Microorganism-Hydrophobic Compound Interactions

  • Lukas Y. Wick
  • Hauke Harms
  • Kilian E. C. Smith
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


The low solubility and high hydrophobicity of hydrocarbons means that they sorb to various solids and nonaqueous-phase liquids (NAPLs), obliging hydrocarbon-degrading microorganisms to physically interact with these phases. This has various implications for the physicochemical characteristics of these microbes, their modes of hydrocarbon uptake, and their behavioral and physiological strategies aimed at promoting such interactions.



This work contributes to the research topic Chemicals in the Environment (CITE) within the research program Terrestrial Environment of the Helmholtz Association.


  1. Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 65:2967–2702Google Scholar
  2. Baumgarten T, Sperling S, Seifert J, von Bergen M, Steiniger F, Wick LY, Heipieper HJ (2012) Membrane vesicle formation as multiple stress response mechanism enhances cell surface hydrophobicity and biofilm formation of Pseudomonas putida DOT-T1E. Appl Environ Microbiol 78:6217–6224CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bastiaens L et al (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH) degrading bacteria using PAH sorbing carriers. Appl Environ Microbiol 66:1834–1843CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena, 1st edn. Wiley, New YorkGoogle Scholar
  5. Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: Quantifying bioavailability. Environ Sci Technol 31:248–252CrossRefGoogle Scholar
  6. Brown DG (2007) Relationship between micellar and hemi-micellar processes and the bioavailability of surfactant-solubilized hydrophobic organic compounds. Environ Sci Technol 41:1194–1199CrossRefPubMedGoogle Scholar
  7. Buffle J, Leppard GG (1995) Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. Environ Sci Technol 29:2169–2175CrossRefPubMedGoogle Scholar
  8. Busscher HJ, van de Beltgritter B, van derMei HC (1995) Implications of microbial adhesion to hydrocarbons for evaluating cell-surface hydrophobicity: 1. Zeta potentials of hydrocarbon droplets. Colloids Surf B Biointerfaces 5:111–116CrossRefGoogle Scholar
  9. de Carvalho CCR, Wick LY, Heipieper HJ (2009) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82:311–320CrossRefPubMedGoogle Scholar
  10. Efroymson RA, Alexander M (1991) Biodegradation by an Arthrobacter species of hydrocarbon partitioned into an organic solvent. Appl Environ Microbiol 57:1441–1447PubMedPubMedCentralGoogle Scholar
  11. Endo S, Bauerfeind J, Goss KU (2012) Partitioning of neutral organic compounds to structural proteins. Environ Sci Technol 46:12697–12703CrossRefPubMedGoogle Scholar
  12. Endo S, Escher BI, Goss KU (2011) Capacities of membrane lipids to accumulate neutral organic chemicals. Environ Sci Technol 45:5912–5921CrossRefPubMedGoogle Scholar
  13. Garcia JM, Wick LY, Harms H (2001) Influence of the nonionic surfactant Brij 35 on the bioavailability of solid and sorbed dibenzofuran. Environ Sci Technol 35:2033–2039CrossRefPubMedGoogle Scholar
  14. Gilbert D, Jakobsen HH, Winding A, Mayer P (2014) Co-Transport of polycyclic aromatic hydrocarbons by motile microorganisms leads to enhanced mass transfer under diffusive conditions. Environ Sci Technol 48:4368–4375CrossRefPubMedGoogle Scholar
  15. Guha S, Jaffé PR (1996a) Biodegradation kinetics of phenanthrene partitioned into the micellar phase of nonionic surfactants. Environ Sci Technol 30:605–611CrossRefGoogle Scholar
  16. Guha S, Jaffé PR (1996b) Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants. Environ Sci Technol 30:1382–1391CrossRefGoogle Scholar
  17. Guha S, Jaffé PR, Peters CA (1998) Bioavailability of mixtures of PAHs partitioned into the micellar phase of a nonionic surfactant. Environ Sci Technol 32:2317–2324CrossRefGoogle Scholar
  18. Hanzel J, Thullner M, Harms H, Wick LY (2011) Microbial growth with vapor-phase substrate. Environ Poll 159:858–864CrossRefGoogle Scholar
