Problems of Solventogenicity, Solvent Tolerance: An Introduction

  • Miguel A. Matilla
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Many organic solvents are toxic to prokaryotic and eukaryotic organisms. This general toxicity mainly derives from their ability to preferentially partition into cell membranes, a process that finally can impair their normal functioning. However, multiple microorganisms have evolved different strategies to overcome the effects of toxicity. Thus, the mechanisms of tolerance in Gram-negative bacteria are the result of a multifactorial process that involves a set of changes at both physiological and gene expression levels. These changes include the alteration in the composition of cell membranes to reduce their permeability, the activation of general stress responses, or the induction of efflux pumps and catabolic pathways. The evaluation of these solvent tolerance strategies may lay the basis for the development of effective in situ and ex situ bacteria-based biodegradation strategies.



Miguel A. Matilla was supported by the Spanish Ministry of Economy and Competitiveness Postdoctoral Research Program, Juan de la Cierva (JCI-2012-11815).


  1. Abbasian F, Lockington R, Mallavarapu M, Naidu R (2015) A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol 176:670–699CrossRefPubMedGoogle Scholar
  2. Abbasian F, Palanisami T, Megharaj M, Naidu R, Lockington R, Ramadass K (2016) Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis. Biotechnol Prog 32:638–648CrossRefPubMedGoogle Scholar
  3. Acosta-González A, Marqués S (2016) Bacterial diversity in oil-polluted marine coastal sediments. Curr Opin Biotechnol 38:24–32CrossRefPubMedGoogle Scholar
  4. Agarwal A, Liu Y (2015) Remediation technologies for oil-contaminated sediments. Mar Pollut Bull 101:483–490CrossRefPubMedGoogle Scholar
  5. Bargiela R, Mapelli F, Rojo D, Chouaia B, Tornes J, Borin S et al (2015) Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature. Sci Rep 5:11651CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cases I, de Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8:213–222PubMedGoogle Scholar
  7. Deppe U, Richnow HH, Michaelis W, Antranikian G (2005) Degradation of crude oil by an arctic microbial consortium. Extremophiles 9:461–470CrossRefPubMedGoogle Scholar
  8. Domínguez-Cuevas P, González-Pastor JE, Marqués S, Ramos JL, de Lorenzo V (2006) Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J Biol Chem 281:11981–11991CrossRefPubMedGoogle Scholar
  9. Ghazali FM, Rahman RNZA, Salleh AB, Basri M (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeterior Biodegrad 54:61–67CrossRefGoogle Scholar
  10. Gordillo F, Chavez FP, Jerez CA (2007) Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiol Ecol 60:322–328CrossRefPubMedGoogle Scholar
  11. Greated A, Lambertsen L, Williams PA, Thomas CM (2002) Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environ Microbiol 4:856–871CrossRefPubMedGoogle Scholar
  12. Grimm AC, Harwood CS (1999) NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol 181:3310–3316PubMedPubMedCentralGoogle Scholar
  13. Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852PubMedPubMedCentralGoogle Scholar
  14. Lacal J, Muñoz-Martínez F, Reyes-Darias JA, Duque E, Matilla MA, Segura A et al (2011) Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ Microbiol 13:1733–1744CrossRefPubMedGoogle Scholar
  15. Lamendella R, Strutt S, Borglin S, Chakraborty R, Tas N, Mason OU et al (2014) Assessment of the deepwater horizon oil spill impact on gulf coast microbial communities. Front Microbiol 5:130CrossRefPubMedPubMedCentralGoogle Scholar
  16. de Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19:579–589CrossRefPubMedGoogle Scholar
  17. Ma YF, Wu JF, Wang SY, Jiang CY, Zhang Y, Qi SW et al (2007) Nucleotide sequence of plasmid pCNB1 from Comamonas strain CNB-1 reveals novel genetic organization and evolution for 4-chloronitrobenzene degradation. Appl Environ Microbiol 73:4477–4483CrossRefPubMedPubMedCentralGoogle Scholar
  18. Mosqueda G, Ramos-González MI, Ramos JL (1999) Toluene metabolism by the solvent-tolerant Pseudomonas putida DOT-T1 strain, and its role in solvent impermeabilization. Gene 232:69–76CrossRefPubMedGoogle Scholar
  19. Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331CrossRefPubMedGoogle Scholar
  20. Nikaido H, Takatsuka Y (2009) Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 1794:769–781CrossRefPubMedGoogle Scholar
  21. Okuyama H, Okajima N, Sasaki S, Higashi S, Murata N (1991) The cis/trans isomerization of the double bond of a fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium, Vibrio sp. strain ABE-1. Biochim Biophys Acta 1084:13–20CrossRefPubMedGoogle Scholar
  22. Parales RE, Parales JV, Pelletier DA, Ditty JL (2008) Diversity of microbial toluene degradation pathways. Adv Appl Microbiol 64:1–73CrossRefPubMedGoogle Scholar
  23. Powlowski J, Shingler V (1994) Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation 5:219–236CrossRefPubMedGoogle Scholar
  24. Ramos JL, Marqués S, van Dillewijn P, Espinosa-Urgel M, Segura A, Duque E et al (2011) Laboratory research aimed at closing the gaps in microbial bioremediation. Trends Biotechnol 29:641–647CrossRefPubMedGoogle Scholar
  25. Ramos JL, Sol Cuenca M, Molina-Santiago C, Segura A, Duque E, Gómez-García MR et al (2015) Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol Rev 39:555–566CrossRefPubMedGoogle Scholar
  26. Segura A, Godoy P, van Dillewijn P, Hurtado A, Arroyo N, Santacruz S, Ramos JL (2005) Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J Bacteriol 187:5937–5945CrossRefPubMedPubMedCentralGoogle Scholar
  27. Segura A, Molina L, Fillet S, Krell T, Bernal P, Munoz-Rojas J, Ramos JL (2012) Solvent tolerance in Gram-negative bacteria. Curr Opin Biotechnol 23:415–421CrossRefPubMedGoogle Scholar
  28. Segura A, Molina L, Ramos JL (2014) Plasmid-mediated tolerance toward environmental pollutants. Microbiol Spectr 2:PLAS-0013–PLAS-2013Google Scholar
  29. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedPubMedCentralGoogle Scholar
  30. Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286CrossRefPubMedGoogle Scholar
  31. Varjani SJ, Upasani VN (2013) Comparative studies on bacterial consortia for hydrocarbon degradation. Int J Innovative Res Sci Eng Technol 2:5377–5383Google Scholar
  32. Volkers RJ, de Jong AL, Hulst AG, van Baar BL, de Bont JA, Wery J (2006) Chemostat-based proteomic analysis of toluene-affected Pseudomonas putida S12. Environ Microbiol 8:1674–1679CrossRefPubMedGoogle Scholar
  33. Wijte D, van Baar BL, Heck AJ, Altelaar AF (2011) Probing the proteome response to toluene exposure in the solvent tolerant Pseudomonas putida S12. J Proteome Res 10:394–403CrossRefPubMedGoogle Scholar
  34. Yen KM, Serdar CM (1988) Genetics of naphthalene catabolism in pseudomonads. Crit Rev Microbiol 15:247–268CrossRefPubMedGoogle Scholar
  35. Zhao B, Poh CL (2008) Insights into environmental bioremediation by microorganisms through functional genomics and proteomics. Proteomics 8:874–881CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain

Personalised recommendations