Hydrophobic Modifications of Biomolecules: An Introduction

  • Álvaro Ortega
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Nucleic acids and proteins, the biomolecules that carry all necessary information for life in the cell, undergo very often modifications in the primary coding elements of their sequences. Some of the bases in the DNA and RNA and the majority of the amino acids in the protein can incorporate new functional groups through a covalent addition. By means of these modifications, the genetically encoded functions of active proteins or the expression patterns of the DNA are affected, leading to changes at the physiological level. These modifications are generally catalyzed by one of the most abundant enzyme families in the cell, the transferases. The importance of this enzyme family is evidenced by the fact that many of them are subject to a strict regulation since they are implicated in key cellular mechanisms. Most of these modifications cause a local increase in hydrophobicity at the biomolecule that leads to changes in protein-protein and protein-nucleic acid interactions. A relevant example for nucleic acid modification is the methylation, while alkylation, lipidation, acetylation, and ubiquitination are frequent hydrophobic modifications of proteins.


  1. Bah A, Forman-Kay JD (2016) Modulation of intrinsically disordered protein function by post-translational modifications. J Biol Chem 291(13):6696–6705PubMedPubMedCentralCrossRefGoogle Scholar
  2. Biggar KK, Li SS (2015) Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol 16(1):5–17PubMedCrossRefGoogle Scholar
  3. Bijlmakers MJ, Marsh M (2003) The on-off story of protein palmitoylation. Trends Cell Biol 13(1):32–42PubMedCrossRefGoogle Scholar
  4. Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336PubMedCrossRefGoogle Scholar
  5. Bouziane M, Miao F, Ye N, Holmquist G, Chyzak G, O’Connor TR (1998) Repair of DNA alkylation damage. Acta Biochim Pol 45(1):191–202PubMedGoogle Scholar
  6. Boyes J, Bird A (1991) DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64(6):1123–1134PubMedCrossRefGoogle Scholar
  7. Capili AD, Lima CD (2007) Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways. Curr Opin Struct Biol 17(6):726–735PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chen K, Zhao BS, He C (2016) Nucleic acid modifications in regulation of gene expression. Cell Chem Biol 23(1):74–85PubMedPubMedCentralCrossRefGoogle Scholar
  9. Clarke SG (2013) Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem Sci 38(5):243–252PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cole PA (2008) Chemical probes for histone-modifying enzymes. Nat Chem Biol 4(10):590–597PubMedPubMedCentralCrossRefGoogle Scholar
  11. Drablos F, Feyzi E, Aas PA, Vaagbo CB, Kavli B, Bratlie MS, Pena-Diaz J, Otterlei M, Slupphaug G, Krokan HE (2004) Alkylation damage in DNA and RNA – repair mechanisms and medical significance. DNA Repair (Amst) 3(11):1389–1407CrossRefGoogle Scholar
  12. Ehrlich M, Wilson GG, Kuo KC, Gehrke CW (1987) N4-methylcytosine as a minor base in bacterial DNA. J Bacteriol 169(3):939–943PubMedPubMedCentralCrossRefGoogle Scholar
  13. Engelbergs J, Thomale J, Rajewsky MF (2000) Role of DNA repair in carcinogen-induced ras mutation. Mutat Res 450(1–2):139–153PubMedCrossRefGoogle Scholar
  14. Farazi TA, Waksman G, Gordon JI (2001) The biology and enzymology of protein N-myristoylation. J Biol Chem 276(43):39501–39504PubMedCrossRefGoogle Scholar
  15. Guan KL, Xiong Y (2011) Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci 36(2):108–116PubMedCrossRefGoogle Scholar
  16. Hallgrimsson B, Hall BK (2011) Epigenetics: linking genotype and phenotype in development and evolution. University of California Press, OaklandGoogle Scholar
  17. Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33(1):9–19PubMedCrossRefGoogle Scholar
  18. Hentschel A, Zahedi RP, Ahrends R (2016) Protein lipid modifications – more than just a greasy ballast. Proteomics 16(5):759–782PubMedCrossRefGoogle Scholar
  19. Hubbard SR, Miller WT (2007) Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol 19(2):117–123PubMedPubMedCentralCrossRefGoogle Scholar
  20. Jeltsch A, Jurkowska RZ (2014) New concepts in DNA methylation. Trends Biochem Sci 39(7):310–318PubMedCrossRefGoogle Scholar
  21. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492PubMedCrossRefGoogle Scholar
