Matrix - Hydrophobic Compound Interactions

  • Hauke Harms
  • Lukas Y. Wick
  • Kilian E. C. Smith
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The fate and transport of hydrophobic organic compounds (HOCs) such as oil hydrocarbons are strongly influenced by their interactions with environmental matrices including soils and sediments. These interactions can be grouped into those of nonaqueous phase liquids (NAPLs), e.g., the spreading of oil on solid surfaces and its movement in porous media, and those of water-dissolved HOC molecules which sorb onto solid surfaces or partition into organic matter or NAPL phases. Generally, these different types of sequestration phenomena lead to reduced contact between organisms and the bioavailable HOC molecules dissolved in the surrounding water phase, and thus to lower uptake and biodegradation. However, in certain situations, sorption of the HOCs to small and highly mobile HOC-sorbing phases such as dissolved organic carbon or surfactants may mobilize the HOCs and increase their bioavailability and/or toxicological risk.

References

  1. Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil-recovery and oil pollution remediation - a review. Bioresour Technol 51:1–12CrossRefGoogle Scholar
  2. Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31:248–252CrossRefGoogle Scholar
  3. Cornelissen G, van Noort PCM, Govers HAJ (1997) Desorption kinetics of chlorobenzenes, polycyclic aromatic hydrocarbons and polychlorinated biphenyls: sediment extraction with Tenax® and effects of contact time and solute hydrophobicity. Environ Toxicol Chem 16:1351–1357CrossRefGoogle Scholar
  4. Cornelissen G, Rigterink H, Ferdinandy MMA, van Noort PCM (1998) Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation. Environ Sci Technol 32:966–970CrossRefGoogle Scholar
  5. Efroymonson RA, Alexander M (1995) Reduced mineralization of low concentrations of phenanthrene because of sequestering in nonaqueous-phase liquids. Environ Sci Technol 29:515–521CrossRefGoogle Scholar
  6. Garcia-Junco M, De Olmeda E, Ortega-Calvo JJ (2001) Bioavailability of solid and non-aqueous phase liquid (NAPL)-dissolved phenanthrene to the biosurfactant-producing bacterium Pseudomonas aeruginosa 19SJ. Environ Microbiol 3:561–569CrossRefPubMedGoogle Scholar
  7. Garcia-Junco M, Gomez-Lahoz C, Niqui-Arroyo JL, Ortega-Calvo JJ (2003) Biosurfactant- and biodegradation-enhanced partitioning of polycyclic aromatic hydrocarbons from nonaqueous-phase liquids. Environ Sci Technol 37:2988–2996CrossRefPubMedGoogle Scholar
  8. Ghoshal S, Luthy RG (1996) Bioavailability of hydrophobic organic compounds from nonaqueous phase liquids: the biodegradation of naphthalene from coal tar. Environ Toxicol Chem 15:1894–1900CrossRefGoogle Scholar
  9. Gilbert D, Jakobsen HH, Winding A, Mayer P (2014) Co-transport of polycyclic aromatic hydrocarbons by motile microorganisms leads to enhanced mass transfer under diffusive conditions. Environ Sci Technol 48:4368–4375CrossRefPubMedGoogle Scholar
  10. Greenberg MS, Burton AB Jr, Landrum PF, Leppänen MT, Kukkonen JVK (2005) Desorption kinetics of fluoranthene and trifluralin from Lake Huron and Lake Erie, USA, sediments. Environ Toxicol Chem 24:31–39CrossRefPubMedGoogle Scholar
  11. Grimberg SJ, Nagel J, Aitken MD (1995) Kinetics of phenanthrene dissolution into water in the presence of nonionic surfactants. Environ Sci Technol 29:1480–1487CrossRefPubMedGoogle Scholar
  12. Harms H, Bosma TNP (1997) Mass transfer limitation of microbial growth and pollutant degradation. J Ind Microbiol Biotechnol 18:97–105CrossRefGoogle Scholar
  13. Harms H, Wick LY (2004) Mobilization of organic compounds and iron by microorganisms. In: van Leuven HP, Köster W (eds) Physicochemical kinetics and transport at chemical-biological interphases. Wiley, Chichester, pp 401–444Google Scholar
  14. Harms H, Zehnder AJB (1995) Bioavailability of sorbed 3-chlorodibenzofuran. Appl Environ Microbiol 61:27–33PubMedPubMedCentralGoogle Scholar
  15. Hatzinger P, Alexander M (1995) Effect of aging of chemicals in soil on their biodegradability and extractability. Environ Sci Technol 29:537–545CrossRefPubMedGoogle Scholar
  16. Hawthorne SB, Grabanski CB, Miller DJ, Kreitinger JP (2005) Solid-phase microextraction measurement of parent and alkyl polycyclic aromatic hydrocarbons in milliliter sediment pore water samples and determination of K-DOC values. Environ Sci Technol 39:2795–2803CrossRefPubMedGoogle Scholar
