Advertisement

DNA Methylation in Prokaryotes: Regulation and Function

  • Saswat S. Mohapatra
  • Emanuele G. Biondi
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Methylation of DNA in prokaryotes is known since the 1950s, but its role is still elusive and therefore under intense investigation. Differently from eukaryotes, the most important methylation in bacteria takes place on adenines (in position N6). The enzymes responsible for DNA methylation are often associated with restriction enzymes acting as a defense mechanism against foreign DNA (Restriction-Modification or R-M system). Other methyltransferases are solitary that function independently of the presence of a cognate restriction enzyme and are mostly involved in controlling replication of chromosome, DNA mismatch repair systems, or modulating gene expression. This is the case of the methylase Dam in gamma-proteobacteria or CcrM in alpha-proteobacteria. In this chapter, we will discuss the role of the R-M system and the activity of Dam and CcrM.

References

  1. Adhikari S, Curtis PD (2016) DNA methyltransferases and epigenetic regulation in bacteria. FEMS Microbiol Rev 40:575–591.  https://doi.org/10.1093/femsre/fuw023CrossRefPubMedGoogle Scholar
  2. Albu RF, Zacharias M, Jurkowski TP, Jeltsch A (2012) DNA interaction of the CcrM DNA methyltransferase: a mutational and modeling study. Chembiochem Eur J Chem Biol 13:1304–1311.  https://doi.org/10.1002/cbic.201200082CrossRefGoogle Scholar
  3. Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL, Carmel G, Tummino PJ, Caruso A, Uria-Nickelsen M, Mills DM, Ives C, Gibson R, Merberg D, Mills SD, Jiang Q, Taylor DE, Vovis GF, Trust TJ (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176–180.  https://doi.org/10.1038/16495CrossRefPubMedGoogle Scholar
  4. Ardissone S, Redder P, Russo G, Frandi A, Fumeaux C, Patrignani A, Schlapbach R, Falquet L, Viollier PH (2016) Cell cycle constraints and environmental control of local DNA hypomethylation in α-proteobacteria. PLoS Genet 12:e1006499.  https://doi.org/10.1371/journal.pgen.1006499CrossRefPubMedPubMedCentralGoogle Scholar
  5. Au KG, Welsh K, Modrich P (1992) Initiation of methyl-directed mismatch repair. J Biol Chem 267:12142–12148PubMedGoogle Scholar
  6. Berdis AJ, Lee I, Coward JK, Stephens C, Wright R, Shapiro L, Benkovic SJ (1998) A cell cycle-regulated adenine DNA methyltransferase from Caulobacter crescentus processively methylates GANTC sites on hemimethylated DNA. Proc Natl Acad Sci U S A 95:2874–2879CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bertani G, Weigle JJ (1953) Host controlled variation in bacterial viruses. J Bacteriol 65:113–121PubMedPubMedCentralGoogle Scholar
  8. Blow MJ, Clark TA, Daum CG, Deutschbauer AM, Fomenkov A, Fries R, Froula J, Kang DD, Malmstrom RR, Morgan RD, Posfai J, Singh K, Visel A, Wetmore K, Zhao Z, Rubin EM, Korlach J, Pennacchio LA, Roberts RJ (2016) The epigenomic landscape of prokaryotes. PLoS Genet 12:e1005854.  https://doi.org/10.1371/journal.pgen.1005854CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boye E, Løbner-Olesen A (1990) The role of dam methyltransferase in the control of DNA replication in E. coli. Cell 62:981–989CrossRefPubMedGoogle Scholar
  10. Boye E, Løbner-Olesen A, Skarstad K (1988) Timing of chromosomal replication in Escherichia coli. Biochim Biophys Acta 951:359–364CrossRefPubMedGoogle Scholar
