Chemotaxis to Hydrocarbons

  • Rebecca E. Parales
  • Jayna L. Ditty
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Chemotaxis is the ability of organisms to move towards or away from chemical gradients in the environment. Hydrocarbon compounds, which are sources of carbon and energy for many bacterial species, have been shown to be chemoattractants for specific organisms. While much is known about catabolic pathways for the degradation of hydrocarbons and related compounds, less is known about the molecular basis for chemotactic responses to these volatile and toxic chemicals.



Chemotaxis research in the authors’ laboratories has been supported by the National Science Foundation (award MCB-0919930 to REP and JLD) and the University of California Davis Committee on Research New Funding Initiative (to REP).


  1. Adadevoh JS, Triolo S, Ramsburg CA, Ford RM (2016) Chemotaxis increases the residence time of bacteria in granular media containing distributed contaminant sources. Environ Sci Technol 50:181–187PubMedCrossRefGoogle Scholar
  2. Adler J (1973) A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol 74:77–91PubMedCrossRefGoogle Scholar
  3. Alexandre G (2010) Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors. Microbiology 156:2283–2293PubMedCrossRefGoogle Scholar
  4. Armitage JP, Schmitt R (1997) Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti – variations on a theme? Microbiology 143:3671–3682PubMedCrossRefGoogle Scholar
  5. Arora PK, Bae H (2014) Biotransformation and chemotaxis of 4-chloro-2-nitrophenol by Pseudomonas sp. JHN Microb Cell Fact 13:110Google Scholar
  6. Arora PK, Srivastava A, Singh VP (2014) Degradation of 4-chloro-3-nitrophenol via a novel intermediate, 4-chlororesorcinol by Pseudomonas sp. JHN Sci Rep 4:4475PubMedCrossRefGoogle Scholar
  7. Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J (2004) Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun 316:816–821PubMedCrossRefGoogle Scholar
  8. Bhushan B, Samanta SK, Chauhan A, Chakraborti AK, Jain RK (2000) Chemotaxis and biodegradation of 3-methyl-4-nitrophenol by Ralstonia sp. SJ98. Biochem Biophys Res Commun 275:129–133PubMedCrossRefGoogle Scholar
  9. Chauhan S, Barbieri P, Wood TK (1998) Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl Environ Microbiol 64:3023–3024PubMedPubMedCentralGoogle Scholar
  10. Chávez FP, Gordillo F, Jerez CA (2006) Adaptive responses and cellular behaviour of biphenyl-degrading bacteria toward polychlorinated biphenyls. Biotechnol Adv 24:309–320PubMedCrossRefGoogle Scholar
  11. Criddle CS, DeWitt JT, Grbic-Galic D, McCarty PL (1990) Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions. Appl Environ Microbiol 56:3240–3246PubMedPubMedCentralGoogle Scholar
  12. Dybas MJ, Tatara GM, Criddle CS (1995) Localization and characterization of the carbon tetrachloride transformation activity of Pseudomonas sp. strain KC. Appl Environ Microbiol 61:758–762PubMedPubMedCentralGoogle Scholar
  13. Fahrner KA, Block SM, Krishnaswamy S, Parkinson JS, Berg HC (1994) A mutant hook-associated protein (HAP3) facilitates torsionally induced transformations of the flagellar filament of Escherichia coli. J Mol Biol 238:173–186PubMedCrossRefGoogle Scholar
  14. Gilbert D, Jakobsen HH, Winding A, Mayer P (2014) Co-transport of polycyclic aromatic hydrocarbons by motile microorganisms leads to enhanced mass transfer under diffusive conditions. Environ Sci Technol 48:4368–4375PubMedCrossRefGoogle Scholar
  15. Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sillen W, Vangronsveld J (2016) The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective. Front Microbiol 7:1836PubMedPubMedCentralCrossRefGoogle Scholar
  16. Gordillo F, Chávez FP, Jerez CA (2007) Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiol Ecol 60:322–328Google Scholar
