Novel Sensors for Engineering Microbiology

  • Maximilian Ole Bahls
  • Tsvetan Kardashliev
  • Sven Panke
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The development of sustainable, biocatalytic routes to compounds otherwise derived from petrochemical processes is one of the major objectives in the field of biotechnology. Obtaining suitable microbial strains for this task still depends on the generation of strain variants and the subsequent screening or selection process. While the technical advances in DNA manipulation and synthesis allow rapid generation of millions to billions of metabolic pathway variants for a given product, the knowledge of which variants to generate and how to assess them in a high-throughput manner is lacking behind. The latter problem is increasingly tackled through the use of biosensors, by which product titers are coupled to easily detectable in vivo reporters such as fluorescent proteins. This in turn requires an interface where the presence of the desired product can trigger the formation of the reporter. Therefore, this chapter discusses how such an interface can be implemented and reviews the types of genetically encoded sensors available, their construction and applications, and how the specificities of future biosensors could be developed.

Notes

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreements No 635536 (EmPowerPutida) and 635734 (ROBOX).

References

  1. Abraham MA, Nguyen N (2003) Green engineering: Defining the principles. Environ Prog 22(4):233–236CrossRefGoogle Scholar
  2. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, OxfordGoogle Scholar
  3. Ang J, Harris E, Hussey BJ, Kil R, McMillen DR (2013) Tuning response curves for synthetic biology. ACS Synth Biol 2(10):547–567PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci USA 96:11241–11246PubMedPubMedCentralCrossRefGoogle Scholar
  5. Berens C, Suess B (2015) Riboswitch engineering – making the all-important second and third steps. Curr Opin Biotechnol 31:10–15PubMedCrossRefGoogle Scholar
  6. Berens C, Groher F, Suess B (2015) RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression. Biotechnol J 10:246–257PubMedCrossRefGoogle Scholar
  7. Binder S, Schendzielorz G, Stabler N, Krumbach K, Hoffmann K, Bott M, Eggeling L (2012) A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 13(5):R40PubMedPubMedCentralCrossRefGoogle Scholar
  8. Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L (2013) Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Res 41(12):6360–6369PubMedPubMedCentralCrossRefGoogle Scholar
  9. Call TP, Akhtar MK, Baganz F, Grant C (2016) Modulating the import of medium-chain alkanes in E. coli through tuned expression of FadL. J Biol Eng 10:5PubMedPubMedCentralCrossRefGoogle Scholar
  10. Carbajosa G, Trigo A, Valencia A, Cases I (2009) Bionemo: molecular information on biodegradation metabolism. Nucleic Acids Res 37(Database):D598–D602PubMedCrossRefGoogle Scholar
  11. Cebolla A, Sousa C, de Lorenzo V (1997) Effector specificity mutants of the transcriptional activator NahR of naphthalene degrading Pseudomonas define protein sites involved in binding of aromatic inducers. J Biol Chem 272(7):3986–3992PubMedCrossRefGoogle Scholar
  12. Cheng F, Kardashliev T, Pitzler C, Shehzad A, Lue H, Bernhagen J, Zhu L, Schwaneberg U (2015) A competitive flow cytometry screening system for directed evolution of therapeutic enzyme. ACS Synth Biol 4:768–775PubMedCrossRefGoogle Scholar