  11. Brilli M, Fondi M, Fani R, Mengoni A, Ferri L, Bazzicalupo M, Biondi EG (2010) The diversity and evolution of cell cycle regulation in alpha-proteobacteria: a comparative genomic analysis. BMC Syst Biol 4:52.  https://doi.org/10.1186/1752-0509-4-52CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brown PJB, Hardy GG, Trimble MJ, Brun YV (2009) Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus. Adv Microb Physiol 54:1–101.  https://doi.org/10.1016/S0065-2911(08)00001-5PubMedPubMedCentralGoogle Scholar
  13. Budroni S, Siena E, Dunning Hotopp JC, Seib KL, Serruto D, Nofroni C, Comanducci M, Riley DR, Daugherty SC, Angiuoli SV, Covacci A, Pizza M, Rappuoli R, Moxon ER, Tettelin H, Medini D (2011) Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. Proc Natl Acad Sci U S A 108:4494–4499.  https://doi.org/10.1073/pnas.1019751108CrossRefPubMedPubMedCentralGoogle Scholar
  14. Caillet-Fauquet P, Maenhaut-Michel G, Radman M (1984) SOS mutator effect in E. coli mutants deficient in mismatch correction. EMBO J 3:707–712PubMedPubMedCentralGoogle Scholar
  15. Camacho EM, Casadesús J (2002) Conjugal transfer of the virulence plasmid of Salmonella enterica is regulated by the leucine-responsive regulatory protein and DNA adenine methylation. Mol Microbiol 44:1589–1598CrossRefPubMedGoogle Scholar
  16. Camacho EM, Casadesús J (2005) Regulation of traJ transcription in the Salmonella virulence plasmid by strand-specific DNA adenine hemimethylation. Mol Microbiol 57:1700–1718.  https://doi.org/10.1111/j.1365-2958.2005.04788.xCrossRefPubMedGoogle Scholar
  17. Campbell JL, Kleckner N (1990) E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork. Cell 62:967–979CrossRefPubMedGoogle Scholar
  18. Casadesús J (2016) Bacterial DNA methylation and methylomes. Adv Exp Med Biol 945:35–61.  https://doi.org/10.1007/978-3-319-43624-1_3CrossRefPubMedGoogle Scholar
  19. Casadesús J, Low D (2006) Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev 70:830–856.  https://doi.org/10.1128/MMBR.00016-06CrossRefPubMedPubMedCentralGoogle Scholar
  20. Casadesús J, Low DA (2013) Programmed heterogeneity: epigenetic mechanisms in bacteria. J Biol Chem 288:13929–13935.  https://doi.org/10.1074/jbc.R113.472274CrossRefPubMedPubMedCentralGoogle Scholar
  21. Collier J, McAdams HH, Shapiro L (2007) A DNA methylation ratchet governs progression through a bacterial cell cycle. Proc Natl Acad Sci U S A 104:17111–17116.  https://doi.org/10.1073/pnas.0708112104CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cota I, Blanc-Potard AB, Casadesús J (2012) STM2209-STM2208 (opvAB): a phase variation locus of Salmonella enterica involved in control of O-antigen chain length. PLoS One 7:e36863.  https://doi.org/10.1371/journal.pone.0036863CrossRefPubMedPubMedCentralGoogle Scholar
  23. Croucher NJ, Coupland PG, Stevenson AE, Callendrello A, Bentley SD, Hanage WP (2014) Diversification of bacterial genome content through distinct mechanisms over different timescales. Nat Commun 5:5471.  https://doi.org/10.1038/ncomms6471CrossRefPubMedPubMedCentralGoogle Scholar
  24. Danese PN, Pratt LA, Dove SL, Kolter R (2000) The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol Microbiol 37:424–432CrossRefPubMedGoogle Scholar
  25. De Bolle X, Bayliss CD, Field D, van de Ven T, Saunders NJ, Hood DW, Moxon ER (2000) The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases. Mol Microbiol 35:211–222CrossRefPubMedGoogle Scholar
