseudomonas aeruginosa selects bacterial languages 3-oxo-acyl-homoserine lactones for cell to cell communication. BMC Microbiol 12:70CrossRefPubMedPubMedCentralGoogle Scholar
  13. Murakami S, Nakashima R, Yamashita E, Yamaguchi A (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587–593CrossRefPubMedGoogle Scholar
  14. Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A (2006) Crystal structure of a multidrug transporter reveal a functionally rotating mechanism. Nature 443:173–179CrossRefPubMedGoogle Scholar
  15. Nakashima R, Sakurai K, Yamasaki S, Nishino K, Yamaguchi A (2011) Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature 480:565–569CrossRefPubMedGoogle Scholar
  16. Nikaido H (1998) Multiple antibiotic resistance and efflux. Curr Opin Microbiol 1:516–523CrossRefPubMedGoogle Scholar
  17. Ramos JL, Duque E, Huertas MJ, Haïdour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177:3911–3916CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-González MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768CrossRefPubMedGoogle Scholar
  19. Rojas A, Duque E, Mosqueda G, Golden G, Hurtado A, Ramos JL, Segura A (2001) Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J Bacteriol 183:3967–3973CrossRefPubMedPubMedCentralGoogle Scholar
  20. Seeger MA, Schiefner A, Eicher T, Verrey F, Diederichs K, Pos KM (2006) Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313:1295–1298CrossRefPubMedGoogle Scholar
  21. Seeger MA, von Ballmoos C, Eicher T, Brandstätter L, Verrey F, Diederichs K, Pos KM (2008) Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB. Nat Struct Mol Biol 15:199–205CrossRefPubMedGoogle Scholar
  22. Sennhauser G, Bukowska MA, Briand C, Grutter MG (2009) Crystal structure of the multidrug exporter MexB from Pseudomonas aeruginosa. J Mol Biol 389:134–145CrossRefPubMedGoogle Scholar
  23. Sikkema J, de Bont JAM, Poolman B et al (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedPubMedCentralGoogle Scholar
  24. Smith HE, Blair JM (2014) Redundancy in the periplasmic adaptor proteins AcrA and AcrE provides resilience and an ability to export substrates of multidrug efflux. J Antimicrob Chemother 69:982–987CrossRefPubMedGoogle Scholar
  25. Su CC, Li M, Gu R, Takatsuka Y, McDermott G, Nikaido H, Yu EW (2006) Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway. J Bacteriol 188:7290–7296CrossRefPubMedPubMedCentralGoogle Scholar
  26. Symmons MF, Bokma E, Koronakis E, Hughes C, Koronakis V (2009) The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc Natl Acad Sci U S A 106(17):7173–7178CrossRefPubMedPubMedCentralGoogle Scholar
  27. Tikhonova EB, Yamada Y, Zgurskaya HI (2011) Sequential mechanism of assembly of multidrug efflux pump AcrAB-TolC. Chem Biol 18(4):454–463CrossRefPubMedPubMedCentralGoogle Scholar
  28. Törnroth-Horsefield S, Gourdon P, Horsefield R, Brive L, Yamamoto N, Mori H, Snijder A, Neutze R (2007) Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist. Structure 15:1663–1673CrossRefPubMedGoogle Scholar
  29. Touzé T, Eswaran J, Bokma E, Koronakis E, Hughes C, Koronakis V (2004) Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Mol Microbiol 53:697–706CrossRefPubMedGoogle Scholar
  30. Xu Y, Lee M, Moeller A, Song S, Yoon BY, Kim HM, Jun SY, Lee K, Ha NC (2011) Funnel-like hexameric assembly of the periplasmic adapter protein in the tripartite multidrug efflux pumpin gram-negative bacteria. J Biol Chem 286:17910–17920CrossRefPubMedPubMedCentralGoogle Scholar
  31. Yamaguchi A, Nakashima R, Sakurai K (2015) Structural basis of RND-type multidrug exporters. Front Microbiol 6:327CrossRefPubMedPubMedCentralGoogle Scholar
  32. Yu EW, McDermott G, Zgurskaya HI, Nikaido H, Koshland DE Jr (2003) Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 300:976–980CrossRefPubMedGoogle Scholar
  33. Yu EW, Aires JR, McDermott G, Nikaido H (2005) A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study. J Bacteriol 187:6904–6815CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Matilde Fernández
    • 1
  • Craig Daniels
    • 2
  • Vanina García
    • 3
  • Bilge Hilal Cadirci
    • 4
  • Ana Segura
    • 1
  • Juan Luis Ramos
    • 1
  • Tino Krell
    • 1
  1. 1.Department of Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
  2. 2.Developmental and Stem Cell Biology Program, Brain Tumour Research CentreThe Hospital for Sick ChildrenTorontoCanada
  3. 3.The University of NottinghamNottingham, NottinghamshireUK
  4. 4.Department of BioengineeringGaziosmanpasa UniversityTokatTurkey

Personalised recommendations