  19. Harms H, Wick LY (2004) Mobilization of organic compounds and iron by microorganisms. In: van Leeuwen HP, Köster W (eds) Physicochemical kinetics and transport at biointerfaces. Wiley, Chichester, pp 401–444.Google Scholar
  20. Harms H, Zehnder AJB (1994) Influence of substrate diffusion on degradation of dibenzofuran and 3-chlorodibenzofuran by attached and suspended bacteria. Appl Environ Microbiol 60:2736–2745.PubMedPubMedCentralGoogle Scholar
  21. Harms H, Zehnder AJB (1995) Bioavailability of Sorbed 3-Chlorodibenzofuran. Appl Environ Microbiol 61:27–33PubMedPubMedCentralGoogle Scholar
  22. Head IM, Jones DM, Röling WFM (2006) Marine microorganisms make a meal of oil. Nature Rev Microbiol 4:173–182CrossRefGoogle Scholar
  23. Holman HN, Nieman K, Sorensen DL, Miller CD,Martin MC, Borch T, McKinney WR, Sims RC (2002) Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies. Environ Sci Technol 36:1276–1280CrossRefPubMedGoogle Scholar
  24. Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH degradation. Environ Pollut 133:71–84CrossRefPubMedGoogle Scholar
  25. Klein B, Grossi V, Bouriat P, Goulas P, Grimaud R (2008) Cytoplasmic wax ester accumulation during biofilm-driven substrate assimilation at the alkane – water interface by Marinobacter hydrocarbonoclasticus SP17. Res Microbiol 159:137–144CrossRefPubMedGoogle Scholar
  26. Krell T, Lacal J, Reyes-Darias JA, Jimenez-Sanchez C, Sungthong R, Ortega-Calvo JJ (2012) Bioavailability of pollutants and chemotaxis. Curr Opin Biotechnol 24:451–456CrossRefPubMedGoogle Scholar
  27. Köster W, van Leeuwen HP (2004) Physicochemical kinetics and transport at the biointerface: setting the stage. In: van Leeuwen HP, Köster W (eds) Physicochemical kinetics and transport at biointerfaces. Wiley, Chichester, pp 2–14.Google Scholar
  28. Laor Y, Strom PF, Farmer WJ (1999) Bioavailability of phenanthrene sorbed to mineral-associated humic acid. Water Res 33:1719–1729CrossRefGoogle Scholar
  29. Levich V (1962) Physicochemical hydrodynamics. Prentice Hall, Englewood CliffsGoogle Scholar
  30. Maurice PA, Manecki M, Fein JB, Schaefer J (2004) Fractionation of an aquatic fulvic acid upon adsorption to the bacterium, Bacillus subtilis. Geomicrobiol J 21:69–78CrossRefGoogle Scholar
  31. Mayer P, Fernqvist MM, Christensen PS, Karlson U, Trapp S (2007) Enhanced diffusion of polycyclic aromatic hydrocarbons in artificial and natural aqueous solutions. Environ Sci Technol 41:6148–6155CrossRefPubMedGoogle Scholar
  32. Mayer P, Karlson U, Christensen PS, Johnsen AR, Trapp S (2005) Quantifying the effect of medium composition on the diffusive mass transfer of hydrophobic organic chemicals through unstirred boundary layers. Environ Sci Technol 39:6123–6129CrossRefPubMedGoogle Scholar
  33. McLee AG, Davies SL (1972) Linear growth of a Torulopsis sp. on n-alkanes. Canad J Microbiol 18:315–319CrossRefGoogle Scholar
  34. Mounier J, Camus A, Mitteau I, Vaysse PJ, Goulas P, Grimaud R, Sivadon P (2014) The marine bacterium Marinobacter hydrocarbonoclasticus SP17 degrades a wide range of lipids and hydrocarbons through the formation of oleolytic biofilms with distinct gene expression profiles. Fems Microbiol Ecol 90:816–831CrossRefPubMedGoogle Scholar
  35. Mulder H, Breure AM, van Honschooten D, Grotenhuis JT, Andel JGV, Rulkens WH (1998) Effect of biofilm formation by Pseudomonas 8909N on the bioavailability of solid naphthalene. Appl Microbiol Biotechnol 50:277–283CrossRefGoogle Scholar
  36. Naether DJ, Slawtschew S, Stasik S, Engel M, Olzog M, Wick LY, Timmis KN, Heipieper HJ (2013) Adaptation of hydrocarbonoclastic Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds – a physiological and transcriptomic approach. Appl Environ Microbiol 79:4282–4293CrossRefPubMedPubMedCentralGoogle Scholar
  37. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166PubMedPubMedCentralGoogle Scholar
  38. Noordman WH, Ji W, Brusseau ML, Janssen DB (1998) Effects of rhamnolipid biosurfactants on removal of phenanthrene from soil. Environ Sci Technol 32:1806–1812CrossRefGoogle Scholar
  39. Ogram AV, Jessup RE, Ou LT, Rao PS (1985) Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy)acetic acid in soils. Appl Environ Microbiol 49:582–587PubMedPubMedCentralGoogle Scholar