  26. De Nisco NJ, Abo RP, Wu CM, Penterman J, Walker GC (2014) Global analysis of cell cycle gene expression of the legume symbiont Sinorhizobium meliloti. Proc Natl Acad Sci USA.  https://doi.org/10.1073/pnas.1400421111
  27. de Vries N, Duinsbergen D, Kuipers EJ, Pot RGJ, Wiesenekker P, Penn CW, van Vliet AHM, Vandenbroucke-Grauls CMJE, Kusters JG (2002) Transcriptional phase variation of a type III restriction-modification system in Helicobacter pylori. J Bacteriol 184:6615–6623CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dryden DT, Murray NE, Rao DN (2001) Nucleoside triphosphate-dependent restriction enzymes. Nucleic Acids Res 29:3728–3741CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dybvig K, Sitaraman R, French CT (1998) A family of phase-variable restriction enzymes with differing specificities generated by high-frequency gene rearrangements. Proc Natl Acad Sci USA 95:13923–13928CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ershova AS, Rusinov IS, Spirin SA, Karyagina AS, Alexeevski AV (2015) Role of restriction-modification systems in prokaryotic evolution and ecology. Biochemistry (Mosc) 80:1373–1386.  https://doi.org/10.1134/S0006297915100193CrossRefGoogle Scholar
  31. Fioravanti A, Fumeaux C, Mohapatra SS, Bompard C, Brilli M, Frandi A, Castric V, Villeret V, Viollier PH, Biondi EG (2013) DNA binding of the cell cycle transcriptional regulator GcrA depends on N6-adenosine methylation in Caulobacter crescentus and other Alphaproteobacteria. PLoS Genet 9:e1003541.  https://doi.org/10.1371/journal.pgen.1003541CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fox KL, Dowideit SJ, Erwin AL, Srikhanta YN, Smith AL, Jennings MP (2007) Haemophilus influenzae phasevarions have evolved from type III DNA restriction systems into epigenetic regulators of gene expression. Nucleic Acids Res 35:5242–5252.  https://doi.org/10.1093/nar/gkm571CrossRefPubMedPubMedCentralGoogle Scholar
  33. Furuta Y, Namba-Fukuyo H, Shibata TF, Nishiyama T, Shigenobu S, Suzuki Y, Sugano S, Hasebe M, Kobayashi I (2014) Methylome diversification through changes in DNA methyltransferase sequence specificity. PLoS Genet 10:e1004272.  https://doi.org/10.1371/journal.pgen.1004272CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gonzalez D, Collier J (2013) DNA methylation by CcrM activates the transcription of two genes required for the division of Caulobacter crescentus. Mol Microbiol 88:203–218.  https://doi.org/10.1111/mmi.12180CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gonzalez D, Kozdon JB, McAdams HH, Shapiro L, Collier J (2014) The functions of DNA methylation by CcrM in Caulobacter crescentus: a global approach. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkt1352
  36. Haakonsen DL, Yuan AH, Laub MT (2015) The bacterial cell cycle regulator GcrA is a σ70 cofactor that drives gene expression from a subset of methylated promoters. Genes Dev 29:2272–2286.  https://doi.org/10.1101/gad.270660.115CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hallet B (2001) Playing Dr Jekyll and Mr Hyde: combined mechanisms of phase variation in bacteria. Curr Opin Microbiol 4:570–581.  https://doi.org/10.1016/S1369-5274(00)00253-8.CrossRefPubMedGoogle Scholar
  38. Henderson IR, Owen P (1999) The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving dam and oxyR. J Bacteriol 181:2132–2141PubMedPubMedCentralGoogle Scholar
  39. Herman GE, Modrich P (1981) Escherichia coli K-12 clones that overproduce dam methylase are hypermutable. J Bacteriol 145:644–646PubMedPubMedCentralGoogle Scholar
