Transcriptional Regulation of Hydrocarbon Efflux Pump Expression in Bacteria

  • Cauã Antunes Westmann
  • Luana de Fátima Alves
  • Tiago Cabral Borelli
  • Rafael Silva-Rocha
  • María-Eugenia Guazzaroni
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Efflux pumps were found to be the most efficient mechanism of hydrocarbon tolerance in several bacterial strains resistant to solvents and other toxic chemicals. This involves an energy-dependent process that ensures the active removal of toxic compounds from the bacterial cytoplasm to the external medium. In order to achieve the maximal response of the process, regulatory networks of RND efflux pumps (resistance-nodulation-cell division family of bacterial transporters) are complex and modulated by the simultaneous coordination of many transcription factors in response to perturbations and cellular states. Several studies in the literature report the identification and molecular characterization of regulatory genes of RND efflux pumps, acting as global or specific regulators, activating or repressing transcription. In this sense, the main objective of this chapter is to provide a general view of the regulatory networks used by bacteria to modulate the response to toxic hydrocarbons mediated by efflux pumps. We also explore conceptual properties that remain conserved in different regulatory systems and outline common principles of RND regulation in gram-negative bacteria.

Keywords

Efflux pumps Transcriptional regulation Hydrocarbons Regulatory networks Bacteria 

Notes

Acknowledgments

This work was supported by the National Counsel of Technological and Scientific Development (CNPq 472893/2013-0 and 441833/2014-4) and by the Sao Paulo State Foundation (FAPESP, grant number 2015/04309-1 and 2012/21922-8). CAW and LFA are beneficiaries of CAPES fellowship. Authors have no conflict of interest to declare.

References

  1. Aires JR, Nikaido H (2005) Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J Bacteriol.  https://doi.org/10.1128/JB.187.6.1923Google Scholar
  2. Aires JR, Köhler T, Nikaido H (1999) Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents 43:2624–2628Google Scholar
  3. Alekshun MN, Levy SB (1999) The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol 7:410–413PubMedCrossRefGoogle Scholar
  4. Alguel Y, Meng C, Terán W et al (2007) Crystal structures of multidrug binding protein TtgR in complex with antibiotics and plant antimicrobials. J Mol Biol 369:829–840.  https://doi.org/10.1016/j.jmb.2007.03.062PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alguel Y, Lu D, Quade N et al (2010) Crystal structure of MexZ, a key repressor responsible for antibiotic resistance in Pseudomonas aeruginosa. J Struct Biol 172:305–310.  https://doi.org/10.1016/j.jsb.2010.07.012PubMedCrossRefGoogle Scholar
  6. Alnaseri H, Arsic B, Schneider JET et al (2015) Inducible expression of a resistance-nodulation-division-type efflux pump in Staphylococcus aureus provides resistance to linoleic and arachidonic acids. J Bacteriol 197:1893–1905.  https://doi.org/10.1128/JB.02607-14PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alvarez-Ortega C, Olivares J, Martínez JL (2013) RND multidrug efflux pumps: what are they good for? Front Microbiol.  https://doi.org/10.3389/fmicb.2013.00007PubMedPubMedCentralGoogle Scholar
  8. Andersen J, Delihas N (1990) micF RNA binds to the 5′ end of ompF mRNA and to a protein from Escherichia coli. Biochemistry 29:9249–9256.  https://doi.org/10.1021/bi00491a020PubMedCrossRefGoogle Scholar
  9. Anes J, McCusker MP, Fanning S, Martins M (2015) The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol.  https://doi.org/10.3389/fmicb.2015.00587PubMedPubMedCentralGoogle Scholar
  10. Bachhawat P, Stock AM (2007) Crystal structures of the receiver domain of the response regulator PhoP from Escherichia coli in the absence and presence of the phosphoryl analog beryllofluoride. J Bacteriol 189:5987–5995.  https://doi.org/10.1128/JB.00049-07PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bailey AM, Ivens A, Kingsley R et al (2010) RamA, a member of the AraC/XylS family, influences both virulence and efflux in Salmonella enterica Serovar Typhimurium. J Bacteriol 192:1607–1616.  https://doi.org/10.1128/JB.01517-09PubMedPubMedCentralCrossRefGoogle Scholar
  12. Balasubramanian D, Schneper L, Merighi M et al (2012) The regulatory repertoire of Pseudomonas aeruginosa AmpC β-lactamase regulator AmpR includes virulence genes. PLoS One.  https://doi.org/10.1371/journal.pone.0034067Google Scholar
  13. Baucheron S, Coste F, Canepa S et al (2012) Binding of the RamR repressor to wild-type and mutated promoters of the ramA gene involved in efflux-mediated multidrug resistance in Salmonella enterica serovar typhimurium. Antimicrob Agents Chemother 56:942–948.  https://doi.org/10.1128/AAC.05444-21PubMedPubMedCentralCrossRefGoogle Scholar
