Sensing, Signaling, and Uptake: An Introduction

  • Tino Krell
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


The three most frequent sensing and signal transduction mechanisms in bacteria are one- and two-component systems as well as chemosensory pathways, and members of these families were found to be involved in the sensing of hydrocarbons. These systems were shown to modulate the expression of hydrocarbon degradation pathways and efflux pumps as well as to mediate hydrocarbon chemotaxis. Hydrocarbons are thought to cross the outer membrane via specific pores and the inner membrane by diffusion. However, it still remains controversial as to whether there are also active hydrocarbon uptake mechanisms.



We acknowledge financial support from FEDER funds and Fondo Social Europeo through grants from the Junta de Andalucía (grant CVI-7335) and the Spanish Ministry for Economy and Competitiveness (grants BIO2013-42297 and BIO2016-76779-P).


  1. Bi S, Lai L (2015) Bacterial chemoreceptors and chemoeffectors. Cell Mol Life Sci 72(4):691–708CrossRefPubMedGoogle Scholar
  2. Busch A et al (2007) Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals. Proc Natl Acad Sci U S A 104(34):13774–13779CrossRefPubMedPubMedCentralGoogle Scholar
  3. Busch A et al (2009) The sensor kinase TodS operates by a multiple step phosphorelay mechanism involving two autokinase domains. J Biol Chem 284(16):10353–10360CrossRefPubMedPubMedCentralGoogle Scholar
  4. Grimm AC, Harwood CS (1999) NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol 181(10):3310–3316PubMedPubMedCentralGoogle Scholar
  5. Iwaki H et al (2007) Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. J Bacteriol 189(9):3502–3514CrossRefPubMedPubMedCentralGoogle Scholar
  6. Koh S et al (2016) Molecular insights into toluene sensing in the TodS/TodT signal transduction system. J Biol Chem 291(16):8575–8590CrossRefPubMedPubMedCentralGoogle Scholar
  7. Lacal J et al (2006) The TodS-TodT two-component regulatory system recognizes a wide range of effectors and works with DNA-bending proteins. Proc Natl Acad Sci U S A 103(21):8191–8196CrossRefPubMedPubMedCentralGoogle Scholar
  8. Lacal J et al (2011) Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ Microbiol 13(7):1733–1744CrossRefPubMedGoogle Scholar
  9. Li XZ, Plesiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28(2):337–418CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ni B et al (2013) Comamonas testosteroni uses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds. Mol Microbiol 90(4):813–823CrossRefPubMedGoogle Scholar
  11. Parales RE et al (2008) Diversity of microbial toluene degradation pathways. Adv Appl Microbiol 64:1–73. 2 p following 264CrossRefPubMedGoogle Scholar
  12. Parales RE et al (2015) Bacterial chemotaxis to xenobiotic chemicals and naturally-occurring analogs. Curr Opin Biotechnol 33:318–326CrossRefPubMedGoogle Scholar
  13. Pham HT, Parkinson JS (2011) Phenol sensing by Escherichia coli chemoreceptors: a nonclassical mechanism. J Bacteriol 193(23):6597–6604CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ramos JL et al (2015) Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol Rev 39(4):555–566CrossRefPubMedGoogle Scholar
  15. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2(11):1–26Google Scholar
  16. Silva-Jimenez H et al (2012) Study of the TmoS/TmoT two-component system: towards the functional characterization of the family of TodS/TodT like systems. Microb Biotechnol 5(4):489–500CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ulrich LE, Koonin EV, Zhulin IB (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13(2):52–56CrossRefPubMedPubMedCentralGoogle Scholar
  18. Wuichet K, Zhulin IB (2010) Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 3(128):ra50CrossRefPubMedPubMedCentralGoogle Scholar
  19. Zschiedrich CP, Keidel V, Szurmant H (2016) Molecular mechanisms of two-component signal transduction. J Mol Biol 428(19):3752–3775CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain

Personalised recommendations