  17. Grimm AC, Harwood CS (1997) Chemotaxis of Pseudomonas putida to the polyaromatic hydrocarbon naphthalene. Appl Environ Microbiol 63:4111–4115PubMedPubMedCentralGoogle Scholar
  18. Grimm AC, Harwood CS (1999) NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol 181:3310–3316PubMedPubMedCentralGoogle Scholar
  19. Haigler BE, Spain JC (1993) Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT. Appl Environ Microbiol 59:2239–2243PubMedPubMedCentralGoogle Scholar
  20. Hanzel J, Harms H, Wick LY (2010) Bacterial chemotaxis along vapor-phase gradients of naphthalene. Environ Sci Technol 44:9304–9310PubMedCrossRefGoogle Scholar
  21. Hanzel J, Thullner M, Harms H, Wick LY (2012) Walking the tightrope of bioavailability: growth dynamics of PAH degraders on vapour-phase PAH. Microb Biotechnol 5:79–86PubMedCrossRefGoogle Scholar
  22. Harwood CS (1989) A methyl-accepting protein is involved in benzoate taxis in Pseudomonas putida. J Bacteriol 171:4603–4608PubMedPubMedCentralCrossRefGoogle Scholar
  23. Harwood CS, Fosnaugh K, Dispensa M (1989) Flagellation of Pseudomonas putida and analysis of its motile behavior. J Bacteriol 171:4063–4066PubMedPubMedCentralCrossRefGoogle Scholar
  24. Harwood CS, Nichols NN, Kim M-K, Ditty JL, Parales RE (1994) Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol 176:6479–6488PubMedPubMedCentralCrossRefGoogle Scholar
  25. Harwood CS, Ornston LN (1984) TOL plasmid can prevent induction of chemotactic responses to aromatic acids. J Bacteriol 160:797–800PubMedPubMedCentralGoogle Scholar
  26. Harwood CS, Parales RE, Dispensa M (1990) Chemotaxis of Pseudomonas putida toward chlorinated benzoates. Appl Environ Microbiol 56:1501–1503PubMedPubMedCentralGoogle Scholar
  27. Hazen TC (1994) Chemotactic selection of pollutant degrading soil bacteria. U.S. Patent, 5,324,661Google Scholar
  28. Hazen TC, Lopez-de-Victoria G (1994) Method of degrading pollutants in soil. U.S. Patent, 5,236,703Google Scholar
  29. Huang Z, Ni B, Jiang CY, Wu YF, He YZ, Parales RE, Liu SJ (2016) Direct sensing and signal transduction during bacterial chemotaxis toward aromatic compounds in Comamonas testosteroni. Mol Microbiol 101:224–237PubMedCrossRefGoogle Scholar
  30. Imae Y, Oosawa K, Mizuno T, Kihara M, Macnab RM (1987) Phenol: a complex chemoeffector in bacterial chemotaxis. J Bacteriol 169:371–379PubMedPubMedCentralCrossRefGoogle Scholar
  31. Iwaki H, Muraki T, Ishihara S, Hasegawa Y, Rankin KN, Sulea T, Boyd J, Lau PC (2007) Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. J Bacteriol 189:3502–3514PubMedPubMedCentralCrossRefGoogle Scholar
  32. Krell T, Lacal J, Guazzaroni ME, Busch A, Silva-Jiménez H, Fillet S, Reyes-Darías JA, Muñoz-Martínez F, Rico-Jiménez M, García-Fontana C, Duque E, Segura A, Ramos JL (2012) Responses of Pseudomonas putida to toxic aromatic carbon sources. J Biotechnol 160:25–32PubMedCrossRefGoogle Scholar
  33. Krell T, Lacal J, Munoz-Martinez F, Reyes-Darias JA, Cadirci BH, Garcia-Fontana C, Ramos JL (2011) Diversity at its best: bacterial taxis. Environ Microbiol 13:1115–1124PubMedCrossRefGoogle Scholar
  34. Krell T, Lacal J, Reyes-Darias JA, Jimenez-Sanchez C, Sungthong R, Ortega-Calvo JJ (2013) Bioavailability of pollutants and chemotaxis. Curr Opin Biotechnol 24:451–456PubMedCrossRefGoogle Scholar
  35. Lacal J, Muñoz-Martínez F, Reyes-Darías JA, Duque E, Matilla M, Segura A, Calvo JJ, Jímenez-Sánchez C, Krell T, Ramos JL (2011) Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ Microbiol 13:1733–1744PubMedCrossRefGoogle Scholar
  36. Lacal J, Reyes-Darias JA, Garcia-Fontana C, Ramos JL, Krell T (2013) Tactic responses to pollutants and their potential to increase biodegradation efficiency. J Appl Microbiol 114:923–933PubMedCrossRefGoogle Scholar