  14. Baucheron S, Nishino K, Monchaux I et al (2014) Bile-mediated activation of the acrAB and tolC multidrug efflux genes occurs mainly through transcriptional derepression of ramA in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 69:2400–2406.  https://doi.org/10.1093/jac/dku140PubMedCrossRefGoogle Scholar
  15. Blair JMA, Smith HE, Ricci V et al (2015) Expression of homologous RND efflux pump genes is dependent upon AcrB expression: implications for efflux and virulence inhibitor design. J Antimicrob Chemother 70:424–431.  https://doi.org/10.1093/jac/dku380PubMedCrossRefGoogle Scholar
  16. Brooun A, Tomashek JJ, Lewis K (1999) Purification and ligand binding of EmrR, a regulator of a multidrug transporter. J Bacteriol 181:5131–5133PubMedPubMedCentralGoogle Scholar
  17. Castang S, Dove SL (2010) High-order oligomerization is required for the function of the H-NS family member MvaT in Pseudomonas aeruginosa. Mol Microbiol 78:916–931.  https://doi.org/10.1111/j.1365-2958.2010.07378.xPubMedPubMedCentralCrossRefGoogle Scholar
  18. Chambers JR, Liao J, Schurr MJ, Sauer K (2014) BrlR from pseudomonas aeruginosa is a c-di-GMP-responsive transcription factor. Mol Microbiol 92:471–487.  https://doi.org/10.1111/mmi.12562PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen H, Hu J, Chen PR et al (2008) The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism. Proc Natl Acad Sci U S A 105:13586–13591.  https://doi.org/10.1073/pnas.0803391105PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen W, Wang D, Zhou W et al (2016) Novobiocin binding to NalD induces the expression of the MexAB-OprM pump in Pseudomonas aeruginosa. Mol Microbiol.  https://doi.org/10.1111/mmi.13346Google Scholar
  21. Chuanchuen R, Narasaki CT, Schweizer HP (2002) The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan. J Bacteriol 184:5036–5044.  https://doi.org/10.1128/JB.184.18.5036-5044.2002PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chuanchuen R, Gaynor JB, Karkhoff-Schweizer R, Schweizer HP (2005) Molecular characterization of MexL, the transcriptional repressor of the mexJK multidrug efflux operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:1844–1851.  https://doi.org/10.1128/AAC.49.5.1844-2851.2005PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dagley S (1971) Catabolism of aromatic compounds by micro-organisms. Adv Microb Physiol 6:1–46.  https://doi.org/10.1016/S0065-2911(08)60066-1PubMedCrossRefGoogle Scholar
  24. Das D, Xu QS, Lee JY et al (2007) Crystal structure of the multidrug efflux transporter AcrB at 3.1A resolution reveals the N-terminal region with conserved amino acids. J Struct Biol 158:494–502.  https://doi.org/10.1016/j.jsb.2006.12.004PubMedCrossRefGoogle Scholar
  25. Delihas N, Forst S (2001) MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors. J Mol Biol 313:1–12PubMedCrossRefGoogle Scholar
  26. Ding P, McFarland KA, Jin S et al (2015) A novel AT-rich DNA recognition mechanism for bacterial xenogeneic silencer MvaT. PLoS Pathog 11:e1004967.  https://doi.org/10.1371/journal.ppat.1004967PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dorel C, Lejeune P, Rodrigue A (2006) The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities? Res Microbiol 157:306–314.  https://doi.org/10.1016/j.resmic.2005.12.003PubMedCrossRefGoogle Scholar
  28. Doshi R, Nguyen T, Chang G (2013) Transporter-mediated biofuel secretion. Proc Natl Acad Sci U S A 110:7642–7647.  https://doi.org/10.1073/pnas.1301358110PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dreier J, Ruggerone P (2015) Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front Microbiol.  https://doi.org/10.3389/fmicb.2015.00660PubMedPubMedCentralGoogle Scholar
  30. Duque E, Segura A, Mosqueda G, Ramos JL (2001) Global and cognate regulators control the expression of the organic solvent efflux pumps TtgABC and TtgDEF of Pseudomonas putida. Mol Microbiol 39:1100–1106.  https://doi.org/10.1046/j.1365-2958.2001.02310.xPubMedCrossRefGoogle Scholar
  31. Duval V, Lister IM (2013) MarA, SoxS and Rob of Escherichia coli – global regulators of multidrug resistance, virulence and stress response. Int J Biotechnol Wellness Ind 2:101–124.  https://doi.org/10.6000/1927-3037.2013.02.03.2
  32. Eaves DJ, Ricci V, Piddock LJV (2004) Expression of acrB, acrF, acrD, marA, and soxS in Salmonella enterica serovar Typhimurium: role in multiple antibiotic resistance. Antimicrob Agents.  https://doi.org/10.1128/AAC.48.4.1145
  33. Eguchi Y, Utsumi R (2014) Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli. J Bacteriol 196:3140–3149.  https://doi.org/10.1128/JB.01742-14PubMedPubMedCentralCrossRefGoogle Scholar