  17. Head IM, Jones DM, Röling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182CrossRefPubMedGoogle Scholar
  18. Luthy RG, Ramaswami A, Ghoshal S, Merkel W (1993) Interfacial films in coal tar nonaqueous-phase liquid-water systems. Environ Sci Technol 27:2914–2918CrossRefGoogle Scholar
  19. Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Geschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ, Westall JC (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31:3341–3347CrossRefGoogle Scholar
  20. Marshall AG, Rodgers RP (2004) Petroleomics: the next grand challenge for chemical analysis. Acc Chem Res 37:53–59CrossRefPubMedGoogle Scholar
  21. Mayer P, Tolls J, Hermens JLM, Mackay D (2003) Equilibrium sampling devices. Environ Sci Technol 37:184A–191ACrossRefPubMedGoogle Scholar
  22. McInerney MJ, Voordouw GE, Jenneman GE, Sublette KL (2007) Oil field microbiology. In: Hurst CJ, Crawford RL, Lipson DA, Mills AL, Stetzenbach LD (eds) Manual of environmental microbiology. ASM Press, Washington, DC, pp 898–911Google Scholar
  23. Mozes N, Handley PS, Busscher HJ, Rouxhet PG (1991) Microbial cell surface analysis: structural and physicochemical methods. Verlag Chemie, New York, Weinheim, CambridgeGoogle Scholar
  24. Nelson EC, Ghoshal S, Edwards JC, Marsh GX, Luthy RG (1996) Chemical characterization of coal tar-water interfacial films. Environ Sci Technol 30:1014–1022CrossRefGoogle Scholar
  25. Ortega-Calvo JJ, Harmsen J, Parsons JR, Semple KT, Aitken MD, Ajao C, Eadsforth E, Galay-Burgos M, Naidu R, Oliver R, Peijnenburg WJGM, Römbke J, Streck G, Versonnen B (2015) From bioavailability science to regulation of organic chemicals. Environ Sci Technol 49:10255–10264CrossRefPubMedGoogle Scholar
  26. Ortiz E, Kraatz M, Luthy RG (1999) Organic phase resistance to dissolution of polycyclic aromatic hydrocarbon compounds. Environ Sci Technol 33:235–242CrossRefGoogle Scholar
  27. Poerschmann J, Zhang ZY, Kopinke FD, Pawliszyn J (1997) Solid phase microextraction for determining the distribution of chemicals in aqueous matrices. Anal Chem 69:597–600CrossRefGoogle Scholar
  28. Postma J, Vanveen JA (1990) Habitable pore-space and survival of Rhizobium-Leguminosarum Biovar Trifolii introduced into soil. Microb Ecol 19:149–161CrossRefPubMedGoogle Scholar
  29. Ramaswami A, Ghoshal S, Luthy RG (1997) Mass transfer and bioavailability of PAH compounds in coal tar NAPL-slurry systems. 2. Experimental evaluations. Environ Sci Technol 31:2268–2276CrossRefGoogle Scholar
  30. Reichenberg F, Mayer P (2006) Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. Environ Toxicol Chem 25:1239–1245CrossRefPubMedGoogle Scholar
  31. Schluep M, Gälli R, Imboden DM, Zeyer J (2002) Dynamic equilibrium dissolution of complex nonaqueous phase liquid mixtures into the aqueous phase. Environ Toxicol Chem 21:1350–1358CrossRefPubMedGoogle Scholar
  32. Schulz-Bull DE, Petrick G, Bruhn R, Duinker JC (1998) Chlorobiphenyls (PCB) and PAHs in water masses of the northern North Atlantic. Mar Chem 61:101–114CrossRefGoogle Scholar
  33. Schwarzenbach RP, Gschwend PM, Imboden DM (2017) Environmental organic chemistry. Wiley, New YorkGoogle Scholar
  34. Semple K, Doick K, Jones K, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 15:229A–231AGoogle Scholar
  35. Smith KEC, Thullner M, Wick LY, Harms H (2011) Dissolved organic carbon enhances mass fluxes of hydrophobic organic compounds from NAPLs into the aqueous phase. Environ Sci Technol 45:8741–8747CrossRefPubMedGoogle Scholar
  36. Valo R, Salkinoja-Salonen M (1986) Bioreclamation of chlorophenol-contaminated soil by composting. Appl Microbiol Biotechnol 25:68–75CrossRefGoogle Scholar
  37. Volkering F, Breure AM, Sterkenburg A, van Andel JG (1992) Microbial degradation of polycyclic aromatic hydrocarbons: effect of substrate availability on bacterial growth kinetics. Appl Microbiol Biotechnol 36:548–552CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hauke Harms
    • 1
  • Lukas Y. Wick
    • 1
  • Kilian E. C. Smith
    • 2
  1. 1.Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
  2. 2.Institute for Environmental Research (Biology 5)RWTH Aachen UniversityAachenGermany

Personalised recommendations