  37. Lanfranconi MP, Alvarez HM, Studdert CA (2003) A strain isolated from gas oil-contaminated soil displays chemotaxis towards gas oil and hexadecane. Environ Microbiol 5:1002–1008PubMedCrossRefGoogle Scholar
  38. Lau PCK, Wang Y, Patel A, Labbé D, Bergeron H, Brousseau R, Konishi Y, Rawlings M (1997) A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. Proc Natl Acad Sci U S A 94:1453–1458PubMedPubMedCentralCrossRefGoogle Scholar
  39. Law AM, Aitken MD (2003) Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid. Appl Environ Microbiol 69:5968–5973PubMedPubMedCentralCrossRefGoogle Scholar
  40. Leahy JG, Byrne AM, Olsen RH (1996) Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria. Appl Environ Microbiol 62:825–833PubMedPubMedCentralGoogle Scholar
  41. Lee DY, Ramos A, Macomber L, Shapleigh JP (2002) Taxis response of various denitrifying bacteria to nitrate and nitrite. Appl Environ Microbiol 68:2140–2147PubMedPubMedCentralCrossRefGoogle Scholar
  42. Leungsakul T, Keenan BG, Smets BF, Wood TK (2005) TNT and nitroaromatic compounds are chemoattractants for Burkholderia cepacia R34 and Burkholderia sp. strain DNT. Appl Microbiol Biotechnol 69:321–325PubMedCrossRefGoogle Scholar
  43. Lewis TA, Paszczynski A, Gordon-Wylie SW, Jeedigunta S, Lee CH, Crawford RL (2001) Carbon tetrachloride dechlorination by the bacterial transition metal chelator pyridine-2,6-bis(thiocarboxylic acid). Environ Sci Technol 35:552–559PubMedCrossRefGoogle Scholar
  44. Li P, Ma L, Feng YL, Mo MH, Yang FX, Dai HF, Zhao YX (2012) Diversity and chemotaxis of soil bacteria with antifungal activity against Fusarium wilt of banana. J Ind Microbiol Biotechnol 39:1495–1505PubMedCrossRefGoogle Scholar
  45. Li S, Wackett LP (1992) Trichloroethylene oxidation by toluene dioxygenase. Biochem Biophys Res Comm 185:443–451PubMedCrossRefGoogle Scholar
  46. Luu RA, Kootstra JD, Nesteryuk V, Brunton C, Parales JV, Ditty JL, Parales RE (2015) Integration of chemotaxis, transport and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY. Mol Microbiol 96:134–147PubMedCrossRefGoogle Scholar
  47. Marx RB, Aitken MD (1999) Quantification of chemotaxis to naphthalene by Pseudomonas putida G7. Appl Environ Microbiol 65:2847–2852PubMedPubMedCentralGoogle Scholar
  48. Marx RB, Aitken MD (2000a) Bacterial chemotaxis enhances naphthalene degradation in a heterogeneous aqueous system. Environ Sci Technol 34:3379–3383CrossRefGoogle Scholar
  49. Marx RB, Aitken MD (2000b) A material-balance approach for modeling bacterial chemotaxis to a consumable substrate in the capillary assay. Biotechnol Bioeng 68:308–315PubMedCrossRefGoogle Scholar
  50. Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, Han J, Holman HY, Hultman J, Lamendella R, Mackelprang R, Malfatti S, Tom LM, Tringe SG, Woyke T, Zhou J, Rubin EM, Jansson JK (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater horizon oil spill. ISME J 6:1715–1727PubMedPubMedCentralCrossRefGoogle Scholar
  51. Matilla MA, Krell T (2017) Chemoreceptor-based signal sensing. Curr Opin Biotechnol 45:8–14PubMedCrossRefGoogle Scholar
  52. Meng L, Li H, Bao M, Sun P (2017) Metabolic pathway for a new strain Pseudomonas synxantha LSH-7′: from chemotaxis to uptake of n-hexadecane. Sci Rep 7:39068PubMedPubMedCentralCrossRefGoogle Scholar
  53. Ni B, Huang Z, Fan Z, Jiang CY, Liu SJ (2013) Comamonas testosteroni uses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds. Mol Microbiol 90:813–823PubMedCrossRefGoogle Scholar
  54. Ni B, Huang Z, Wu YF, Fan Z, Jiang CY, Liu SJ (2015) A novel chemoreceptor MCP2983 from Comamonas testosteroni specifically binds to cis-aconitate and triggers chemotaxis towards diverse organic compounds. Appl Microbiol Biotechnol 99:2773–2781PubMedCrossRefGoogle Scholar