  34. Eguchi Y, Oshima T, Mori H et al (2003) Transcriptional regulation of drug efflux genes by EvgAS, two-component system in Escherichia coli. Microbiology 149:2819–2828.  https://doi.org/10.1099/mic.0.26460-0PubMedCrossRefGoogle Scholar
  35. Eguchi Y, Ishii E, Hata K, Utsumi R (2011) Regulation of acid resistance by connectors of two-component signal transduction systems in Escherichia coli. J Bacteriol 193:1222–1228.  https://doi.org/10.1128/JB.01124-20PubMedCrossRefGoogle Scholar
  36. Elkins CA, Nikaido H (2002) Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominately by two large periplasmic loops. J Bacteriol 184:6490–6498.  https://doi.org/10.1128/JB.184.23.6490-6499.2002PubMedPubMedCentralCrossRefGoogle Scholar
  37. Esposito D, Petrovic A, Harris R et al (2002) H-NS oligomerization domain structure reveals the mechanism for high order self-association of the intact protein. J Mol Biol 324:841–850.  https://doi.org/10.1016/S0022-2836(02)01141-5PubMedCrossRefGoogle Scholar
  38. Fargier E, Mac AM, Mooij MJ et al (2012) Mext functions as a redox-responsive regulator modulating disulfide stress resistance in Pseudomonas aeruginosa. J Bacteriol 194:3502–3511.  https://doi.org/10.1128/JB.06632-11PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fernandes P, Sommer Ferreira B, Sampaio Cabral JM (2003) Solvent tolerance in bacteria: role of efflux pumps and cross-resistance with antibiotics. Int J Antimicrob Agents 22:211–216.  https://doi.org/10.1016/S0924-8579(03)00209-7PubMedCrossRefGoogle Scholar
  40. Fernández L, Gooderham WJ, Bains M et al (2010) Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS. Antimicrob Agents Chemother 54:3372–3382.  https://doi.org/10.1128/AAC.00242-10PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fernandez-Escamilla AM, Fernandez-Ballester G, Morel B et al (2015) Molecular binding mechanism of TtgR repressor to antibiotics and antimicrobials. PLoS One 10:e0138469.  https://doi.org/10.1371/journal.pone.0138469PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fetar H, Gilmour C, Klinoski R et al (2011) mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob Agents Chemother 55:508–514.  https://doi.org/10.1128/AAC.00830-10PubMedCrossRefGoogle Scholar
  43. Fillet S, Daniels C, Pini C et al (2012) Transcriptional control of the main aromatic hydrocarbon efflux pump in Pseudomonas. Environ Microbiol Rep 4:158–167PubMedCrossRefGoogle Scholar
  44. Fleischer R, Heermann R, Jung K, Hunke S (2007) Purification, reconstitution, and characterization of the CpxRAP envelope stress system of Escherichia coli. J Biol Chem 282:8583–8593.  https://doi.org/10.1074/jbc.M605785200PubMedCrossRefGoogle Scholar
  45. Fraud S, Campigotto AJ, Chen Z, Poole K (2008) MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob Agents Chemother 52:4478–4482.  https://doi.org/10.1128/AAC.01072-08PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fukuda H, Hosaka M, Iyobe S et al (1995) nfxC-type quinolone resistance in a clinical isolate of Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:790–792.  https://doi.org/10.1128/AAC.39.3.790PubMedPubMedCentralCrossRefGoogle Scholar
  47. García V, Godoy P, Daniels C et al (2010) Functional analysis of new transporters involved in stress tolerance in Pseudomonas putida DOT-T1E. Environ Microbiol Rep 2:389–395.  https://doi.org/10.1111/j.1758-2229.2009.00093.xPubMedCrossRefGoogle Scholar
  48. Girvan MS, Campbell CD, Killham K et al (2005) Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol 7:301–313.  https://doi.org/10.1111/j.1462-2920.2004.00695.xPubMedCrossRefGoogle Scholar
  49. Griffith KL, Shah IM, Wolf RE (2004) Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons. Mol Microbiol 51:1801–1816.  https://doi.org/10.1046/j.1365-2958.2003.03952.xPubMedCrossRefGoogle Scholar
  50. Grkovic S, Brown MH, Skurray RA (2002) Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 66:671–701 .  https://doi.org/10.1128/MMBR.66.4.671 table of contentsPubMedPubMedCentralCrossRefGoogle Scholar
  51. Gu R, Li M, Su CC et al (2008) Conformational change of the AcrR regulator reveals a possible mechanism of induction. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:584–588.  https://doi.org/10.1107/S1744309108016035PubMedPubMedCentralCrossRefGoogle Scholar
  52. Guazzaroni ME, Terán W, Zhang X et al (2004) TtgV bound to a complex operator site represses transcription of the promoter for the multidrug and solvent extrusion TtgGHI pump. J Bacteriol 186:2921–2927.  https://doi.org/10.1128/JB.186.10.2921-2927.2004PubMedPubMedCentralCrossRefGoogle Scholar
