Skip to main content

Synthetic Biology for Biofuels in Saccharomyces cerevisiae

  • Reference work entry
  • First Online:

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

The yeast Saccharomyces cerevisiae has crucial features to facilitate successful genetic engineering and industrial scale fermentations for producing drop-in biofuels. Short-chain alcohols, fatty acid derivatives, and isoprenoids are potential drop-in biofuels where their biosynthesis can help mitigate climate change while ensuring sustainability of energy supply. Here, we review the drop-in biofuel molecules that have been produced in engineered S. cerevisiae. Efforts to diversify and optimize biofuel production using synthetic biology and metabolic engineering approaches are discussed. Much improvement will be required to achieve commercial viability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   359.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amiri P, Shahpiri A, Asadollahi MA, Momenbeik F, Partow S (2016) Metabolic engineering of Saccharomyces cerevisiae for linalool production. Biotechnol Lett 38:503–508

    Article  CAS  PubMed  Google Scholar 

  • Asadollahi MA, Maury J, Moller K, Nielsen KF, Schalk M, Clark A, Nielsen J (2008) Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 99:666–677

    Article  CAS  PubMed  Google Scholar 

  • Avalos JL, Fink GR, Stephanopoulo SG (2013) Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 31:335–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    Article  CAS  PubMed  Google Scholar 

  • Behrendorff JB, Vickers CE, Chrysanthopoulos P, Nielsen LK (2013) 2,2-Diphenyl-1-picrylhydrazyl as a screening tool for recombinant monoterpene biosynthesis. Microb Cell Factories 12:76

    Article  Google Scholar 

  • Bentley FK, Zurbriggen A, Melis A (2014) Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol Plant 7:71–86

    Article  CAS  PubMed  Google Scholar 

  • Branduardi P, Longo V, Berterame NM, Rossi G, Porro D (2013) A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol Biofuels 6:1–12

    Article  Google Scholar 

  • Brat D, Weber C, Lorenzen W, Bode HB, Boles E (2012) Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 5:1–16

    Article  Google Scholar 

  • Buijs NA, Zhou YJ, Siewers V, Nielsen J (2015) Long-chain alkane production by the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 112:1275–1279

    Article  CAS  PubMed  Google Scholar 

  • Campbell A, Bauchart P, Gold ND, Zhu Y, De Luca V, Martin VJ (2016) Engineering of a nepetalactol-producing platform strain of Saccharomyces cerevisiae for the production of plant seco-iridoids. ACS Synth Biol 5:405–414

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K (2011) Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 4:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Lee DY, Chang MW (2015) Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production. Metab Eng 31:53–61

    Article  PubMed  Google Scholar 

  • de Jong BW, Shi S, Siewers V, Nielsen J (2014) Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb Cell Factories 13:1–10

    Article  Google Scholar 

  • de Jong BW, Shi S, Valle-Rodriguez JO, Siewers V, Nielsen J (2015) Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration. J Ind Microbiol Biotechnol 42:477–486

    Article  PubMed  Google Scholar 

  • Deng Y, Sun M, Xu S, Zhou J (2016) Enhanced (S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae. J Appl Microbiol 121:187–195

    Article  CAS  PubMed  Google Scholar 

  • Eriksen DT, Hamedirad M, Yuan Y, Zhao H (2015) Orthogonal fatty acid biosynthetic pathway improves fatty acid ethyl ester production in Saccharomyces cerevisiae. ACS Synth Biol 4:808–814

    Article  CAS  PubMed  Google Scholar 

  • Faulkner A, Chen X, Rush J, Horazdovsky B, Waechter CJ, Carman GM, Sternweis PC (1999) The LPP1 and DPP1 gene products account for most of the isoprenoid phosphate phosphatase activities in Saccharomyces cerevisiae. J Biol Chem 274:14831–14837

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Lian J, Zhao H (2015) Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production. Metab Eng 27:10–19

    Article  CAS  PubMed  Google Scholar 

  • Fischer MJ, Meyer S, Claudel P, Bergdoll M, Karst F (2011) Metabolic engineering of monoterpene synthesis in yeast. Biotechnol Bioeng 108:1883–1892