  40. Herman GE, Modrich P (1982) Escherichia coli Dam methylase. Physical and catalytic properties of the homogeneous enzyme. J Biol Chem 257:2605–2612PubMedGoogle Scholar
  41. Hernday A, Krabbe M, Braaten B, Low D (2002) Self-perpetuating epigenetic pili switches in bacteria. Proc Natl Acad Sci U S A 99(Suppl 4):16470–16476.  https://doi.org/10.1073/pnas.182427199CrossRefPubMedPubMedCentralGoogle Scholar
  42. Holtzendorff J, Hung D, Brende P, Reisenauer A, Viollier PH, McAdams HH, Shapiro L (2004) Oscillating global regulators control the genetic circuit driving a bacterial cell cycle. Science 304:983–987.  https://doi.org/10.1126/science.1095191CrossRefPubMedGoogle Scholar
  43. Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions and mechanisms. Chem Rev 106:302–323.  https://doi.org/10.1021/cr0404794CrossRefPubMedGoogle Scholar
  44. Janscak P, Sandmeier U, Szczelkun MD, Bickle TA (2001) Subunit assembly and mode of DNA cleavage of the type III restriction endonucleases EcoP1I and EcoP15I. J Mol Biol 306:417–431.  https://doi.org/10.1006/jmbi.2000.4411CrossRefPubMedGoogle Scholar
  45. Jenal U (2000) Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control. FEMS Microbiol Rev 24:177–191CrossRefPubMedGoogle Scholar
  46. Kahng LS, Shapiro L (2001) The CcrM DNA methyltransferase of Agrobacterium tumefaciens is essential, and its activity is cell cycle regulated. J Bacteriol 183:3065–3075.  https://doi.org/10.1128/JB.183.10.3065-3075.2001CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kaminska R, van der Woude MW (2010) Establishing and maintaining sequestration of dam target sites for phase variation of agn43 in Escherichia coli. J Bacteriol 192:1937–1945.  https://doi.org/10.1128/JB.01629-09CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kang S, Lee H, Han JS, Hwang DS (1999) Interaction of SeqA and dam methylase on the hemimethylated origin of Escherichia coli chromosomal DNA replication. J Biol Chem 274:11463–11468CrossRefPubMedGoogle Scholar
  49. Kang S, Han JS, Kim KP, Yang HY, Lee KY, Hong CB, Hwang DS (2005) Dimeric configuration of SeqA protein bound to a pair of hemi-methylated GATC sequences. Nucleic Acids Res 33:1524–1531.  https://doi.org/10.1093/nar/gki289CrossRefPubMedPubMedCentralGoogle Scholar
  50. Katayama T, Kubota T, Kurokawa K, Crooke E, Sekimizu K (1998) The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase. Cell 94:61–71CrossRefPubMedGoogle Scholar
  51. Kato J, Katayama T (2001) Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli. EMBO J 20:4253–4262.  https://doi.org/10.1093/emboj/20.15.4253CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kobayashi I (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29:3742–3756CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kozdon JB, Melfi MD, Luong K, Clark TA, Boitano M, Wang S, Zhou B, Gonzalez D, Collier J, Turner SW, Korlach J, Shapiro L, McAdams HH (2013) Global methylation state at base-pair resolution of the Caulobacter genome throughout the cell cycle. Proc Natl Acad Sci U S A 110:E4658–E4667.  https://doi.org/10.1073/pnas.1319315110CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kusano K, Sakagami K, Yokochi T, Naito T, Tokinaga Y, Ueda E, Kobayashi I (1997) A new type of illegitimate recombination is dependent on restriction and homologous interaction. J Bacteriol 179:5380–5390CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lindsay JA (2010) Genomic variation and evolution of Staphylococcus aureus. Int J Med Microbiol 300:98–103.  https://doi.org/10.1016/j.ijmm.2009.08.013CrossRefPubMedGoogle Scholar