  13. Choi SL, Rha E, Lee SJ, Kim H, Kwon K, Jeong YS, Rhee YH, Song JJ, Kim HS, Lee SG (2014) Toward a generalized and high-throughput enzyme screening system based on artificial genetic circuits. ACS Synth Biol 3(3):163–171PubMedCrossRefGoogle Scholar
  14. Clote P (2015) Chapter Twelve – Computational Prediction of Riboswitches. In: Chen S-J, Burke-Aguero DH (eds) Computational methods for understanding riboswitches, Methods in Enzymology, vol 553. Academic Press, Waltham, pp 287–312CrossRefGoogle Scholar
  15. Dai ZJ, Nielsen J (2015) Advancing metabolic engineering through systems biology of industrial microorganisms. Curr Opin Biotechnol 36:8–15PubMedCrossRefGoogle Scholar
  16. Das R, Baker D (2008) Macromolecular modeling with rosetta. Annu Rev Biochem 77:363–382PubMedCrossRefGoogle Scholar
  17. Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100(7):2705–2738PubMedCrossRefGoogle Scholar
  18. Davidson ME, Harbaugh SV, Chushak YG, Stone MO, Kelley-Loughnane N (2013) Development of a 2,4-dinitrotoluene-responsive synthetic riboswitch in E. coli cells. ACS Chem Biol 8:234–241PubMedCrossRefGoogle Scholar
  19. de las Heras A, Fraile S, de Lorenzo V (2012) Increasing signal specificity of the TOL network of Pseudomonas putida mt-2 by rewiring the connectivity of the master regulator XylR. PLoS Genet 8(10):e1002963PubMedCrossRefGoogle Scholar
  20. de Lorenzo V, Fernandez S, Herrero M, Jakubzik U, Timmis KN (1993) Engineering of alkyl-responsive and haloaromatic-responsive gene-expression with mini-transposons containing regulated promoters of biodegradative pathways of Pseudomonas. Gene 130(1):41–46PubMedCrossRefGoogle Scholar
  21. de Lorenzo V, Silva-Rocha R, Carbajosa G, Galvao TC, Cases I (2010) Sensing xenobiotic compounds: lessons from bacteria that face pollutants in the environment. In: Sensory mechanisms in bacteria: molecular aspects of signal recognition, pp 81–105Google Scholar
  22. Delepine B, Libis V, Carbonell P, Faulon JL (2016) SensiPath: computer-aided design of sensing-enabling metabolic pathways. Nucleic Acids Res 44(W1):W226–W231PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dietrich JA, McKee AE, Keasling JD (2010) High-throughput metabolic engineering: advances in small-molecule screening and selection. Annu Rev Biochem 79:563–590PubMedCrossRefGoogle Scholar
  24. Dietrich JA, Shis DL, Alikhani A, Keasling JD (2013) Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synth Biol 2(1):47–58PubMedCrossRefGoogle Scholar
  25. Dolgosheina EV, Unrau PJ (2016) Fluorophore-binding RNA aptamers and their applications. Wiley Interdisciplinary Reviews: RNA 7:843–851PubMedCrossRefGoogle Scholar
  26. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145PubMedPubMedCentralCrossRefGoogle Scholar
  27. Eggeling L, Bott M, Marienhagen J (2015) Novel screening methods-biosensors. Curr Opin Biotechnol 35:30–36PubMedCrossRefGoogle Scholar
  28. Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355:850–852PubMedCrossRefGoogle Scholar
  29. Espinosa-Urgel M, Serrano L, Ramos JL, Fernandez-Escamilla AM (2015) Engineering biological approaches for detection of toxic compounds: a new microbial biosensor based on the Pseudomonas putida TtgR repressor. Mol Biotechnol 57(6):558–564PubMedCrossRefGoogle Scholar
  30. Galvao TC, de Lorenzo V (2006) Transcriptional regulators a la carte: engineering new effector specificities in bacterial regulatory proteins. Curr Opin Biotechnol 17(1):34–42PubMedCrossRefGoogle Scholar