    Article  CAS  PubMed  Google Scholar 

  • Foo JL, Susanto AV, Keasling JD, Leong SS, Chang MW (2015) Whole-cell biocatalytic and de novo production of alkanes from free fatty acids in Saccharomyces cerevisiae. Biotechnol Bioeng 114:232–237

    Google Scholar 

  • Generoso WC, Schadeweg V, Oreb M, Boles E (2015) Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr Opin Biotechnol 33:1–7

    Article  CAS  PubMed  Google Scholar 

  • Ghiaci P, Norbeck J, Larsson C (2014) 2-butanol and butanone production in Saccharomyces cerevisiae through combination of a B12 dependent dehydratase and a secondary alcohol dehydrogenase using a TEV-based expression system. PLoS ONE 9:e102774

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta P, Phulara SC (2015) Metabolic engineering for isoprenoid-based biofuel production. J Appl Microbiol 119:605–619

    Article  CAS  PubMed  Google Scholar 

  • Hazelwood LA, Daeran J-M, Van Maris AJA, JT P, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrero O, Ramon D, Orejas M (2008) Engineering the Saccharomyces cerevisiae isoprenoid pathway for de novo production of aromatic monoterpenes in wine. Metab Eng 10:78–86

    Article  CAS  PubMed  Google Scholar 

  • Hong SY, Zurbriggen AS, Melis A (2012) Isoprene hydrocarbons production upon heterologous transformation of Saccharomyces cerevisiae. J Appl Microbiol 113:52–65

    Article  CAS  PubMed  Google Scholar 

  • Ida K, Ishii J, Matsuda F, Kondo T, Kondo A (2015) Eliminating the isoleucine biosynthetic pathway to reduce competitive carbon outflow during isobutanol production by Saccharomyces cerevisiae. Microb Cell Factories 14:1–9

    Article  CAS  Google Scholar 

  • Ignea C, Cvetkovic I, Loupassaki S, Kefalas P, Johnson CB, Kampranis SC, Makris AM (2011) Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids. Microb Cell Factories 10:1–18

    Article  Google Scholar 

  • Ignea C, Pontini M, Maffei ME, Makris AM, Kampranis SC (2014) Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth Biol 3:298–306

    Article  CAS  PubMed  Google Scholar 

  • Jensen MK, Keasling JD (2014) Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Res 15:1–10

    Google Scholar 

  • Jin Z, Wong A, Foo JL, Ng J, Cao YX, Chang MW, Yuan YJ (2016) Engineering Saccharomyces cerevisiae to produce odd chain-length fatty alcohols. Biotechnol Bioeng 113:842–851

    Article  CAS  PubMed  Google Scholar 

  • Jongedijk E, Cankar K, Ranzijn J, Van Der Krol S, Bouwmeester H, Beekwilder J (2015) Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae. Yeast 32:159–171

    CAS  PubMed  Google Scholar 

  • Kalscheuer R, Luftmann H, Steinbuchel A (2004) Synthesis of novel lipids in Saccharomyces cerevisiae by heterologous expression of an unspecific bacterial acyltransferase. Appl Environ Microbiol 70:7119–7125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby J, Nishimoto M, Chow RW, Pasumarthi VN, Chan R, Chan LJ, Petzold CJ, Keasling JD (2014) Use of nonionic surfactants for improvement of terpene production in Saccharomyces cerevisiae. Appl Environ Microbiol 80:6685–6693

    Article  PubMed  PubMed Central  Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070

    Article  CAS  Google Scholar 

  • Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A (2012) Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J Biotechnol 159:32–37

    Article  CAS  PubMed  Google Scholar 

  • Krivoruchko A, Serrano-Amatriain C, Chen Y, Siewers V, Nielsen J (2013) Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J Ind Microbiol Biotechnol 40:1051–1056

    Article  CAS  PubMed  Google Scholar 

  • Lee WH, Seo SO, Bae YH, NAN H, Jin YS, Seo JH (2012) Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioprocess Biosyst Eng 35:1467–1475