  53. Guazzaroni ME, Krell T, Felipe A et al (2005) The multidrug efflux regulator TtgV recognizes a wide range of structurally different effectors in solution and complexed with target DNA: evidence from isothermal titration calorimetry. J Biol Chem 280:20887–20893.  https://doi.org/10.1074/jbc.M500783200PubMedCrossRefGoogle Scholar
  54. Guazzaroni M-E, Gallegos M-T, Ramos JL, Krell T (2007a) Different modes of binding of mono- and biaromatic effectors to the transcriptional regulator TTGV: role in differential derepression from its cognate operator. J Biol Chem 282:16308–16316.  https://doi.org/10.1074/jbc.M610032200PubMedCrossRefGoogle Scholar
  55. Guazzaroni ME, Krell T, Gutiérrez del Arroyo P et al (2007b) The transcriptional repressor TtgV recognizes a complex operator as a tetramer and induces convex DNA bending. J Mol Biol 369:927–939.  https://doi.org/10.1016/j.jmb.2007.04.022PubMedCrossRefGoogle Scholar
  56. Gupta K, Marques CNH, Petrova OE, Sauer K (2013) Antimicrobial tolerance of Pseudomonas aeruginosa biofilms is activated during an early developmental stage and requires the two-component hybrid sagS. J Bacteriol 195:4975–4987.  https://doi.org/10.1128/JB.00732-13PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hay T, Fraud S, Lau CHF et al (2013) Antibiotic inducibility of the mexXY multidrug efflux operon of Pseudomonas aeruginosa: involvement of the MexZ anti-repressor ArmZ. PLoS One.  https://doi.org/10.1371/journal.pone.0056858Google Scholar
  58. Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852PubMedPubMedCentralGoogle Scholar
  59. Hirai K, Suzue S, Irikura T et al (1987) Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 31:582–586.  https://doi.org/10.1128/AAC.31.4.582PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hirakawa H, Takumi-Kobayashi A, Theisen U et al (2008) AcrS/EnvR represses expression of the acrAB multidrug efflux genes in Escherichia coli. J Bacteriol 190:6276–6279.  https://doi.org/10.1128/JB.00190-08PubMedPubMedCentralCrossRefGoogle Scholar
  61. Inoue A, Yamamoto M, Horikoshi K (1991) Pseudomonas putida which can grow in the presence of toluene. Appl Environ Microbiol 57:1560–1562PubMedPubMedCentralGoogle Scholar
  62. Isken S, De Bont JAM (1996) Active efflux of toluene in a solvent-resistant bacterium. J Bacteriol 178:6056–6058PubMedPubMedCentralCrossRefGoogle Scholar
  63. Jones CM, Hernández Lozada NJ, Pfleger BF (2015) Efflux systems in bacteria and their metabolic engineering applications. Appl Microbiol Biotechnol 99:9381–9393.  https://doi.org/10.1007/s00253-015-6963-9PubMedPubMedCentralCrossRefGoogle Scholar
  64. Junker F, Ramos JL (1999) Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-T1E. J Bacteriol 181:5693–5700PubMedPubMedCentralGoogle Scholar
  65. Khalil AS, Lu TK, Bashor CJ et al (2012) A synthetic biology framework for programming eukaryotic transcription functions. Cell 150:647–658.  https://doi.org/10.1016/j.cell.2012.05.045PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kim K, Lee S, Lee K, Lim D (1998) Isolation and characterization of toluene-sensitive mutants from the toluene-resistant bacterium Pseudomonas putida GM73. J Bacteriol 180:3692–3696PubMedPubMedCentralGoogle Scholar
  67. Kim T, Duong T, Wu CA et al (2014) Structural insights into the molecular mechanism of Escherichia coli SdiA, a quorum-sensing receptor. Acta Crystallogr Sect D Biol Crystallogr 70:694–707.  https://doi.org/10.1107/S1399004713032355CrossRefGoogle Scholar
  68. Köhler T, Michéa-Hamzehpour M, Henze U et al (1997) Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol 23:345–354.  https://doi.org/10.1046/j.1365-2958.1997.2281594.xPubMedCrossRefGoogle Scholar
  69. Köhler T, Epp SF, Curty LK, Pechère JC (1999) Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 181:6300–6305PubMedPubMedCentralGoogle Scholar
  70. Koutsolioutsou A, Martins EA, White DG et al (2001) A soxRS -constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica (Serovar A soxRS -constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica) Serovar Typhimu. Antimicrob Agents.  https://doi.org/10.1128/AAC.45.1.38Google Scholar
  71. Kwon HJ, Bennik MH, Demple B, Ellenberger T (2000) Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA. Nat Struct Biol 7:424–430.  https://doi.org/10.1038/75213PubMedCrossRefGoogle Scholar
  72. Lau CHF, Krahn T, Gilmour C et al (2015) AmgRS-mediated envelope stress-inducible expression of the mexXY multidrug efflux operon of Pseudomonas aeruginosa. Microbiol Open 4:121–135.  https://doi.org/10.1002/mbo3.226CrossRefGoogle Scholar
  73. Lawler AJ, Ricci V, Busby SJW, Piddock LJV (2013) Genetic inactivation of acrAB or inhibition of efflux induces expression of ramA. J Antimicrob Chemother 68:1551–1557.  https://doi.org/10.1093/jac/dkt069PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lennen RM, Politz MG, Kruziki MA, Pfleger BF (2012) Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. J Bacteriol 195:135–144.  https://doi.org/10.1128/JB.01477-12PubMedCrossRefGoogle Scholar