  31. Galvao TC, Mencia M, de Lorenzo V (2007) Emergence of novel functions in transcriptional regulators by regression to stem protein types. Mol Microbiol 65(4):907–919PubMedCrossRefGoogle Scholar
  32. Gao JF, Ellis LBM, Wackett LP (2010) The University of Minnesota Biocatalysis/Biodegradation Database: improving public access. Nucleic Acids Res 38:D488–D491PubMedCrossRefGoogle Scholar
  33. Garmendia J, Devos D, Valencia A, de Lorenzo V (2001) A la carte transcriptional regulators: unlocking responses of the prokaryotic enhancer-binding protein XylR to non-natural effectors. Mol Microbiol 42(1):47–59PubMedCrossRefGoogle Scholar
  34. Goni-Moreno A, Benedetti I, Kim J, de Lorenzo V (2017) Deconvolution of gene expression noise into spatial dynamics of transcription factor-promoter interplay. ACS Synth Biol 6(7):1359–1369PubMedCrossRefGoogle Scholar
  35. Gredell JA, Frei CS, Cirino PC (2012) Protein and RNA engineering to customize microbial molecular reporting. Biotechnol J 7(4):477–499PubMedCrossRefGoogle Scholar
  36. Hallberg ZF, Su Y, Kitto RZ, Hammond MC (2017) Engineering and in vivo applications of riboswitches. Annu Rev Biochem 86(1):515–539PubMedCrossRefGoogle Scholar
  37. Hatfield D, Hofnung M, Schwartz M (1969) Genetic analysis of maltose A region in Escherichia coli. J Bacteriol 98(2):559–567PubMedPubMedCentralGoogle Scholar
  38. Hawkins AC, Arnold FH, Stuermer R, Hauer B, Leadbetter JR (2007) Directed evolution of Vibrio fischeri LuxR for improved response to butanoyl-homoserine lactone. Appl Environ Microbiol 73(18):5775–5781PubMedPubMedCentralCrossRefGoogle Scholar
  39. He W, Yuan S, Zhong W-H, Siddikee MA, Dai C-C (2015) Application of genetically engineered microbial whole-cell biosensors for combined chemosensing. Appl Microbiol Biotechnol 100:1109–1119PubMedCrossRefGoogle Scholar
  40. Hochreiter B, Pardo-Garcia A, Schmid JA (2015) Fluorescent proteins as genetically encoded fret biosensors in life sciences. Sensors 15:26281–26314PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hollands K, Proshkin S, Sklyarova S, Epshtein V, Mironov A, Nudler E, Groisman EA (2012) Riboswitch control of Rho-dependent transcription termination. Proc Natl Acad Sci USA 109(14):5376–5381PubMedPubMedCentralCrossRefGoogle Scholar
  42. Jacob F, Monod J (1961) Genetic regulatory mechanisms in synthesis of proteins. J Mol Biol 3(3):318–356PubMedCrossRefGoogle Scholar
  43. Jang S, Lee B, Jeong H-H, Jin SH, Jang S, Kim SG, Jung GY, Lee C-S (2016) On-chip analysis, indexing and screening for chemical producing bacteria in a microfluidic static droplet array. Lab Chip 16:1909–1916PubMedCrossRefGoogle Scholar
  44. Jaspers MCM, Meier C, Zehnder AJB, Harms H, van der Meer JR (2001) Measuring mass transfer processes of octane with the help of an alkS-alkB :: gfp-tagged Escherichia coli. Environ Microbiol 3(8):512–524PubMedCrossRefGoogle Scholar
  45. Jensen RA (1976) Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30:409–425PubMedCrossRefGoogle Scholar
  46. Jeschek M, Gerngross D, Panke S (2017) Combinatorial pathway optimization for streamlined metabolic engineering. Curr Opin Biotechnol 47:142–151PubMedCrossRefGoogle Scholar
  47. Jha RK, Chakraborti S, Kern TL, Fox DT, Strauss CEM (2015) Rosetta comparative modeling for library design: engineering alternative inducer specificity in a transcription factor. Proteins 83(7):1327–1340PubMedCrossRefGoogle Scholar
