Advertisement

Assimilation of Hydrocarbons and Lipids by Means of Biofilm Formation

  • Pierre Sivadon
  • Régis Grimaud
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Hydrophobic organic compounds (HOCs) that are used as substrates by bacteria encompass a great variety of molecules, including contaminants such as hydrocarbons and natural components of the organic matter such as lipids. It is now well known that many bacterial strains use HOCs as carbon and energy sources for growth and form biofilms at the HOCs-water interface that are referred to as oleolytic biofilms. The formation of these biofilms appears to be a strategy to overcome the low accessibility of nearly water-insoluble substrates and is therefore a critical process in the biodegradation of hydrocarbons and lipids. Because oleolytic biofilms develop on a nutritive interface serving as both physical support and growth substrate, they represent an original facet of biofilm biology.

References

  1. Abbasnezhad H, Gray M, Foght JM (2011) Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Appl Microbiol Biotechnol 92:653–675CrossRefPubMedGoogle Scholar
  2. Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baelum J, Borglin S, Chakraborty R, Fortney JL, Lamendella R, Mason OU, Auer M, Zemla M, Bill M, Conrad ME, Malfatti SA, Tringe SG, Holman HY, Hazen TC, Jansson JK (2012) Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environ Microbiol 14:2405–2416CrossRefPubMedGoogle Scholar
  4. Baldi F, Ivoševic N, Minacci A, Pepi M, Fani R, Svetličic V, Žutic V (1999) Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes. Appl Environ Microbiol 65:2041–2048PubMedPubMedCentralGoogle Scholar
  5. Baldi F, Pepi M, Capone A, della Giovampaola C, Milanesi C, Fani R, Focarelli R (2003) Envelope glycosylation determined by lectins in microscopy sections of Acinetobacter Venetianus induced by diesel fuel. Res Microbiol 154:417–424CrossRefPubMedGoogle Scholar
  6. Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 65:2697–2702PubMedPubMedCentralGoogle Scholar
  7. Bastiaens L, Springael D, Wattiau P, Harms H, deWachter R, Verachtert H, Diels L (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl Environ Microbiol 66:1834–1843CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bendinger B, Rijnaarts HHM, Altendorf K, Zehnder AJB (1993) Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl Environ Microbiol 59:3973–3977PubMedPubMedCentralGoogle Scholar
  9. Bihari Z, Pettko-Szandtner A, Csanadi G, Balazs M, Bartos P, Kesseru P, Kiss I, Mecs I (2007) Isolation and characterization of a novel n-alkane-degrading strain, Acinetobacter haemolyticus AR-46. Z Naturforsch 62:285–295Google Scholar
  10. Bouchez M, Blanchet D, Vandecasteele JP (1997) An interfacial uptake mechanism for the degradation of pyrene by a Rhodococcus strain. Microbiology 143:1087–1093CrossRefGoogle Scholar
  11. Bouchez-Naïtali M, Rakatozafy H, Leveau JY, Marchal R, Vandecasteele JP (1999) Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 86:421–428CrossRefPubMedGoogle Scholar
  12. Bouchez-Naïtali M, Blanchet D, Bardin V, Vandecasteele JP (2001) Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: the importance of cell flocculation. Microbiology 147:2537–2543CrossRefPubMedGoogle Scholar
  13. Calvillo YM, Alexander M (1996) Mechanism of microbial utilization of biphenyl sorbed to polyacrylic beads. Appl Microbiol Biotechnol 45:383–390CrossRefPubMedGoogle Scholar
  14. Deppe U, Richnow HH, Michaelis W, Antranikian G (2005) Degradation of crude oil by an arctic microbial consortium. Extremophiles 9:461–470CrossRefPubMedGoogle Scholar
  15. Efroymson RA, Alexander M (1991) Biodegradation by an Arthrobacter species of hydrocarbons partitioned into an organic solvent. Appl Environ Microbiol 57:1441–1447PubMedPubMedCentralGoogle Scholar
  16. Ennouri H, d’Abzac P, Hakil F, Branchu P, Naïtali M, Lomenech AM, Oueslati R, Desbrières J, Sivadon P, Grimaud R (2017) The extracellular matrix of the oleolytic biofilm of Marinobacter hydrocarbonoclasticus comprises cytoplasmic proteins and T2SS effectors that promote growth on hydrocarbons and lipids. Environ Microbiol 19:159–173CrossRefPubMedGoogle Scholar