  55. Nisenbaum M, Sendra GH, Gilbert GA, Scagliola M, González JF, Murialdo SE (2013) Hydrocarbon biodegradation and dynamic laser speckle for detecting chemotactic responses at low bacterial concentration. J Environ Sci 25:613–625CrossRefGoogle Scholar
  56. Olson MS, Ford RM, Smith JA, Fernandez EJ (2004) Quantification of bacterial chemotaxis in porous media using magnetic resonance imaging. Environ Sci Technol 38:3864–3870PubMedCrossRefGoogle Scholar
  57. Ortega-Calvo JJ, Marchenko AI, Vorobyov AV, Borovick RV (2003) Chemotaxis in polycyclic aromatic hydrocarbon-degrading bacteria isolated from coal-tar- and oil-polluted rhizospheres. FEMS Microbiol Ecol 44:373–381PubMedCrossRefGoogle Scholar
  58. Pandey G, Chauhan A, Samanta SK, Jain RK (2002) Chemotaxis of a Ralstonia sp. SJ98 toward co-metabolizable nitroaromatic compounds. Biochem Biophys Res Commun 299:404–409PubMedCrossRefGoogle Scholar
  59. Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68:5789–5795PubMedPubMedCentralCrossRefGoogle Scholar
  60. Pandey J, Chauhan A, Jain RK (2009) Integrative approaches for assessing the ecological sustainability of in situ bioremediation. FEMS Microbiol Rev 33:324–375PubMedCrossRefGoogle Scholar
  61. Pandey J, Sharma NK, Khan F, Ghosh A, Oakeshott JG, Jain RK, Pandey G (2012) Chemotaxis of Burkholderia sp. strain SJ98 towards chloronitroaromatic compounds that it can metabolise. BMC Microbiol 12:19PubMedPubMedCentralCrossRefGoogle Scholar
  62. Parales RE (2004) Nitrobenzoates and aminobenzoates are chemoattractants for Pseudomonas strains. Appl Environ Microbiol 70:285–292PubMedPubMedCentralCrossRefGoogle Scholar
  63. Parales RE, Ditty JL, Harwood CS (2000) Toluene-degrading bacteria are chemotactic to the environmental pollutants benzene, toluene, and trichoroethylene. Appl Environ Microbiol 66:4098–4104PubMedPubMedCentralCrossRefGoogle Scholar
  64. Parales RE, Harwood CS (2002) Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr Opin Microbiol 5:266–273PubMedCrossRefGoogle Scholar
  65. Parales RE, Ju K-S, Rollefson J, Ditty JL (2008) Bioavailability, transport and chemotaxis of organic pollutants. In: Diaz E (ed) Microbial Bioremediation. Caister Academic Press, Norfolk, pp 145–187Google Scholar
  66. Parkinson JS, Hazelbauer GL, Falke JJ (2015) Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends Microbiol 3:257–266CrossRefGoogle Scholar
  67. Paul D, Singh R, Jain RK (2006) Chemotaxis of Ralstonia sp. SJ98 towards p-nitrophenol in soil. Environ Microbiol 8:1797–1804PubMedCrossRefGoogle Scholar
  68. Pedit JA, Marx RB, Miller CT, Aitken MD (2002) Quantitative analysis of experiments on bacterial chemotaxis to naphthalene. Biotechnol Bioeng 78:626–634PubMedCrossRefGoogle Scholar
  69. Pham HT, Parkinson JS (2011) Phenol sensing by Escherichia coli chemoreceptors: a nonclassical mechanism. J Bacteriol 193:6597–6604PubMedPubMedCentralCrossRefGoogle Scholar
  70. Philips J, Miroshnikov A, Haest PJ, Springael D, Smolders E (2014) Motile Geobacter dechlorinators migrate into a model source zone of trichloroethene dense non-aqueous phase liquid: experimental evaluation and modeling. J Contam Hydrol 170:28–38Google Scholar
  71. Pieper DH, Timmis KN, Ramos JL (1996) Designing bacteria for the degradation of nitro- and chloroaromatic pollutants. Naturwissenschaften 83:201–213CrossRefGoogle Scholar
  72. Rabinovitch-Deere CA, Parales RE (2012) Three types of taxis used in the response of Acidovorax sp. strain JS42 to 2-nitrotoluene. Appl Environ Microbiol 78:2308–2315CrossRefGoogle Scholar
  73. Rhys-Williams W, Taylor SC, Williams PA (1993) A novel pathway for the catabolism of 4-nitrotoluene by Pseudomonas. J Gen Microbiol 139:1967–1972PubMedCrossRefGoogle Scholar
  74. Roberts MA, Papachristodoulou A, Armitage JP (2010) Adaptation and control circuits in bacterial chemotaxis. Biochem Soc Trans 38:1265–1269PubMedCrossRefGoogle Scholar