  48. Juskowiak B (2010) Nucleic acid-based fluorescent probes and their analytical potential. Anal Bioanal Chem 399:3157–3176PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kohlmeier S, Mancuso M, Tecon R, Harms H, van der Meer JR, Wells M (2007) Bioreporters: gfp versus lux revisited and single-cell response. Biosens Bioelectron 22(8):1578–1585PubMedCrossRefGoogle Scholar
  50. Krishnamurthy M, Hennelly SP, Dale T, Starkenburg SR, Martí-Arbona R, Fox DT, Twary SN, Sanbonmatsu KY, Unkefer CJ (2015) Tunable riboregulator switches for post-transcriptional control of gene expression. ACS Synth Biol 4(12):1326–1334PubMedCrossRefGoogle Scholar
  51. Lacal J, Busch A, Guazzaroni ME, Krell T, Ramos JL (2006) The TodS-TodT two-component regulatory system recognizes a wide range of effectors and works with DNA-bending proteins. Proc Natl Acad Sci USA 103(21):8191–8196PubMedPubMedCentralCrossRefGoogle Scholar
  52. Libis V, Delepine B, Faulon JL (2016a) Expanding biosensing abilities through computer-aided design of metabolic pathways. ACS Synth Biol 5(10):1076–1085PubMedCrossRefGoogle Scholar
  53. Libis V, Delepine B, Faulon JL (2016b) Sensing new chemicals with bacterial transcription factors. Curr Opin Microbiol 33:105–112PubMedCrossRefGoogle Scholar
  54. Lim JB, Sikes HD (2015) Use of a genetically encoded hydrogen peroxide sensor for whole cell screening of enzyme activity. Protein Eng Des Sel 28:79–83PubMedCrossRefGoogle Scholar
  55. Liu D, Evans T, Zhang F (2015) Applications and advances of metabolite biosensors for metabolic engineering. Metab Eng 31:35–43PubMedCrossRefGoogle Scholar
  56. Looger LL, Dwyer MA, Smith JJ, Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423(6936):185–190PubMedCrossRefGoogle Scholar
  57. Lünse C, Mayer G (2014) Screening assays to identify artificial glmS ribozyme activators. In: Lafontaine D, Dubé A (eds) Therapeutic applications of ribozymes and riboswitches, vol 1103. Humana Press, New York, pp 199–209CrossRefGoogle Scholar
  58. Mahr R, Frunzke J (2015) Transcription factor-based biosensors in biotechnology: current state and future prospects. Appl Microbiol Biotechnol 100(1):79–90PubMedPubMedCentralCrossRefGoogle Scholar
  59. Mahr R, von Boeselager RF, Wiechert J, Frunzke J (2016) Screening of an Escherichia coli promoter library for a phenylalanine biosensor. Appl Microbiol Biotechnol 100(15):6739–6753PubMedCrossRefGoogle Scholar
  60. Merulla D, van der Meer JR (2016) Regulatable and modulable background expression control in prokaryotic synthetic circuits by auxiliary repressor binding sites. ACS Synth Biol 5(1):36–45PubMedCrossRefGoogle Scholar
  61. Meyer A, Pellaux R, Potot S, Becker K, Hohmann HP, Panke S, Held M (2015) Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors. Nat Chem 7(8):673–678PubMedCrossRefGoogle Scholar
  62. Michener JK, Smolke CD (2012) High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metab Eng 14:306–316PubMedCrossRefGoogle Scholar
  63. Monošík R, Streďanský M, Šturdík E (2012) Biosensors – classification, characterization and new trends. Acta Chim Slov 5:109–120Google Scholar
  64. Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15:423–437PubMedPubMedCentralCrossRefGoogle Scholar
  65. Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA, Kazanov MD, Riehl W, Arkin AP, Dubchak I, Rodionov DA (2013) RegPrecise 3.0 – a resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genomics 14:745PubMedPubMedCentralCrossRefGoogle Scholar
  66. Paige JS, KY W, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333:642–646PubMedPubMedCentralCrossRefGoogle Scholar