  75. Li X-Z, Nikaido H (2004) Efflux-mediated drug resistance in bacteria. Drugs 64:159–204.  https://doi.org/10.2165/11317030-000000000-00000PubMedCrossRefGoogle Scholar
  76. Li XZ, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–1623.  https://doi.org/10.2165/11317030-000000000-00000PubMedPubMedCentralCrossRefGoogle Scholar
  77. Li XZ, Nikaido H, Poole K (1995) Role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:1948–1953.  https://doi.org/10.1128/AAC.39.9.1948PubMedPubMedCentralCrossRefGoogle Scholar
  78. Li XZ, Barré N, Poole K (2000) Influence of the MexA-MexB-oprM multidrug efflux system on expression of the MexC-MexD-oprJ and MexE-MexF-oprN multidrug efflux systems in Pseudomonas aeruginosa. J Antimicrob Chemother 46:885–893.  https://doi.org/10.1128/JB.182.5.1410-1414.2000PubMedCrossRefGoogle Scholar
  79. Li M, Gu R, Su CC et al (2007) Crystal structure of the tanscriptional regulator AcrR from Escherichia coli. J Mol Biol 374:591–603.  https://doi.org/10.1016/j.jmb.2007.09.064PubMedPubMedCentralCrossRefGoogle Scholar
  80. Li XZ, Plesiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28:337–418.  https://doi.org/10.1128/CMR.00117-14PubMedPubMedCentralCrossRefGoogle Scholar
  81. Liao J, Schurr MJ, Sauera K (2013) The merR-like regulator brlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. J Bacteriol 195:3352–3363.  https://doi.org/10.1128/JB.00318-13PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lim D, Poole K, Strynadka NCJ (2002) Crystal structure of the MexR repressor of themexRAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J Biol Chem 277:29253–29259PubMedCrossRefGoogle Scholar
  83. Lin J, Akiba M, Sahin O, Zhang Q (2005) CmeR functions as a transcriptional repressor for the multidrug efflux pump CmeABC in Campylobacter jejuni. Antimicrob Agents Chemother 49:1067–1075.  https://doi.org/10.1128/AAC.49.3.1067-1075.2005PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22:582–610.  https://doi.org/10.1128/CMR.00040-09PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ma D, Cook DN, Alberti M et al (1993) Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J Bacteriol 175:6299–6313PubMedPubMedCentralCrossRefGoogle Scholar
  86. Ma D, Cook DN, Alberti M et al (1995) Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol 16:45–55.  https://doi.org/10.1111/j.1365-2958.1995.tb02390.xPubMedCrossRefGoogle Scholar
  87. Ma D, Alberti M, Lynch C et al (1996) The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol Microbiol 19:101–112.  https://doi.org/10.1046/j.1365-2958.1996.357881.xPubMedCrossRefGoogle Scholar
  88. Martin RG, Rosner JL (2011) Promoter discrimination at class I mara regulon promoters mediated by glutamic acid 89 of the mara transcriptional activator of escherichia coli. J Bacteriol 193:506–515.  https://doi.org/10.1128/JB.00360-10PubMedCrossRefGoogle Scholar
  89. Martin RG, Gillette WK, Rhee S, Rosner JL (1999) Structural requirements for marbox function in transcriptional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter. Mol Microbiol 34:431–441.  https://doi.org/10.1046/j.1365-2958.1999.01599.xPubMedCrossRefGoogle Scholar
  90. Martinez JL, Sánchez MB, Martínez-Solano L et al (2009) Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 33:430–449PubMedCrossRefGoogle Scholar
  91. Maseda H, Sawada I, Saito K et al (2004) Enhancement of the mexAB-oprM efflux pump expression by a quorum-sensing autoinducer and its cancellation by a regulator, MexT, of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2004(48):1320–1328.  https://doi.org/10.1128/AAC.48.4.1320
  92. Masuda N, Sakagawa E, Ohya S (2000) Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:3322–3327.  https://doi.org/10.1128/AAC.44.12.3322-3327.2000.Updated
  93. Mine T, Morita Y, Kataoka A et al (1999) Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother 43:415–417PubMedPubMedCentralCrossRefGoogle Scholar
  94. Morita Y, Kimura N, Mima T et al (2001) Roles of MexXY- and MexAB-multidrug efflux pumps in intrinsic multidrug resistance of Pseudomonas aeruginosa PAO1. J Genet Appl Microbiol 47:27–32.  https://doi.org/10.2323/jgam.47.27CrossRefGoogle Scholar
  95. Morita Y, Cao L, Gould VC et al (2006) nalD encodes a second repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J Bacteriol 188:8649–8654.  https://doi.org/10.1128/JB.01342-06PubMedPubMedCentralCrossRefGoogle Scholar