  17. Eriksson M, Dalhammar G, Mohn WW (2002) Bacterial growth and biofilm production on pyrene. FEMS Microbiol Ecol 40:21–27CrossRefPubMedGoogle Scholar
  18. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633CrossRefPubMedGoogle Scholar
  19. Golyshin PN, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM (2002) Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 52:901–911PubMedGoogle Scholar
  20. Guha S, Jaffé PR (1996) Biodegradation kinetics of phenanthrene partitioned into the micellar phase of nonionic surfactants. Environ Sci Technol 30:605–611CrossRefGoogle Scholar
  21. Hardegger M, Koch AK, Ochsner UA, Fiechter A, Reiser J (1994) Cloning and heterologous expression of a gene encoding an alkane-induced extracellular protein involved in alkane assimilation from Pseudomonas aeruginosa. Appl Environ Microbiol 60:3679–3687PubMedPubMedCentralGoogle Scholar
  22. Harms H, Zehnder AJB (1995) Bioavailability of sorbed 3-chlorodibenzofuran. Appl Environ Microbiol 61:27–33PubMedPubMedCentralGoogle Scholar
  23. Harms H, Smith KEC, Wick LY (2010) Microorganism-hydrophobic compound interactions. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1479–1490CrossRefGoogle Scholar
  24. Hazen TC, Eric A, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman HYN, Osman S, Lu Z, Van Nostrand JD, Deng Y, Zhou J, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208CrossRefPubMedGoogle Scholar
  25. Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids Surf B: Biointerfaces 14:105–119CrossRefGoogle Scholar
  26. Holden PA, LaMontagne MG, Bruce AK, Miller WG, Lindow SE (2002) Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand. Appl Environ Microbiol 68:2509–2518CrossRefPubMedPubMedCentralGoogle Scholar
  27. Joannis-Cassan C, Delia ML, Riba JP (2005) Limitation phenomena induced by biofilm formation during hydrocarbon biodegradation. J Chem Technol Biotechnol 80:99–106CrossRefGoogle Scholar
  28. Johnsen AR, Karlson U (2004) Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 63:452–459CrossRefPubMedGoogle Scholar
  29. Katsutoshi H, Ishikawa M, Yamada M, Higuchi A, Ishikawa Y, Hironori E (2011) Production of peritrichate bacterionanofibers and their proteinaceous components by Acinetobacter sp. Tol 5 cells affected by growth substrates. J Biosci Bioeng 111:31–36CrossRefGoogle Scholar
  30. Kenichi H, Nakahara T, Minoda Y, Yamada K (1977) Formation of protein-like activator for n-alkane oxidation and its properties. Agric Biol Chem 41:445–450Google Scholar
  31. Kennedy RS, Finnerty WR, Sudarsanan K, Young RA (1975) Microbial assimilation of hydrocarbons. I. The fine structure of a hydrocarbon oxidizing Acinetobacter sp. Arch Microbiol 102:75–83CrossRefPubMedGoogle Scholar
  32. Klein B, Grossi V, Bouriat P, Goulas P, Grimaud R (2008) Cytoplasmic wax ester accumulation during biofilm-driven substrate assimilation at the alkane-water interface by Marinobacter hydrocarbonoclasticus SP17. Res Microbiol 159:137–144CrossRefPubMedGoogle Scholar
  33. Lanfranconi MP, Studdert CA, Alvarez HM (2003) A strain isolated from gas oil-contaminated soil displays chemotaxis towards gas oil and hexadecane. Environ Microbiol 5:1002–1008CrossRefPubMedGoogle Scholar
  34. Lee C, Wakeham S, Arnosti C (2004) Particulate organic matter in the sea: he composition conundrum. Ambio 33:565–575CrossRefPubMedGoogle Scholar
  35. Macedo AJ, Kuhlicke U, Neu TR, Timmis KN, Abraham WR (2005) Three stages of a biofilm community developing at the liquid-liquid interface between polychlorinated biphenyls and water. Appl Environ Microbiol 71:7301–7309CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mounier J, Camus A, Mitteau I, Vaysse PJ, Goulas P, Grimaud R, Sivadon P (2014) The marine bacterium Marinobacter hydrocarbonoclasticus SP17 degrades a wide range of lipids and hydrocarbons through the formation of oleolytic biofilms with distinct gene expression profiles. FEMS Microbiol Ecol 90:816–831CrossRefPubMedGoogle Scholar