  67. Penchovsky R (2013) Computational design and biosensor applications of small molecule-sensing allosteric ribozymes. Biomacromolecules 14:1240–1249PubMedCrossRefGoogle Scholar
  68. Polisky B, Bishop RJ, Gelfand DH (1976) A plasmid cloning vehicle allowing regulated expression of eukaryotic DNA in bacteria. Proc Natl Acad Sci USA 73(11):3900–3904PubMedPubMedCentralCrossRefGoogle Scholar
  69. Ramos JL, Stolz A, Reineke W, Timmis KN (1986) Altered effector specificities in regulators of gene expression: TOL plasmid xylS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria. Proc Natl Acad Sci USA 83(22):8467–8471PubMedPubMedCentralCrossRefGoogle Scholar
  70. Ramos JL, Michan C, Rojo F, Dwyer D, Timmis K (1990) Signal regulator interactions – genetic analysis of the effector binding-site of Xyls, the benzoate-activated positive regulator of Pseudomonas Tol plasmid meta-cleavage pathway operon. J Mol Biol 211(2):373–382PubMedCrossRefGoogle Scholar
  71. Reimer A, Yagur-Kroll S, Belkin S, Roy S, van der Meer JR (2014) Escherichia coli ribose binding protein based bioreporters revisited. Sci Rep 4:5626PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ribeiro BD, Coelho MAZ, Machado de Castro A (2015) Chapter 1. Principles of green chemistry and white biotechnology. In: Coelho MA, Ribeiro BD (eds) RSC green chemistry. Royal Society of Chemistry, Cambridge, pp 1–8Google Scholar
  73. Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468PubMedCrossRefGoogle Scholar
  74. Rogers JK, Church GM (2016a) Genetically encoded sensors enable real-time observation of metabolite production. Proc Natl Acad Sci USA 113(9):2388–2393PubMedPubMedCentralCrossRefGoogle Scholar
  75. Rogers JK, Church GM (2016b) Multiplexed engineering in biology. Trends Biotechnol 34(3):198–206PubMedCrossRefGoogle Scholar
  76. Rogers JK, Taylor ND, Church GM (2016) Biosensor-based engineering of biosynthetic pathways. Curr Opin Biotechnol 42:84–91PubMedCrossRefGoogle Scholar
  77. Ruff AJ, Dennig A, Schwaneberg U (2013) To get what we aim for – progress in diversity generation methods. FEBS J 280:2961–2978PubMedCrossRefGoogle Scholar
  78. Saeki K, Tominaga M, Kawai-Noma S, Saito K, Umeno D (2016) Rapid diversification of BetI-based transcriptional switches for the control of biosynthetic pathways and genetic circuits. ACS Synth Biol 5(11):1201–1210PubMedCrossRefGoogle Scholar
  79. Santos CNS, Stephanopoulos G (2008) Melanin-based high-throughput screen for L-tyrosine production in Escherichia coli. Appl Environ Microbiol 74(4):1190–1197PubMedCrossRefGoogle Scholar
  80. Schallmey M, Frunzke J, Eggeling L, Marienhagen J (2014) Looking for the pick of the bunch: high-throughput screening of producing microorganisms with biosensors. Curr Opin Biotechnol 26:148–154PubMedCrossRefGoogle Scholar
  81. Schendzielorz G, Dippong M, Grunberger A, Kohlheyer D, Yoshida A, Binder S, Nishiyama C, Nishiyama M, Bott M, Eggeling L (2014) Taking control over control: use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synth Biol 3(1):21–29PubMedCrossRefGoogle Scholar
  82. Sevilla E, Yuste L, Rojo F (2015) Marine hydrocarbonoclastic bacteria as whole-cell biosensors for n-alkanes. Microb Biotechnol 8(4):693–706PubMedPubMedCentralCrossRefGoogle Scholar
  83. Shoeman R, Redfield B, Coleman T, Greene RC, Smith AA, Brot N, Weissbach H (1985) Regulation of methionine synthesis in Escherichia coli – effect of Metj gene-product and S-adenosylmethionine on the expression of the Metf gene. Proc Natl Acad Sci USA 82(11):3601–3605PubMedPubMedCentralCrossRefGoogle Scholar