  96. Mosqueda G, Ramos JL (2000) A set of genes encoding a second toluene efflux system in Pseudomonas putida DOT-T1E is linked to the tod genes for toluene metabolism. J Bacteriol 182:937–943.  https://doi.org/10.1128/JB.182.4.937-943.2000PubMedPubMedCentralCrossRefGoogle Scholar
  97. Murakami S, Nakashima R, Yamashita E, Yamaguchi A (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587–593.  https://doi.org/10.5940/jcrsj.45.256PubMedCrossRefGoogle Scholar
  98. Murakami S, Nakashima R, Yamashita E et al (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443:173–179.  https://doi.org/10.2142/biophys.47.309PubMedCrossRefGoogle Scholar
  99. Nichols RJ, Sen S, Choo YJ et al (2011) Phenotypic landscape of a bacterial cell. Cell 144:143–156.  https://doi.org/10.1016/j.cell.2010.11.052PubMedCrossRefGoogle Scholar
  100. Nikaido H (2009) Multidrug resistance in bacteria. Annu Rev Biochem 78:119–146.  https://doi.org/10.1146/annurev.biochem.78.082907.145923PubMedPubMedCentralCrossRefGoogle Scholar
  101. Nikaido H (2011) Structure and mechanism of RND-type multidrug efflux pumps. Adv Enzymol Relat Areas Mol Biol 77:1–60.  https://doi.org/10.1111/j.1365-2958.2011.07544.x.ChlorinatedPubMedPubMedCentralGoogle Scholar
  102. Nikaido E, Yamaguchi A, Nishino K (2008) AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J Biol Chem 283:24245–24253.  https://doi.org/10.1074/jbc.M804544200PubMedPubMedCentralCrossRefGoogle Scholar
  103. Nishino K, Yamaguchi A (2001) Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183:5803–5812.  https://doi.org/10.1128/JB.183.20.5803-5812.2001PubMedPubMedCentralCrossRefGoogle Scholar
  104. Nishino K, Yamada J, Hirakawa H et al (2003) Roles of TolC-dependent multidrug transporters of Escherichia coli in resistance to β-lactams. Antimicrob Agents Chemother 47:3030–3033.  https://doi.org/10.1128/AAC.47.9.3030-3033.2003PubMedPubMedCentralCrossRefGoogle Scholar
  105. Nishino K, Yamasaki S, Hayashi-Nishino M, Yamaguchi A (2011) Effect of overexpression of small non-coding DsrA RNA on multidrug efflux in Escherichia coli. J Antimicrob Chemother 66:291–296.  https://doi.org/10.1093/jac/dkq420PubMedCrossRefGoogle Scholar
  106. Okusu H, Ma D, Nikaido H (1996) AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol 178:306–308PubMedPubMedCentralCrossRefGoogle Scholar
  107. Perraud AL, Rippe K, Bantscheff M et al (2000) Dimerization of signalling modules of the EvgAS and BvgAS phosphorelay systems. Biochim Biophys Acta Protein Struct Mol Enzymol 1478:341–354.  https://doi.org/10.1016/S0167-4838(00)00052-2CrossRefGoogle Scholar
  108. Piddock L (2014) Understanding the basis of antibiotic resistance: QConnect results. Microbiol Soc. http://mic.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.082412-0. Accessed 30 Jun 2016
  109. Poole K, Krebes K, McNally C, Shadi N (1993) Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 175:7363–7372PubMedPubMedCentralCrossRefGoogle Scholar
  110. Poole K, Gotoh N, Tsujimoto H et al (1996a) Overexpression of the mexC-mexD-oprJ efflux operon in nfxB type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol 21:713–725.  https://doi.org/10.1046/j.1365-2958.1996.281397.xPubMedCrossRefGoogle Scholar
  111. Poole K, Tetro K, Zhao Q et al (1996b) Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression. Antimicrob Agents Chemother 40:2021–2028PubMedPubMedCentralGoogle Scholar
  112. Pos KM (2009) Drug transport mechanism of the AcrB efflux pump. Biochim Biophys Acta 1794:782–793.  https://doi.org/10.1016/j.bbapap.2008.12.015PubMedCrossRefGoogle Scholar
  113. Purssell A, Poole K (2013) Functional characterization of the NfxB repressor of the mexCD-oprJ multidrug efflux operon of Pseudomonas aeruginosa. Microbiology 159:2058–2073.  https://doi.org/10.1099/mic.0.069286-0PubMedCrossRefGoogle Scholar
  114. Purssell A, Fruci M, Mikalauskas A et al (2015) EsrC, an envelope stress-regulated repressor of the mexCD-oprJ multidrug efflux operon in Pseudomonas aeruginosa. Environ Microbiol 17:186–198.  https://doi.org/10.1111/1462-2920.12602PubMedCrossRefGoogle Scholar
  115. Putman M, van Veen HW, Konings WN (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64:672–693.  https://doi.org/10.1128/MMBR.64.4.672-693.2000PubMedPubMedCentralCrossRefGoogle Scholar
  116. Rahmati S, Yang S, Davidson AL, Zechiedrich EL (2002) Control of the AcrAB multidrug efflux pump by quorum-sensing regulator SdiA. Mol Microbiol 43:677–685.  https://doi.org/10.1046/j.1365-2958.2002.02773.xPubMedCrossRefGoogle Scholar
  117. Ramos JL, Duque E, Huertas MJ, Haidour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177:3911–3916PubMedPubMedCentralCrossRefGoogle Scholar
  118. Ramos JL, Duque E, Godoy P, Segura A (1998) Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT- T1E. J Bacteriol 180:3323–3329 doi: 00219193/98/$04.00+0PubMedPubMedCentralGoogle Scholar