  37. Mulder H, Breure AM, Van Honschooten D, Grotenhuis JTC, Van Andel JG, Rulkens WH (1998) Effect of biofilm formation by Pseudomonas 8909n on the bioavailability of solid naphthalene. Appl Microbiol Biotechnol 50:277–283CrossRefGoogle Scholar
  38. Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68:5789–5795CrossRefPubMedPubMedCentralGoogle Scholar
  39. Parche S, Geißdöfer W, Hillen W (1997) Identification and characterization of xcpR encoding a subunit of the general secretory pathway necessary for dodecane degradation in Acinetobacter calcoaceticus ADP1. J Bacteriol 179:4631–4634CrossRefPubMedPubMedCentralGoogle Scholar
  40. Perfumo A, Smyth TJP, Marchant R, Banat IM (2010) Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1501–1512CrossRefGoogle Scholar
  41. Rodrigues AC, Brito AG, Wuertz S, Melo LF (2005) Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: kinetics and physiological aspects. Biotechnol Bioeng 90:281–289CrossRefPubMedGoogle Scholar
  42. Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252CrossRefPubMedGoogle Scholar
  43. Ron EZ, Rosenberg E (2010) Protein emulsifiers. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 3031–3035CrossRefGoogle Scholar
  44. Rosenberg M, Rosenberg E (1981) Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. J Bacteriol 148:51–57PubMedPubMedCentralGoogle Scholar
  45. Rosenberg M, Bayer EA, Delarea J, Rosenberg E (1982) Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Appl Environ Microbiol 44:929–937PubMedPubMedCentralGoogle Scholar
  46. Stach JEM, Burns RG (2002) Enrichment versus biofilm culture: a functional and phylogenetic comparison of polycyclic aromatic hydrocarbon-degrading microbial communities. Environ Microbiol 4:169–182CrossRefPubMedGoogle Scholar
  47. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210CrossRefPubMedGoogle Scholar
  48. Vaysse PJ, Prat L, Mangenot M, Cruveiller S, Goulas P, Grimaud R (2009) Proteomic analysis of Marinobacter hydrocarbonoclasticus SP17 biofilm formation at the alkane-water interface reveals novel proteins and cellular processes involved in hexadecane assimilation. Res Microbiol 160:829–837CrossRefPubMedGoogle Scholar
  49. Vaysse PJ, Sivadon P, Goulas P, Grimaud R (2010) Cells dispersed from Marinobacter hydrocarbonoclasticus SP17 biofilm exhibit a specific protein profile associated with a higher ability to reinitiate biofilm development at the hexadecane-water interface. Environ Microbiol 13:737–746CrossRefPubMedGoogle Scholar
  50. Webb JS, Givskov M, Kjelleberg S (2003) Bacterial biofilms: prokaryotic adventures in multicellularity. Curr Opin Microbiol 6:578–585CrossRefPubMedGoogle Scholar
  51. Whyte LG, Slagman SJ, Pietrantonio F, Bourbonnière L, Koval SF, Lawrence JR, Inniss WE, Greer CW (1999) Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl Environ Microbiol 65:2961–2968PubMedPubMedCentralGoogle Scholar
  52. Wick LY, De Munain AR, Springael D, Harms H (2002) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385CrossRefPubMedGoogle Scholar
  53. Wick LY, Pasche N, Bernasconi SM, Pelz O, Harms H (2003) Characterization of multiple-substrate utilization by anthracene-degrading Mycobacterium frederiksbergense LB501T. Appl Environ Microbiol 69:6133–6142CrossRefPubMedPubMedCentralGoogle Scholar
  54. Willison JC (2004) Isolation and characterization of a novel sphingomonad capable of growth with chrysene as sole carbon and energy source. FEMS Microbiol Lett 241:143–150CrossRefPubMedGoogle Scholar
  55. Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE (1995) Bioaccumulation of the herbicide diclofop in extracellular polymers and its utilization by a biofilm community during starvation. Appl Environ Microbiol 61:152–158PubMedPubMedCentralGoogle Scholar
  56. Zilber Kirschner I, Rosenberg E, Gutnick D (1980) Incorporation of 32P and growth of pseudomonad UP-2 on n-tetracosane. Appl Environ Microbiol 40:1086–1093Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNRS/ UNIV PAU and PAYS ADOURInstitut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux – MIRA, UMR5254PAUFrance

Personalised recommendations