    Article  CAS  PubMed  Google Scholar 

  • Lian J, Zhao H (2015) Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth Biol 4:332–341

    Article  CAS  PubMed  Google Scholar 

  • Lian J, Si T, Nair NU, Zhao H (2014) Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng 24:139–149

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhang W, Du G, Chen J, Zhou J (2013) Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae. J Biotechnol 168:446–451

    Article  CAS  PubMed  Google Scholar 

  • Lv X, Xie W, Lu W, Guo F, Gu J, Yu H, Ye L (2014) Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. J Biotechnol 186:128–136

    Article  CAS  PubMed  Google Scholar 

  • Matsuda F, Kondo T, Ida K, Tezuka H, Ishii J, Kondo A (2012) Construction of an artificial pathway for isobutanol biosynthesis in the cytosol of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 76:2139–2141

    Article  CAS  PubMed  Google Scholar 

  • Matsuda F, Ishii J, Kondo T, Ida K, Tezuka H, Kondo A (2013) Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance. Microb Cell Factories 12:119–119

    Article  Google Scholar 

  • Meylemans HA, Quintana RL, Goldsmith BR, Harvey BG (2011) Solvent-free conversion of linalool to methylcyclopentadiene dimers: a route to renewable high-density fuels. ChemSusChem 4:465–469

    Article  CAS  PubMed  Google Scholar 

  • Millis JR, Maurina-Brunker J (2004) Production of farnesol and geranylgeraniol. US Patent 6689593 B2

    Google Scholar 

  • Milne N, Wahl SA, Van Maris AJA, Pronk JT, Daran JM (2016) Excessive by-product formation: a key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains. Metab Eng Commun 3:39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S (2009) Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols. Appl Microbiol Biotechnol 82:837–845

    Article  CAS  PubMed  Google Scholar 

  • Oswald M, Fischer M, Dirninger N, Karst F (2007) Monoterpenoid biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res 7:413–421

    Article  CAS  PubMed  Google Scholar 

  • Ozaydin B, Burd H, Lee TS, Keasling JD (2013) Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab Eng 15:174–183

    Article  CAS  PubMed  Google Scholar 

  • Pardo E, Rico J, Gil JV, Orejas M (2015) De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain. Microb Cell Factories 14:136

    Article  Google Scholar 

  • Park SH, Kim S, Hahn JS (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol. Appl Microbiol Biotechnol 98:9139–9147

    Article  CAS  PubMed  Google Scholar 

  • Park S-H, Kim S, Hahn J-S (2016) Improvement of isobutanol production in Saccharomyces cerevisiae by increasing mitochondrial import of pyruvate through mitochondrial pyruvate carrier. Appl Microbiol Biotechnol 100:7591–7598

    Article  CAS  PubMed  Google Scholar 

  • Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483

    Article  PubMed  PubMed Central  Google Scholar 

  • Renninger NS, Mcphee DJ (2008) Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same. US Patent 7399323 B2

    Google Scholar 

  • Renninger NS, Mcphee DJ (2010) Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same. US Patent 7846222 B2

    Google Scholar 

  • Rico J, Pardo E, Orejas M (2010) Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae. Appl Environ Microbiol 76:6449–6454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Runguphan W, Keasling JD (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21:103–113

    Article  CAS  PubMed  Google Scholar 

  • Ryder JA (2012) Jet fuel compositions and methods of making and using same. US Patent 8106247 B2

    Google Scholar 

  • Scalcinati G, Knuf C, Partow S, Chen Y, Maury J, Schalk M, Daviet L, Nielsen J, Siewers V (2012) Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene alpha-santalene in a fed-batch mode. Metab Eng 14:91–103

    Article  CAS  PubMed  Google Scholar 

  • Schadeweg V, Boles E (2016) n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnol Biofuels 9:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheng J, Stevens J, Feng X (2016) Pathway compartmentalization in peroxisome of Saccharomyces cerevisiae to produce versatile medium chain fatty alcohols. Sci Report 6:26884