  119. Ramos JL, Duque E, Gallegos MT et al (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768.  https://doi.org/10.1146/annurev.micro.56.012302.161038PubMedCrossRefGoogle Scholar
  120. Ramos JL, Cuenca MS, Molina-Santiago C et al (2015) Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol Rev 39:555–566.  https://doi.org/10.1093/femsre/fuv006PubMedCrossRefGoogle Scholar
  121. Randall LP, Woodward MJ (2001) Multiple antibiotic resistance (mar) locus in Salmonella enterica serovar typhimurium DT104. Appl Environ Microbiol 67:1190–1197.  https://doi.org/10.1128/AEM.67.3.1190-1197.2001PubMedPubMedCentralCrossRefGoogle Scholar
  122. Rhee S, Martin RG, Rosner JL, Davies DR (1998) A novel DNA-binding motif in MarA: the first structure for an AraC family transcriptional activator. Proc Natl Acad Sci U S A 95:10413–10418.  https://doi.org/10.1073/pnas.95.18.10413PubMedPubMedCentralCrossRefGoogle Scholar
  123. Rodríguez-Herva JJ, García V, Hurtado A et al (2007) The ttgGHI solvent efflux pump operon of Pseudomonas putida DOT-T1E is located on a large self-transmissible plasmid. Environ Microbiol 9:1550–1561.  https://doi.org/10.1111/j.1462-2920.2007.01276.xPubMedCrossRefGoogle Scholar
  124. Rojas A, Duque E, Mosqueda G et al (2001) Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J Bacteriol 183:3967–3973.  https://doi.org/10.1128/JB.183.13.3967-3973.2001PubMedPubMedCentralCrossRefGoogle Scholar
  125. Rojas A, Segura A, Guazzaroni ME et al (2003) In vivo and in vitro evidence that TtgV is the specific regulator of the TtgGHI multidrug and solvent efflux pump of Pseudomonas putida. J Bacteriol 185:4755–4763.  https://doi.org/10.1128/JB.185.16.4755-4763.2003PubMedPubMedCentralCrossRefGoogle Scholar
  126. Rosenberg EY, Ma D, Nikaido H (2000) AcrD of Escherichia coli is an aminoglycoside efflux pump. J Bacteriol 182:1754–1756.  https://doi.org/10.1128/JB.182.6.1754-2756.2000PubMedPubMedCentralCrossRefGoogle Scholar
  127. Rosner JL, Martin RG (2013) Reduction of cellular stress by TolC-dependent efflux pumps in Escherichia coli indicated by baeSR and CpxARP activation of spy in efflux mutants. J Bacteriol 195:1042–1050.  https://doi.org/10.1128/JB.01996-12PubMedPubMedCentralCrossRefGoogle Scholar
  128. Saier MH, Paulsen IT (2001) Phylogeny of multidrug transporters. Semin Cell Dev Biol 12:205–213.  https://doi.org/10.1006/scdb.2000.0246PubMedCrossRefGoogle Scholar
  129. Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268PubMedCrossRefGoogle Scholar
  130. Schweizer HP (2003) Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Genet Mol Res 2:48–62 [pii] S01PubMedGoogle Scholar
  131. Segura A, Hurtado A, Rivera B, Lazaroaie MM (2008) Isolation of new toluene-tolerant marine strains of bacteria and characterization of their solvent-tolerance properties. J Appl Microbiol 104:1408–1416.  https://doi.org/10.1111/j.1365-2672.2007.03666.xPubMedCrossRefGoogle Scholar
  132. Segura A, Molina L, Fillet S et al (2012) Solvent tolerance in gram-negative bacteria. Curr Opin Biotechnol 23:415–421.  https://doi.org/10.1016/j.copbio.2011.11.015PubMedCrossRefGoogle Scholar
  133. Shiba T, Ishiguro K, Takemoto N et al (1995) Purification and characterization of the Pseudomonas aeruginosa NfxB protein, the negative regulator of the nfxB gene. J Bacteriol 177:5872–5877PubMedPubMedCentralCrossRefGoogle Scholar
  134. Shindo H, Iwaki T, Ieda R et al (1995) Solution structure of the DNA binding domain of a nucleoid-associated protein, H-NS, from Escherichia coli. FEBS Lett 360:125–131.  https://doi.org/10.1016/0014-5793(95)00079-OPubMedCrossRefGoogle Scholar
  135. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedPubMedCentralGoogle Scholar
  136. Sivaneson M, Mikkelsen H, Ventre I et al (2011) Two-component regulatory systems in Pseudomonas aeruginosa: an intricate network mediating fimbrial and efflux pump gene expression. Mol Microbiol 79:1353–1366.  https://doi.org/10.1111/j.1365-2958.2010.07527.xPubMedPubMedCentralCrossRefGoogle Scholar
  137. Sobel ML, Neshat S, Poole K (2005) Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa. J Bacteriol 187:1246–1253.  https://doi.org/10.1128/JB.187.4.1246-1253.2005PubMedPubMedCentralCrossRefGoogle Scholar
  138. Starr LM, Fruci M, Poole K (2012) Pentachlorophenol induction of the Pseudomonas aeruginosa mexAB-oprM efflux operon: involvement of repressors NalC and MexR and the antirepressor ArmR. PLoS One.  https://doi.org/10.1371/journal.pone.0032684Google Scholar
  139. Sulavik MC, Gambino LF, Miller PF (1995) The MarR repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli: prototypic member of a family of bacterial regulatory proteins involved in sensing phenolic compounds. Mol Med 1:436–446PubMedPubMedCentralGoogle Scholar