  84. Siedler S, Schendzielorz G, Binder S, Eggeling L, Bringer S, Bott M (2014) SoxR as a single-cell biosensor for NADPH-consuming enzymes in Escherichia coli. ACS Synth Biol 3(1):41–47PubMedCrossRefGoogle Scholar
  85. Siedler S, Khatri NK, Zsohar A, Kjaerbolling I, Vogt M, Hammar P, Nielsen CF, Marienhagen J, Sommer M, Joensson HN (2017) Development of a bacterial biosensor for rapid screening of yeast p-coumaric acid production. ACS Synth Biol.  https://doi.org/10.1021/acssynbio.1027b00009
  86. Song W, Strack RL, Jaffrey SR (2013) Imaging bacterial protein expression using genetically encoded RNA sensors. Nat Methods 10:873–875PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sticher P, Jaspers MCM, Stemmler K, Harms H, Zehnder AJB, van der Meer JR (1997) Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl Environ Microbiol 63(10):4053–4060PubMedPubMedCentralGoogle Scholar
  88. Strack RL, Jaffrey SR (2013) New approaches for sensing metabolites and proteins in live cells using RNA. Curr Opin Chem Biol 17:651–655PubMedPubMedCentralCrossRefGoogle Scholar
  89. Strack RL, Song W, Jaffrey SR (2014) Using Spinach-based sensors for fluorescence imaging of intracellular metabolites and proteins in living bacteria. Nat Protoc 9:146–155PubMedCrossRefGoogle Scholar
  90. Su Y, Hickey SF, Keyser SGL, Hammond MC (2016) In vitro and in vivo enzyme activity screening via RNA-based fluorescent biosensors for S-adenosyl-L-homocysteine (SAH). J Am Chem Soc 138(22):7040–7047PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sundberg SA (2000) High-throughput and ultra-high-throughput screening: solution- and cell-based approaches. Curr Opin Biotechnol 11:47–53PubMedCrossRefGoogle Scholar
  92. Tabor JJ, Groban ES, Voigt CA (2009) Performance characteristics for sensors and circuits used to program E. coli. In: Systems Biology and Biotechnology of Escherichia coli, pp 401–439.  https://doi.org/10.1007/978-1-4020-9394-4_19 CrossRefGoogle Scholar
  93. Tang SY, Cirino PC (2011) Design and application of a mevalonate-responsive regulatory protein. Angew Chem Int Edit 50(5):1084–1086CrossRefGoogle Scholar
  94. Tang SY, Fazelinia H, Cirino PC (2008) AraC regulatory protein mutants with altered effector specificity. J Am Chem Soc 130(15):5267–5271PubMedCrossRefGoogle Scholar
  95. Tang SY, Qian S, Akinterinwa O, Frei CS, Gredell JA, Cirino PC (2013) Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. J Am Chem Soc 135(27):10099–10103PubMedCrossRefGoogle Scholar
  96. Taylor ND, Garruss AS, Moretti R, Chan S, Arbing MA, Cascio D, Rogers JK, Isaacs FJ, Kosuri S, Baker D, Fields S, Church GM, Raman S (2016) Engineering an allosteric transcription factor to respond to new ligands. Nat Methods 13(2):177–183PubMedCrossRefGoogle Scholar
  97. Tee KL, Wong TS (2013) Polishing the craft of genetic diversity creation in directed evolution. Biotechnol Adv 31(8):1707–1721PubMedCrossRefGoogle Scholar
  98. Tinberg CE, Khare SD, Dou J, Doyle L, Nelson JW, Schena A, Jankowski W, Kalodimos CG, Johnsson K, Stoddard BL, Baker D (2013) Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501(7466):212–216PubMedPubMedCentralCrossRefGoogle Scholar
  99. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510PubMedCrossRefGoogle Scholar
  100. Uchiyama T, Watanabe K (2008) Substrate-induced gene expression (SIGEX) screening of metagenome libraries. Nat Protoc 3(7):1202–1212PubMedCrossRefGoogle Scholar
  101. Uchiyama T, Abe T, Ikemura T, Watanabe K (2005) Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 23(1):88–93PubMedCrossRefGoogle Scholar