  56. Løbner-Olesen A, Boye E, Marinus MG (1992) Expression of the Escherichia coli dam gene. Mol Microbiol 6:1841–1851CrossRefPubMedGoogle Scholar
  57. Løbner-Olesen A, Marinus MG, Hansen FG (2003) Role of SeqA and dam in Escherichia coli gene expression: a global/microarray analysis. Proc Natl Acad Sci U S A 100:4672–4677.  https://doi.org/10.1073/pnas.0538053100CrossRefPubMedPubMedCentralGoogle Scholar
  58. Loenen WAM, Raleigh EA (2014) The other face of restriction: modification-dependent enzymes. Nucleic Acids Res 42:56–69.  https://doi.org/10.1093/nar/gkt747CrossRefPubMedGoogle Scholar
  59. Lu AL, Clark S, Modrich P (1983) Methyl-directed repair of DNA base-pair mismatches in vitro. Proc Natl Acad Sci U S A 80:4639–4643CrossRefPubMedPubMedCentralGoogle Scholar
  60. Luria SE, Human ML (1952) A nonhereditary, host-induced variation of bacterial viruses. J Bacteriol 64:557–569PubMedPubMedCentralGoogle Scholar
  61. Marinus MG, Casadesus J (2009) Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev 33:488–503.  https://doi.org/10.1111/j.1574-6976.2008.00159.xCrossRefPubMedPubMedCentralGoogle Scholar
  62. Marinus MG, Morris NR (1974) Biological function for 6-methyladenine residues in the DNA of Escherichia coli K12. J Mol Biol 85:309–322CrossRefPubMedGoogle Scholar
  63. Mohapatra SS, Fioravanti A, Biondi EG (2014) DNA methylation in Caulobacter and other Alphaproteobacteria during cell cycle progression. Trends Microbiol 22:528–535.  https://doi.org/10.1016/j.tim.2014.05.003CrossRefPubMedGoogle Scholar
  64. Mott ML, Berger JM (2007) DNA replication initiation: mechanisms and regulation in bacteria. Nat Rev Microbiol 5:343–354.  https://doi.org/10.1038/nrmicro1640CrossRefPubMedGoogle Scholar
  65. Mücke M, Reich S, Möncke-Buchner E, Reuter M, Krüger DH (2001) DNA cleavage by type III restriction-modification enzyme EcoP15I is independent of spacer distance between two head to head oriented recognition sites. J Mol Biol 312:687–698.  https://doi.org/10.1006/jmbi.2001.4998CrossRefPubMedGoogle Scholar
  66. Murray SM, Panis G, Fumeaux C, Viollier PH, Howard M (2013) Computational and genetic reduction of a cell cycle to its simplest, primordial components. PLoS Biol 11:e1001749.  https://doi.org/10.1371/journal.pbio.1001749CrossRefPubMedPubMedCentralGoogle Scholar
  67. Naito T, Kusano K, Kobayashi I (1995) Selfish behavior of restriction-modification systems. Science 267:897–899CrossRefPubMedGoogle Scholar
  68. Nierman WC, Feldblyum TV, Laub MT, Paulsen IT, Nelson KE, Eisen JA, Heidelberg JF, Alley MR, Ohta N, Maddock JR, Potocka I, Nelson WC, Newton A, Stephens C, Phadke ND, Ely B, DeBoy RT, Dodson RJ, Durkin AS, Gwinn ML, Haft DH, Kolonay JF, Smit J, Craven MB, Khouri H, Shetty J, Berry K, Utterback T, Tran K, Wolf A, Vamathevan J, Ermolaeva M, White O, Salzberg SL, Venter JC, Shapiro L, Fraser CM, Eisen J (2001) Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci USA 98:4136–4141.  https://doi.org/10.1073/pnas.061029298CrossRefPubMedPubMedCentralGoogle Scholar
  69. Oliveira PH, Touchon M, Rocha EPC (2014) The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res 42:10618–10631.  https://doi.org/10.1093/nar/gku734CrossRefPubMedPubMedCentralGoogle Scholar