  140. Sun Y, Dai M, Hao H et al (2011) The role of RamA on the development of ciprofloxacin resistance in Salmonella enterica serovar Typhimurium. PLoS One.  https://doi.org/10.1371/journal.pone.0023471Google Scholar
  141. Tanaka T, Horii T, Shibayama K et al (1997) RobA-induced multiple antibiotic resistance largely depends on the activation of the AcrAB efflux. Microbiol Immunol 41:697–702PubMedCrossRefGoogle Scholar
  142. Terán W, Felipe A, Segura A et al (2003) Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR. Antimicrob Agents Chemother 47:3067–3072.  https://doi.org/10.1128/AAC.47.10.3067-3072.2003PubMedPubMedCentralCrossRefGoogle Scholar
  143. Terán W, Krell T, Ramos JL, Gallegos MT (2006) Effector-repressor interactions, binding of a single effector molecule to the operator-bound TtgR homodimer mediates derepression. J Biol Chem 281:7102–7109.  https://doi.org/10.1074/jbc.M511095200PubMedCrossRefGoogle Scholar
  144. Terán W, Felipe A, Fillet S et al (2007) Complexity in efflux pump control: cross-regulation by the paralogues TtgV and TtgT. Mol Microbiol 66:1416–1428.  https://doi.org/10.1111/j.1365-2958.2007.06004.xPubMedGoogle Scholar
  145. Truong-Bolduc QC, Villet RA, Estabrooks ZA, Hooper DC (2014) Native efflux pumps contribute resistance to antimicrobials of skin and the ability of staphylococcus aureus to colonize skin. J Infect Dis 209:1485–1493.  https://doi.org/10.1093/infdis/jit660PubMedCrossRefGoogle Scholar
  146. Uwate M, ki IY, Shirai A et al (2013) Two routes of MexS-MexT-mediated regulation of MexEF-OprN and MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. Microbiol Immunol 57:263–272.  https://doi.org/10.1111/1348-0421.12032PubMedCrossRefGoogle Scholar
  147. Vadlamani G, Thomas MD, Patel TR et al (2015) The β-lactamase gene regulator AmpR is a tetramer that recognizes and binds the d-Ala-d-Ala motif of its repressor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide. J Biol Chem 290:2630–2643.  https://doi.org/10.1074/jbc.M114.618199PubMedCrossRefGoogle Scholar
  148. Vallet I, Diggle SP, Stacey RE et al (2004) Biofilm formation in Pseudomonas aeruginosa: fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT. J Bacteriol 186:2880–2890.  https://doi.org/10.1128/JB.186.9.2880-2890.2004PubMedPubMedCentralCrossRefGoogle Scholar
  149. Wang D, Seeve C, Pierson LS, Pierson EA (2013) Transcriptome profiling reveals links between ParS/ParR, MexEF-OprN, and quorum sensing in the regulation of adaptation and virulence in Pseudomonas aeruginosa. BMC Genomics 14:618.  https://doi.org/10.1186/1471-2164-24-618PubMedPubMedCentralCrossRefGoogle Scholar
  150. White DG, Goldman JD, Demple B, Levy SB (1997) Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J Bacteriol 179:6122–6126PubMedPubMedCentralCrossRefGoogle Scholar
  151. Wong K, Ma J, Rothnie A et al (2014) Towards understanding promiscuity in multidrug efflux pumps. Trends Biochem Sci 39:8–16PubMedCrossRefGoogle Scholar
  152. Yamasaki S, Nikaido E, Nakashima R et al (2013) The crystal structure of multidrug-resistance regulator RamR with multiple drugs. Nat Commun 4:2078.  https://doi.org/10.1038/ncomms3078PubMedCrossRefGoogle Scholar
  153. Yoneyama H, Ocaktan A, Tsuda M, Nakae T (1997) The role of mex-gene products in antibiotic extrusion in Pseudomonas aeruginosa. Biochem Biophys Res Commun 233:611–618.  https://doi.org/10.1006/bbrc.1997.6506PubMedCrossRefGoogle Scholar
  154. Zhang A, Rosner JL, Martin RG (2008) Transcriptional activation by MarA, SoxS and Rob of two tolC promoters using one binding site: a complex promoter configuration for tolC in Escherichia coli. Mol Microbiol 69:1450–1455.  https://doi.org/10.1111/j.1365-2958.2008.06371.xPubMedPubMedCentralCrossRefGoogle Scholar
  155. Zheng J, Cui S, Meng J (2009) Effect of transcriptional activators RamA and SoxS on expression of multidrug efflux pumps AcrAB and AcrEF in fluoroquinolone-resistant Salmonella Typhimurium. J Antimicrob Chemother 63:95–102.  https://doi.org/10.1093/jac/dkn448PubMedCrossRefGoogle Scholar
  156. Zylstra GJ, Gibson DT (1989) Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem 264:14940–14946PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cauã Antunes Westmann
    • 1
  • Luana de Fátima Alves
    • 2
    • 3
  • Tiago Cabral Borelli
    • 2
  • Rafael Silva-Rocha
    • 1
  • María-Eugenia Guazzaroni
    • 2
    • 4
  1. 1.Departamento de Biologia CelularFMRP – University of São PauloRibeirão PretoBrazil
  2. 2.Departamento de BiologiaFFCLRP – University of São PauloRibeirão PretoBrazil
  3. 3.Departamento de Bioquímica e ImunologiaFMRP – University of São PauloRibeirão PretoBrazil
  4. 4.Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil

Personalised recommendations