    Article  CAS  Google Scholar 

  • Shi S, Valle-Rodriguez JO, Khoomrung S, Siewers V, Nielsen J (2012) Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels 5:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi S, Chen Y, Siewers V, Nielsen J (2014a) Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. MBio 5:e01130–e01114

    PubMed  PubMed Central  Google Scholar 

  • Shi S, Valle-Rodríguez JO, Siewers V, Nielsen J (2014b) Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters. Biotechnol Bioeng 111:1740–1747

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Si T, Liu Z, Zhang H, Ang EL, Zhao H (2016) Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae. Sci Report 6:25675

    Article  CAS  Google Scholar 

  • Si T, Luo Y, Xiao H, Zhao H (2014) Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae. Metab Eng 22:60–68

    Article  CAS  PubMed  Google Scholar 

  • Song L (2006) A soluble form of phosphatase in Saccharomyces cerevisiae capable of converting farnesyl diphosphate into E,E-farnesol. Appl Biochem Biotechnol 128:149–158

    Article  CAS  PubMed  Google Scholar 

  • Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Factories 7:36

    Article  Google Scholar 

  • Sun M, Liu J, Du G, Zhou J, Chen J (2013) Regulation of isoprenoid pathway for enhanced production of linalool in Saccharomyces cerevisiae. Sheng Wu Gong Cheng Xue Bao = Chin J Biotechnol 29:751–759

    CAS  Google Scholar 

  • Takahashi S, Yeo Y, Greenhagen BT, Mcmullin T, Song L, Maurina-Brunker J, Rosson R, Noel JP, Chappell J (2007) Metabolic engineering of sesquiterpene metabolism in yeast. Biotechnol Bioeng 97:170–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Chen W (2015) Enhanced production of fatty alcohols by engineering the TAGs synthesis pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 112:386–392

    Article  CAS  PubMed  Google Scholar 

  • Teo WS, Ling H, Yu A-Q, Chang MW (2015) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel. Biotechnol Biofuels 8:1–9

    Article  Google Scholar 

  • Thompson RA, Trinh CT (2014) Enhancing fatty acid ethyl ester production in Saccharomyces cerevisiae through metabolic engineering and medium optimization. Biotechnol Bioeng 111:2200–2208

    Article  CAS  PubMed  Google Scholar 

  • Tippmann S, Scalcinati G, Siewers V, Nielsen J (2016) Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed. Biotechnol Bioeng 113:72–81

    Article  CAS  PubMed  Google Scholar 

  • Valle-Rodríguez JO, Shi S, Siewers V, Nielsen J (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid ethyl esters, an advanced biofuel, by eliminating non-essential fatty acid utilization pathways. Appl Energy 115:226–232

    Article  Google Scholar 

  • Williams TC, Pretorius IS, Paulsen IT (2016) Synthetic evolution of metabolic productivity using biosensors. Trends Biotechnol 34:371–381

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Jung J, Kim SW, Park C, Han S (2012) Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase. Biotechnol Bioeng 109:110–115

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Ching CB (2015) Combinatorial assembly of large biochemical pathways into yeast chromosomes for improved production of value-added compounds. ACS Synth Biol 4:23–31

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Jensen MK, Keasling JD (2015) Development of biosensors and their application in metabolic engineering. Curr Opin Chem Biol 28:1–8

    Article  PubMed  Google Scholar 

  • Zhao J, Bao X, LI C, Shen Y, Hou J (2016) Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 100:4561–4571

    Article  CAS  PubMed  Google Scholar 

  • Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J (2016) Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun 7:11709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang X, Chappell J (2015) Building terpene production platforms in yeast. Biotechnol Bioeng 112:1854–1864

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Wook Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Teo, W.S., Heng, Y.C., Chen, B., Lee, H.L., Chua, N., Chang, M.W. (2017). Synthetic Biology for Biofuels in Saccharomyces cerevisiae . In: Lee, S. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50436-0_386

Download citation

Publish with us

Policies and ethics