Skip to main content

Problems of Solventogenicity, Solvent Tolerance: An Introduction

  • Reference work entry
  • First Online:

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Many organic solvents are toxic to prokaryotic and eukaryotic organisms. This general toxicity mainly derives from their ability to preferentially partition into cell membranes, a process that finally can impair their normal functioning. However, multiple microorganisms have evolved different strategies to overcome the effects of toxicity. Thus, the mechanisms of tolerance in Gram-negative bacteria are the result of a multifactorial process that involves a set of changes at both physiological and gene expression levels. These changes include the alteration in the composition of cell membranes to reduce their permeability, the activation of general stress responses, or the induction of efflux pumps and catabolic pathways. The evaluation of these solvent tolerance strategies may lay the basis for the development of effective in situ and ex situ bacteria-based biodegradation strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbasian F, Lockington R, Mallavarapu M, Naidu R (2015) A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol 176:670–699

    Article  CAS  PubMed  Google Scholar 

  • Abbasian F, Palanisami T, Megharaj M, Naidu R, Lockington R, Ramadass K (2016) Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis. Biotechnol Prog 32:638–648

    Article  CAS  PubMed  Google Scholar 

  • Acosta-González A, Marqués S (2016) Bacterial diversity in oil-polluted marine coastal sediments. Curr Opin Biotechnol 38:24–32

    Article  PubMed  Google Scholar 

  • Agarwal A, Liu Y (2015) Remediation technologies for oil-contaminated sediments. Mar Pollut Bull 101:483–490

    Article  CAS  PubMed  Google Scholar 

  • Bargiela R, Mapelli F, Rojo D, Chouaia B, Tornes J, Borin S et al (2015) Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature. Sci Rep 5:11651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cases I, de Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8:213–222

    CAS  PubMed  Google Scholar 

  • Deppe U, Richnow HH, Michaelis W, Antranikian G (2005) Degradation of crude oil by an arctic microbial consortium. Extremophiles 9:461–470

    Article  PubMed  Google Scholar 

  • Domínguez-Cuevas P, González-Pastor JE, Marqués S, Ramos JL, de Lorenzo V (2006) Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J Biol Chem 281:11981–11991

    Article  PubMed  Google Scholar 

  • Ghazali FM, Rahman RNZA, Salleh AB, Basri M (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeterior Biodegrad 54:61–67

    Article  CAS  Google Scholar 

  • Gordillo F, Chavez FP, Jerez CA (2007) Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiol Ecol 60:322–328

    Article  CAS  PubMed  Google Scholar 

  • Greated A, Lambertsen L, Williams PA, Thomas CM (2002) Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environ Microbiol 4:856–871

    Article  CAS  PubMed  Google Scholar 

  • Grimm AC, Harwood CS (1999) NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol 181:3310–3316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lacal J, Muñoz-Martínez F, Reyes-Darias JA, Duque E, Matilla MA, Segura A et al (2011) Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ Microbiol 13:1733–1744

    Article  CAS  PubMed  Google Scholar 

  • Lamendella R, Strutt S, Borglin S, Chakraborty R, Tas N, Mason OU et al (2014) Assessment of the deepwater horizon oil spill impact on gulf coast microbial communities. Front Microbiol 5:130

    Article  PubMed  PubMed Central  Google Scholar 

  • de Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19:579–589

    Article  PubMed  Google Scholar 

  • Ma YF, Wu JF, Wang SY, Jiang CY, Zhang Y, Qi SW et al (2007) Nucleotide sequence of plasmid pCNB1 from Comamonas strain CNB-1 reveals novel genetic organization and evolution for 4-chloronitrobenzene degradation. Appl Environ Microbiol 73:4477–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosqueda G, Ramos-González MI, Ramos JL (1999) Toluene metabolism by the solvent-tolerant Pseudomonas putida DOT-T1 strain, and its role in solvent impermeabilization. Gene 232:69–76

    Article  CAS  PubMed  Google Scholar 

  • Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331

    Article  CAS  PubMed  Google Scholar 

  • Nikaido H, Takatsuka Y (2009) Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 1794:769–781

    Article  CAS  PubMed  Google Scholar 

  • Okuyama H, Okajima N, Sasaki S, Higashi S, Murata N (1991) The cis/trans isomerization of the double bond of a fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium, Vibrio sp. strain ABE-1. Biochim Biophys Acta 1084:13–20

    Article  CAS  PubMed  Google Scholar 

  • Parales RE, Parales JV, Pelletier DA, Ditty JL (2008) Diversity of microbial toluene degradation pathways. Adv Appl Microbiol 64:1–73

    Article  CAS  PubMed  Google Scholar 

  • Powlowski J, Shingler V (1994) Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation 5:219–236

    Article  CAS  PubMed  Google Scholar 

  • Ramos JL, Marqués S, van Dillewijn P, Espinosa-Urgel M, Segura A, Duque E et al (2011) Laboratory research aimed at closing the gaps in microbial bioremediation. Trends Biotechnol 29:641–647

    Article  CAS  PubMed  Google Scholar 

  • Ramos JL, Sol Cuenca M, Molina-Santiago C, Segura A, Duque E, Gómez-García MR et al (2015) Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol Rev 39:555–566

    Article  PubMed  Google Scholar 

  • Segura A, Godoy P, van Dillewijn P, Hurtado A, Arroyo N, Santacruz S, Ramos JL (2005) Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J Bacteriol 187:5937–5945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura A, Molina L, Fillet S, Krell T, Bernal P, Munoz-Rojas J, Ramos JL (2012) Solvent tolerance in Gram-negative bacteria. Curr Opin Biotechnol 23:415–421

    Article  CAS  PubMed  Google Scholar 

  • Segura A, Molina L, Ramos JL (2014) Plasmid-mediated tolerance toward environmental pollutants. Microbiol Spectr 2:PLAS-0013–PLAS-2013

    Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286

    Article  CAS  PubMed  Google Scholar 

  • Varjani SJ, Upasani VN (2013) Comparative studies on bacterial consortia for hydrocarbon degradation. Int J Innovative Res Sci Eng Technol 2:5377–5383

    Google Scholar 

  • Volkers RJ, de Jong AL, Hulst AG, van Baar BL, de Bont JA, Wery J (2006) Chemostat-based proteomic analysis of toluene-affected Pseudomonas putida S12. Environ Microbiol 8:1674–1679

    Article  CAS  PubMed  Google Scholar 

  • Wijte D, van Baar BL, Heck AJ, Altelaar AF (2011) Probing the proteome response to toluene exposure in the solvent tolerant Pseudomonas putida S12. J Proteome Res 10:394–403

    Article  CAS  PubMed  Google Scholar 

  • Yen KM, Serdar CM (1988) Genetics of naphthalene catabolism in pseudomonads. Crit Rev Microbiol 15:247–268

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Poh CL (2008) Insights into environmental bioremediation by microorganisms through functional genomics and proteomics. Proteomics 8:874–881

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Miguel A. Matilla was supported by the Spanish Ministry of Economy and Competitiveness Postdoctoral Research Program, Juan de la Cierva (JCI-2012-11815).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Matilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Matilla, M.A. (2018). Problems of Solventogenicity, Solvent Tolerance: An Introduction. In: Krell, T. (eds) Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid Interactions. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50542-8_14

Download citation

Publish with us

Policies and ethics