  22. Karijolich J, Yu YT (2010) Spliceosomal snRNA modifications and their function. RNA Biol 7(2):192–204PubMedPubMedCentralCrossRefGoogle Scholar
  23. Knorre DG, Kudryashova NV, Godovikova TS (2009) Chemical and functional aspects of posttranslational modification of proteins. Acta Nat 1(3):29–51Google Scholar
  24. Korlach J, Turner SW (2012) Going beyond five bases in DNA sequencing. Curr Opin Struct Biol 22(3):251–261PubMedCrossRefGoogle Scholar
  25. Kumar R, Rao DN (2013) Role of DNA methyltransferases in epigenetic regulation in bacteria. Subcell Biochem 61:81–102PubMedCrossRefGoogle Scholar
  26. Lee YH, Stallcup MR (2009) Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation. Mol Endocrinol 23(4):425–433PubMedPubMedCentralCrossRefGoogle Scholar
  27. Li G, Weis RM (2000) Covalent modification regulates ligand binding to receptor complexes in the chemosensory system of Escherichia coli. Cell 100(3):357–365PubMedCrossRefGoogle Scholar
  28. Li M, Luo J, Brooks CL, Gu W (2002) Acetylation of p53 inhibits its ubiquitination by Mdm2. J Biol Chem 277(52):50607–50611PubMedCrossRefGoogle Scholar
  29. Liyanage VR, Zachariah RM, Delcuve GP, Davie JR, Rastegar M (2012) New developments in chromatin research: an epigenetic perspective. In: Simpson NM, Stewart VJ (eds) New developments in chromatin research. Nova Science Publishers, Hauppauge, pp 29–58Google Scholar
  30. Liyanage VR, Jarmasz JS, Murugeshan N, Del Bigio MR, Rastegar M, Davie JR (2014) DNA modifications: function and applications in normal and disease states. Biology (Basel) 3(4):670–723Google Scholar
  31. Marinus MG, Casadesus J (2009) Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev 33(3):488–503PubMedPubMedCentralCrossRefGoogle Scholar
  32. Massenet S, Mougin A, Branlant C (1998) Posttranscriptional modifications in the U small nuclear RNAs. In: Grosjean H, Benne R (eds) Modification and Editing of RNA. ASM Press, Washington, DC, pp 201–227CrossRefGoogle Scholar
  33. Molina-Serrano D, Schiza V, Kirmizis A (2013) Cross-talk among epigenetic modifications: lessons from histone arginine methylation. Biochem Soc Trans 41(3):751–759PubMedCrossRefGoogle Scholar
  34. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38PubMedCrossRefGoogle Scholar
  35. Nadolski MJ, Linder ME (2007) Protein lipidation. FEBS J 274(20):5202–5210PubMedCrossRefGoogle Scholar
  36. Ndlovu MN, Denis H, Fuks F (2011) Exposing the DNA methylome iceberg. Trends Biochem Sci 36(7):381–387PubMedGoogle Scholar
  37. Phizicky EM, Hopper AK (2015) tRNA processing, modification, and subcellular dynamics: past, present, and future. RNA 21(4):483–485PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ratel D, Ravanat JL, Berger F, Wion D (2006) N6-methyladenine: the other methylated base of DNA. BioEssays 28(3):309–315PubMedPubMedCentralCrossRefGoogle Scholar
  39. Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210(4470):604–610PubMedCrossRefGoogle Scholar
  40. Resh MD (1999) Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1451(1):1–16PubMedCrossRefGoogle Scholar
  41. Shen L, Song CX, He C, Zhang Y (2014) Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu Rev Biochem 83:585–614PubMedPubMedCentralCrossRefGoogle Scholar
  42. Smotrys JE, Linder ME (2004) Palmitoylation of intracellular signaling proteins: regulation and function. Annu Rev Biochem 73:559–587PubMedCrossRefGoogle Scholar
  43. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45PubMedCrossRefGoogle Scholar
  44. Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81(1):153–208PubMedCrossRefGoogle Scholar
  45. Walsh D (2005) Posttranslational modification of proteins: expanding nature’s inventory. Roberts & Company Publishers, EnglewoodGoogle Scholar
  46. Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr (2005) Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 44(45):7342–7372PubMedCrossRefGoogle Scholar
  47. Wyatt GR (1951) Recognition and estimation of 5-methylcytosine in nucleic acids. Biochem J 48(5):581–584PubMedPubMedCentralCrossRefGoogle Scholar
  48. Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269PubMedCrossRefGoogle Scholar
  49. Zhang K, Williams KE, Huang L, Yau P, Siino JS, Bradbury EM, Jones PR, Minch MJ, Burlingame AL (2002) Histone acetylation and deacetylation: identification of acetylation and methylation sites of HeLa histone H4 by mass spectrometry. Mol Cell Proteomics 1(7):500–508PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain

Personalised recommendations