  40. Orench-Rivera N, Kuehn MJ (2016) Environmentally controlled bacterial vesicle-mediated export. Cellular Microbiology 18:1525–1536CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ortega-Calvo JJ, Saiz-Jimenez C (1998) Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas fluorescens strain isolated from soil. Appl Environ Microbiol 64:3123–3126PubMedPubMedCentralGoogle Scholar
  42. Otto S, Banitz T, Thullner M, Harms H, Wick LY (2016) Effects of facilitated bacterial dispersal on the degradation and emission of a desorbing contaminant. Environ Sci Technol 50:6320–6326CrossRefPubMedGoogle Scholar
  43. Rosenberg M, Rosenberg E (1981) Role of adherence in growth of Acinetobacter cacoaceticus RAG-1 on hexadecane. J Bacteriol 148:51–57PubMedPubMedCentralGoogle Scholar
  44. Schamfuss S, Neu TR, van der Meer JR, Tecon R, Harms H, Wick LY (2013) Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria. Environ Sci Technol 47:6908–6915CrossRefPubMedGoogle Scholar
  45. Schwarzenbach RP, Gschwend PM, Imboden DM (2017) Environmental organic chemistry, Wiley, New YorkGoogle Scholar
  46. Sikkema J, de Bont JAM, Poolman B (1994) Interactions of Cyclic Hydrocarbons With Biological-Membranes. J Biol Chem 269:8022–8028PubMedGoogle Scholar
  47. Sikkema J, de Bont JAM, Poolman B (1995) Mechanism of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedPubMedCentralGoogle Scholar
  48. Smith KEC, Thullner M, Wick LY, Harms H (2009) Sorption to humic acids enhances polycyclic aromatic hydrocarbon biodegradation. Environ Sci Technol 43:7205–7211CrossRefPubMedGoogle Scholar
  49. Smith KEC, Thullner M, Wick LY, Harms H (2011) Dissolved organic carbon enhances the mass transfer of hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase. Environ Sci Technol 45:8741–8747CrossRefPubMedGoogle Scholar
  50. Southam G, Whitney M, Knickerbocker C (2001) Structural characterization of the hydrocarbon degrading bacteria-oil interface: implications for bioremediation. International Biodeter Biodeg 47:197–201CrossRefGoogle Scholar
  51. Späth R, Flemming HC, Wuertz S (1998) Sorption properties of biofilms. Wat Sci Technol 37:207–210Google Scholar
  52. Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39:9009–9015CrossRefPubMedGoogle Scholar
  53. Taylor MG, Simkiss K (2004) Transport of colloids and particles across biological memnbranes. In: van Leuven HP, Köster W (eds) Physicochemical kinetics and transport at chemical-biological interphases. Wiley, Chichester, pp 358–400Google Scholar
  54. Tejeda-Agredano M-C, Mayer P, Ortega-Calvo J-J (2014) The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime. Environ Pollut 184:435–442CrossRefPubMedGoogle Scholar
  55. van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB (1990) Influence of interfaces on microbial activity. Microb Rev 54:75–87Google Scholar
  56. Vigneault B, Percot A, Lafleur M, Campbell PGC (2000) Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances. Environ Sci Technol 3:3907–3913CrossRefGoogle Scholar
  57. Volkering F, Breure AM. van Andel JG, Rulkens WH (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 61:1699–1705PubMedPubMedCentralGoogle Scholar
  58. Wick LY, Colangelo T, Harms H (2001) Kinetics of mass-transfer-limited growth on solid PAHs. Environ Sci Technol 35:354–361CrossRefPubMedGoogle Scholar
  59. Wick LY, deMunain AR, Springael D, Harms H (2002) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385CrossRefPubMedGoogle Scholar
  60. Wick LY et al (2007) Effect of fungal hyphae on the access of bacteria to phenanthrene in soil. Environ Sci Technol 41:500–505CrossRefPubMedGoogle Scholar
  61. Witholt B et al (1990) Bioconversions of Aliphatic-Compounds by Pseudomonas-Oleovorans in Multiphase Bioreactors – Background and Economic-Potential. Trends Biotechnol. 8:46–52CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lukas Y. Wick
    • 1
  • Hauke Harms
    • 1
  • Kilian E. C. Smith
    • 2
  1. 1.Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
  2. 2.Institute for Environmental Research (Biology 5)RWTH Aachen UniversityAachenGermany

Personalised recommendations