  75. Roush CJ, Lastoskie CM, Worden RM (2006) Denitrification and chemotaxis of Pseudomonas stutzeri KC in porous media. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:967–983PubMedCrossRefGoogle Scholar
  76. Ryoo D, Shim H, Canada K, Barberi P, Wood TK (2000) Aerobic degradation of tetrachloroethylene by toluene-o-monooxygenase of Pseudomonas stutzeri OX1. Nat Biotechnol 18:775–778PubMedCrossRefGoogle Scholar
  77. Samanta SK, Bhushan B, Chauhan A, Jain RK (2000) Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation. Biochem Biophys Res Commun 269:117–123PubMedCrossRefGoogle Scholar
  78. Samanta SK, Jain RK (2000) Evidence for plasmid-mediated chemotaxis of Pseudomonas putida towards naphthalene and salicylate. Can J Microbiol 46:1–6PubMedCrossRefGoogle Scholar
  79. Sarand I, Osterberg S, Holmqvist S, Holmfeldt P, Skärfstad E, Parales RE, Shingler V (2008) Metabolism-dependent taxis towards (methyl)phenols is coupled through the most abundant of three polar localized Aer-like proteins of Pseudomonas putida. Environ Microbiol 10:1320–1334PubMedCrossRefGoogle Scholar
  80. Shields MS, Francesconi SC (1996) Microbial degradation of trichloroethylene, dichloroethylenes, and aromatic pollutants. U.S. Patent 5,543,317Google Scholar
  81. Shioi J, Dang CV, Taylor BL (1987) Oxygen as attractant and repellent in bacterial chemotaxis. J Bacteriol 169:3118–3123PubMedPubMedCentralCrossRefGoogle Scholar
  82. Shitashiro M, Kato J, Fukumura T, Kuroda A, Ikeda T, Takiguchi N, Ohtake H (2003) Evaluation of bacterial aerotaxis for its potential use in detecting the toxicity of chemicals to microorganisms. J Biotechnol 101:11–18PubMedCrossRefGoogle Scholar
  83. Shitashiro M, Tanaka H, Hong CS, Kuroda A, Takiguchi N, Ohtake H, Kato J (2005) Identification of chemosensory proteins for trichloroethylene in Pseudomonas aeruginosa. J Biosci Bioeng 99:396–402PubMedCrossRefGoogle Scholar
  84. Sikkema J, De Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedPubMedCentralGoogle Scholar
  85. Singh R, Olson MS (2010) Kinetics of trichloroethylene and toluene toxicity to Pseudomonas putida F1. Environ Toxicol Chem 29:56–63PubMedCrossRefGoogle Scholar
  86. Smits TH, Witholt B, van Beilen JB (2003) Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa. Antonie Van Leeuwenhoek 84:193–200PubMedCrossRefGoogle Scholar
  87. Spain JC, Hughes JB, Knackmuss H-J (2000) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca RatonGoogle Scholar
  88. Strobel KL, McGowan S, Bauer RD, Griebler C, Liu J, Ford RM (2011) Chemotaxis increases vertical migration and apparent transverse dispersion of bacteria in a bench-scale microcosm. Biotechnol Bioeng 108:2070–2077PubMedCrossRefGoogle Scholar
  89. Szurmant H, Ordal GW (2004) Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol Mol Biol Rev 68:301–319PubMedPubMedCentralCrossRefGoogle Scholar
  90. Taguchi K, Fukatomi H, Kuroda A, Kato J, Ohtake H (1997) Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. Microbiology 143:3223–3229PubMedCrossRefGoogle Scholar
  91. Taylor BL (2007) Aer on the inside looking out: paradigm for a PAS-HAMP role in sensing oxygen, redox and energy. Mol Microbiol 65:1415–1424PubMedPubMedCentralCrossRefGoogle Scholar
  92. Taylor BL, Miller JB, Warrick HM, Koshland DEJ (1979) Electron acceptor taxis and blue light effect on bacterial chemotaxis. J Bacteriol 140:567–573PubMedPubMedCentralGoogle Scholar
  93. Taylor BL, Watts KJ, Johnson MS (2007) Oxygen and redox sensing by two-component systems that regulate behavioral responses: behavioral assays and structural studies of Aer using in vivo disulfide cross-linking. Methods Enzymol 422:190–232PubMedCrossRefGoogle Scholar