  102. van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8(7):511–522PubMedCrossRefGoogle Scholar
  103. Wang J, Gao D, Yu X, Li W, Qi Q (2015) Evolution of a chimeric aspartate kinase for L-lysine production using a synthetic RNA device. Appl Microbiol Biotechnol 99:8527–8536PubMedCrossRefGoogle Scholar
  104. Weigand JE, Sanchez M, Gunnesch E-B, Zeiher S, Schroeder R, Suess B (2008) Screening for engineered neomycin riboswitches that control translation initiation. RNA 14:89–97PubMedPubMedCentralCrossRefGoogle Scholar
  105. Werlen C, Jaspers MCM, van der Meer JR (2004) Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Appl Environ Microbiol 70(1):43–51PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wieland M, Hartig JS (2008) Artificial riboswitches: Synthetic mRNA-based regulators of gene expression. Chembiochem 9(12):1873–1878PubMedCrossRefGoogle Scholar
  107. Williams TC, Pretorius IS, Paulsen IT (2016) Synthetic evolution of metabolic productivity using biosensors. Trends Biotechnol 34(5):371–381PubMedCrossRefGoogle Scholar
  108. Winkler W, Nahvi A, Breaker RR (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419(6910):952–956PubMedCrossRefGoogle Scholar
  109. Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428(6980):281–286PubMedCrossRefGoogle Scholar
  110. Wong TS, Zhurina D, Schwaneberg U (2006) The diversity challenge in directed protein evolution. Comb Chem High Throughput Screen 9:271–288PubMedCrossRefGoogle Scholar
  111. Wu W, Zhang L, Yao L, Tan X, Liu X, Lu X (2015) Genetically assembled fluorescent biosensor for in situ detection of bio-synthesized alkanes. Sci Rep 5:10907PubMedPubMedCentralCrossRefGoogle Scholar
  112. Xiao H, Bao Z, Zhao H (2015) High throughput screening and selection methods for directed enzyme evolution. Ind Eng Chem Res 54:4011–4020PubMedCrossRefGoogle Scholar
  113. Xue H, Shi H, Yu Z, He S, Liu S, Hou Y, Pan X, Wang H, Zheng P, Cui C, Viets H, Liang J, Zhang Y, Chen S, Zhang HM, Ouyang Q (2014) Design, construction, and characterization of a set of biosensors for aromatic compounds. ACS Synth Biol 3(12):1011–1014PubMedCrossRefGoogle Scholar
  114. You M, Jaffrey SR (2015) Structure and mechanism of RNA mimics of green fluorescent protein. Annu Rev Biophys 44(1):187–206PubMedCrossRefGoogle Scholar
  115. You M, Litke JL, Jaffrey SR (2015) Imaging metabolite dynamics in living cells using a Spinach-based riboswitch. Proc Natl Acad Sci USA 112:E2756–E2765PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette MG, Alon U (2006) A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3(8):623–628PubMedCrossRefGoogle Scholar
  117. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73PubMedCrossRefGoogle Scholar
  118. Zhang J, Jensen MK, Keasling JD (2015) Development of biosensors and their application in metabolic engineering. Curr Opin Chem Biol 28:1–8PubMedCrossRefGoogle Scholar
  119. Zhou L-B, Zeng A-P (2015a) Engineering a lysine-ON riboswitch for metabolic control of lysine production in Corynebacterium glutamicum. ACS Synth Biol 4:1335–1340PubMedCrossRefGoogle Scholar
  120. Zhou L-B, Zeng A-P (2015b) Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum. ACS Synth Biol 4:729–734PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Maximilian Ole Bahls
    • 1
  • Tsvetan Kardashliev
    • 1
  • Sven Panke
    • 1
  1. 1.Department of Biosystems Science and EngineeringETH ZurichBaselSwitzerland

Personalised recommendations