  70. Oshima T, Wada C, Kawagoe Y, Ara T, Maeda M, Masuda Y, Hiraga S, Mori H (2002) Genome-wide analysis of deoxyadenosine methyltransferase-mediated control of gene expression in Escherichia coli. Mol Microbiol 45:673–695CrossRefPubMedGoogle Scholar
  71. Price C, Bickle TA (1986) A possible role for DNA restriction in bacterial evolution. Microbiol Sci 3:296–299PubMedGoogle Scholar
  72. Pukkila PJ, Peterson J, Herman G, Modrich P, Meselson M (1983) Effects of high levels of DNA adenine methylation on methyl-directed mismatch repair in Escherichia coli. Genetics 104:571–582PubMedPubMedCentralGoogle Scholar
  73. Quon KC, Marczynski GT, Shapiro L (1996) Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84:83–93CrossRefPubMedGoogle Scholar
  74. Raleigh EA (1992) Organization and function of the mcrBC genes of Escherichia coli K-12. Mol Microbiol 6:1079–1086CrossRefPubMedGoogle Scholar
  75. Reisenauer A, Shapiro L (2002) DNA methylation affects the cell cycle transcription of the CtrA global regulator in Caulobacter. EMBO J 21:4969–4977CrossRefPubMedPubMedCentralGoogle Scholar
  76. Roberts D, Hoopes BC, McClure WR, Kleckner N (1985) IS10 transposition IS regulated by DNA adenine methylation. Cell 43:117–130CrossRefPubMedGoogle Scholar
  77. Roberts JA, Marklund BI, Ilver D, Haslam D, Kaack MB, Baskin G, Louis M, Möllby R, Winberg J, Normark S (1994) The gal(alpha 1-4)gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci USA 91:11889–11893CrossRefPubMedPubMedCentralGoogle Scholar
  78. Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, Blumenthal RM, Degtyarev SK, Dryden DTF, Dybvig K, Firman K, Gromova ES, Gumport RI, Halford SE, Hattman S, Heitman J, Hornby DP, Janulaitis A, Jeltsch A, Josephsen J, Kiss A, Klaenhammer TR, Kobayashi I, Kong H, Krüger DH, Lacks S, Marinus MG, Miyahara M, Morgan RD, Murray NE, Nagaraja V, Piekarowicz A, Pingoud A, Raleigh E, Rao DN, Reich N, Repin VE, Selker EU, Shaw P-C, Stein DC, Stoddard BL, Szybalski W, Trautner TA, Van Etten JL, Vitor JMB, Wilson GG, Xu S (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31:1805–1812CrossRefPubMedPubMedCentralGoogle Scholar
  79. Roberts RJ, Vincze T, Posfai J, Macelis D (2010) REBASE – a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 38:D234–D236.  https://doi.org/10.1093/nar/gkp874CrossRefPubMedGoogle Scholar
  80. Roberts RJ, Vincze T, Posfai J, Macelis D (2015) REBASE – a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 43:D298–D299.  https://doi.org/10.1093/nar/gku1046CrossRefPubMedGoogle Scholar
  81. Robertson GT, Reisenauer A, Wright R, Jensen RB, Jensen A, Shapiro L, Roop RM 2nd (2000) The Brucella abortus CcrM DNA methyltransferase is essential for viability, and its overexpression attenuates intracellular replication in murine macrophages. J Bacteriol 182:3482–3489CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sánchez-Romero MA, Cota I, Casadesús J (2015) DNA methylation in bacteria: from the methyl group to the methylome. Curr Opin Microbiol 25:9–16.  https://doi.org/10.1016/j.mib.2015.03.004CrossRefPubMedGoogle Scholar
  83. Seshasayee ASN, Singh P, Krishna S (2012) Context-dependent conservation of DNA methyltransferases in bacteria. Nucleic Acids Res 40:7066–7073.  https://doi.org/10.1093/nar/gks390CrossRefPubMedPubMedCentralGoogle Scholar
  84. Sibley MH, Raleigh EA (2004) Cassette-like variation of restriction enzyme genes in Escherichia coli C and relatives. Nucleic Acids Res 32:522–534.  https://doi.org/10.1093/nar/gkh194CrossRefPubMedPubMedCentralGoogle Scholar