  94. Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506PubMedPubMedCentralGoogle Scholar
  95. Taylor BL, Zhulin IB, Johnson MS (1999) Aerotaxis and other energy-sensing behavior in bacteria. Annu Rev Microbiol 53:103–128PubMedCrossRefGoogle Scholar
  96. Tremaroli V, Vacchi Suzzi C, Fedi S, Ceri H, Zannoni D, Turner RJ (2010) Tolerance of Pseudomonas pseudoalcaligenes KF707 to metals, polychlorobiphenyls and chlorobenzoates: effects on chemotaxis-, biofilm- and planktonic-grown cells. FEMS Microbiol Ecol 74:291–301PubMedCrossRefGoogle Scholar
  97. van Beilen JB, Panke S, Lucchini S, Franchini AG, Röthlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630PubMedCrossRefGoogle Scholar
  98. Vangnai AS, Takeuchi K, Oku S, Kataoka N, Nitisakulkan T, Tajima T, Kato J (2013) Identification of CtpL as a chromosomally encoded chemoreceptor for 4-chloroaniline and catechol in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 79:7241–7248PubMedPubMedCentralCrossRefGoogle Scholar
  99. Vardar G, Barbieri P, Wood TK (2005) Chemotaxis of Pseudomonas stutzeri OX1 and Burkholderia cepacia G4 toward chlorinated ethenes. Appl Microbiol Biotechnol 66:696–701PubMedCrossRefGoogle Scholar
  100. Wackett LP, Gibson DT (1988) Degradation of trichloroethylene by toluene dioxygenase in whole cell studies with Pseudomonas putida F1. Appl Environ Microbiol 54:1703–1708PubMedPubMedCentralGoogle Scholar
  101. Wang X, Atencia J, Ford RM (2015) Quantitative analysis of chemotaxis towards toluene by Pseudomonas putida in a convection-free microfluidic device. Biotechnol Bioeng 112:896–904PubMedCrossRefGoogle Scholar
  102. Wang X, Lanning LM, Ford RM (2016) Enhanced retention of chemotactic bacteria in a pore network with residual NAPL contamination. Environ Sci Technol 50:165–172PubMedCrossRefGoogle Scholar
  103. Wang X, Long T, Ford RM (2012) Bacterial chemotaxis toward a NAPL source within a pore-scale microfluidic chamber. Biotechnol Bioeng 109:1622–1628PubMedCrossRefGoogle Scholar
  104. Witt ME, Dybas MJ, Worden RM, Criddle CS (1999) Motility-enhanced bioremediation of carbon tetrachloride-contaminated aquifer sediments. Environ Sci Technol 33:2958–2964CrossRefGoogle Scholar
  105. Wood PL, Parales JV, Parales RE (2006) Investigation of Ralstonia sp. strain U2 chemotaxis to naphthalene. Abstract, 106th general meeting of the American Society for MicrobiologyGoogle Scholar
  106. Wu G, Feng Y, Boyd SA (2003) Characterization of bacteria capable of degrading soil-sorbed biphenyl. Bull Environ Contam Toxicol 71:768–775PubMedCrossRefGoogle Scholar
  107. Wuichet K, Zhulin IB (2010) Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 3:50CrossRefGoogle Scholar
  108. Yamamoto K, Macnab RM, Imae Y (1990) Repellent response functions of the Trg and Tap chemoreceptors of Escherichia coli. J Bacteriol 172:383–388PubMedPubMedCentralCrossRefGoogle Scholar
  109. Young LY, Mitchell R (1973) Negative chemotaxis of marine bacteria to toxic chemicals. Appl Microbiol 25:972–975PubMedPubMedCentralGoogle Scholar
  110. Yu HS, Alam M (1997) An agarose-in-plug bridge method to study chemotaxis in the archaeon Halobacterium salinarum. FEMS Microbiol Lett 156:265–269PubMedCrossRefGoogle Scholar
  111. Zhang JJ, Xin YF, Liu H, Wang SJ, Zhou NY (2008) Metabolism-independent chemotaxis of Pseudomonas sp. strain WBC-3 toward aromatic compounds. J Environ Sci 20:1238–1242CrossRefGoogle Scholar
  112. Zhulin IB (2001) The superfamily of chemotaxis transducers: from physiology to genomics and back. Adv Microbial Phys 45:157–198Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Microbiology and Molecular Genetics, College of Biological SciencesUniversity of CaliforniaDavisUSA
  2. 2.Department of Biology, College of Arts and SciencesUniversity of St. ThomasSt. PaulUSA

Personalised recommendations