  85. Stancheva I, Koller T, Sogo JM (1999) Asymmetry of dam remethylation on the leading and lagging arms of plasmid replicative intermediates. EMBO J 18:6542–6551.  https://doi.org/10.1093/emboj/18.22.6542CrossRefPubMedPubMedCentralGoogle Scholar
  86. Torreblanca J, Casadesús J (1996) DNA adenine methylase mutants of Salmonella typhimurium and a novel dam-regulated locus. Genetics 144:15–26PubMedPubMedCentralGoogle Scholar
  87. Urig S, Gowher H, Hermann A, Beck C, Fatemi M, Humeny A, Jeltsch A (2002) The Escherichia coli dam DNA methyltransferase modifies DNA in a highly processive reaction. J Mol Biol 319:1085–1096.  https://doi.org/10.1016/S0022-2836(02)00371-6CrossRefPubMedGoogle Scholar
  88. van der Woude MW, Bäumler AJ (2004) Phase and antigenic variation in bacteria. Clin Microbiol Rev 17:581–611, table of contents.  https://doi.org/10.1128/CMR.17.3.581-611.2004
  89. Vasu K, Nagaraja V (2013) Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 77:53–72.  https://doi.org/10.1128/MMBR.00044-12CrossRefPubMedPubMedCentralGoogle Scholar
  90. Waldminghaus T, Skarstad K (2009) The Escherichia coli SeqA protein. Plasmid 61:141–150.  https://doi.org/10.1016/j.plasmid.2009.02.004CrossRefPubMedGoogle Scholar
  91. Waldron DE, Owen P, Dorman CJ (2002) Competitive interaction of the OxyR DNA-binding protein and the dam methylase at the antigen 43 gene regulatory region in Escherichia coli. Mol Microbiol 44:509–520CrossRefPubMedGoogle Scholar
  92. Wallecha A, Munster V, Correnti J, Chan T, van der Woude M (2002) Dam- and OxyR-dependent phase variation of agn43: essential elements and evidence for a new role of DNA methylation. J Bacteriol 184:3338–3347CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wallecha A, Correnti J, Munster V, van der Woude M (2003) Phase variation of Ag43 is independent of the oxidation state of OxyR. J Bacteriol 185:2203–2209CrossRefPubMedPubMedCentralGoogle Scholar
  94. Weiser JN, Williams A, Moxon ER (1990) Phase-variable lipopolysaccharide structures enhance the invasive capacity of Haemophilus influenzae. Infect Immun 58:3455–3457PubMedPubMedCentralGoogle Scholar
  95. Welsh KM, Lu AL, Clark S, Modrich P (1987) Isolation and characterization of the Escherichia coli mutH gene product. J Biol Chem 262:15624–15629PubMedGoogle Scholar
  96. Wright R, Stephens C, Zweiger G, Shapiro L, Alley MR (1996) Caulobacter Lon protease has a critical role in cell-cycle control of DNA methylation. Genes Dev 10:1532–1542CrossRefPubMedGoogle Scholar
  97. Wright R, Stephens C, Shapiro L (1997) The CcrM DNA methyltransferase is widespread in the alpha subdivision of proteobacteria, and its essential functions are conserved in Rhizobium meliloti and Caulobacter crescentus. J Bacteriol 179:5869–5877CrossRefPubMedPubMedCentralGoogle Scholar
  98. Xu S-Y, Corvaglia AR, Chan S-H, Zheng Y, Linder P (2011) A type IV modification-dependent restriction enzyme SauUSI from Staphylococcus aureus subsp. aureus USA300. Nucleic Acids Res 39:5597–5610.  https://doi.org/10.1093/nar/gkr098CrossRefPubMedPubMedCentralGoogle Scholar
  99. Zweiger G, Marczynski G, Shapiro L (1994) A Caulobacter DNA methyltransferase that functions only in the predivisional cell. J Mol Biol 235:472–485.  https://doi.org/10.1006/jmbi.1994.1007CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Genetic Engineering, School of BioengineeringSRM UniversityKattankulathurIndia
  2. 2.Aix Marseille University, CNRS, IMM, LCBMarseilleFrance

Personalised recommendations