Chemicals and Fuels from Microalgae

  • Seungjib Jeon
  • Byeong-ryool Jeong
  • Yong Keun Chang
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Microalgae are emerging as excellent platforms for producing biofuels, chemicals, and other bioactive molecules. They are collection of distant photosynthetic organisms along the long evolutionary track from prokaryotes to multicellular eukaryotes. Quite different from familiar organisms such as bacteria, plants, and animals, they present challenges for research and industrial applications. On the other hand, their diverse characters offer unique opportunities for new products with higher efficiency. They are primary producers of glycerolipids, carotenoids, and other valuable chemicals, of which successful production necessitate understanding of their physiology and genetics. Fortunately, many of these have been found in microalgae, and biological research is following up to improve production of these materials in microalgae. Many microalgae have excellent carbon storage mechanisms for carbohydrates and/or lipids. Lipids in particular represent a wide variety of glycerolipids and carotenoids that can be converted to biofuels and nutraceutical ingredients. Their residues can also be used as feeds or processed to provide carbons for secondary production of value-added products such as fucose from other organisms. It should also be noted that microalgae can be an excellent host for production of recombinant proteins with pharmaceutical or therapeutic values. This review summarizes chemicals, biofuels, and other value-added products that can be produced from microalgae and present improvements and prospects on their successful production in large scale.



This work was supported by the Advanced Biomass R&D Center (ABC) of Global Frontier Project funded by the Ministry of Science, ICT and Future Planning (ABC-2010-0029728 and 2011-0031350).


  1. Adarme-Vega TC, Lim DK, Timmins M, Vernen F, Li Y, Schenk PM (2012) Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact 11:96PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allen E, Moing A, Wattis JA, Larson T, Maucourt M, Graham IA, Rolin D, Hooks MA (2011) Evidence that ACN1 (acetate non-utilizing 1) prevents carbon leakage from peroxisomes during lipid mobilization in Arabidopsis seedlings. Biochemistry J437:505–513CrossRefGoogle Scholar
  3. Antal TK, Krendeleva TE, Rubin AB (2011) Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production. Appl Microbiol Biotechnol 89:3–15PubMedCrossRefGoogle Scholar
  4. Antal TK, Krendeleva TE, Tyystjarvi E (2015) Multiple regulatory mechanisms in the chloroplast of green algae: relation to hydrogen production. Photosynth Res 125:357–381PubMedCrossRefGoogle Scholar
  5. Baek K, Kim DH, Jeong J, Sim SJ, Melis A, Kim JS, Jin E, Bae S (2016) DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci Rep 6:30620PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baud S, Wuilleme S, To A, Rochat C, Lepiniec L (2009) Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J 60:933–947PubMedCrossRefGoogle Scholar
  7. Borowitzka MA (2013) High-value products from microalgae-their development and commercialisation. J Appl Phycol 25:743–756CrossRefGoogle Scholar
  8. Brooks SA (2004) Appropriate glycosylation of recombinant proteins for human use: implications of choice of expression system. Mol Biotechnol 28:241–255PubMedCrossRefGoogle Scholar
  9. Casal C, Cuaresma M, Vega JM, Vilchez C (2011) Enhanced productivity of a lutein-enriched novel acidophile microalga grown on urea. Mar Drugs 9:29–42CrossRefGoogle Scholar
  10. Chacón-Lee TL, González-Mariño GE (2010) Microalgae for “healthy” goods-possibilities and challenges. Compr Rev Food Sci Food 9:655–675CrossRefGoogle Scholar
  11. Chaturvedi R, Fujita Y (2006) Isolation of enhanced eicosapentaenoic acid producing mutants of Nannochloropsis oculata ST-6 using ethyl methane sulfonate induced mutagenesis techniques and their characterization at mRNA transcript level. Phycol Res 54:208–219CrossRefGoogle Scholar
  12. Chebolu S, Daniell H (2009) Chloroplast-derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality. Curr Top Microbiol Immunol 332:33–54PubMedPubMedCentralGoogle Scholar
  13. Chen CY, Chen YC, Huang HC, Ho SH, Chang JS (2015a) Enhancing the production of eicosapentaenoic acid (EPA) from Nannochloropsis oceanica CY2 using innovative photobioreactors with optimal light source arrangements. Bioresour Technol 191:407–413PubMedCrossRefGoogle Scholar
  14. Chen H, Hu J, Qiao Y, Chen W, Rong J, Zhang Y, He C, Wang Q (2015b) Ca 2+-regulated cyclic electron flow supplies ATP for nitrogen starvation-induced lipid biosynthesis in green alga. Sci Rep 5:15117PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838PubMedCrossRefGoogle Scholar
  16. Choi Y-J, Jo W-S, Kim H-J, Nam B-H, Kang E-Y, S-J O, Lee G-A, Jeong M-H (2010) Anti-inflammatory effect of Chlorella ellipsoidea extracted from seawater by organic solvents. Korean J Fish Aquat Sci 43:39–45Google Scholar
  17. Choi KS, Ryu JH, Park DJ, Oh SC, Kwak H (2015) Lipid extraction from Nannochloropsis sp. microalgae for biodiesel production using supercritical carbon dioxide. Korean Chem Eng Res 53:205–210CrossRefGoogle Scholar
  18. Cordero BF, Obraztsova I, Couso I, Leon R, Vargas MA, Rodriguez H (2011) Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Mar Drugs 9:1607–1624PubMedPubMedCentralCrossRefGoogle Scholar
  19. Davidi L, Levin Y, Ben-Dor S, Pick U (2015) Proteome analysis of cytoplasmatic and plastidic beta-carotene lipid droplets in Dunaliella bardawil. Plant Physiol 167:60–79PubMedCrossRefGoogle Scholar
  20. Davies FK, Jinkerson RE, Posewitz MC (2015) Toward a photosynthetic microbial platform for terpenoid engineering. Photosynth Res 123:265–284PubMedCrossRefGoogle Scholar
  21. Del Campo JA, Rodriguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 64:848–854PubMedCrossRefGoogle Scholar
  22. Del Campo JA, Garcia-Gonzalez M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174PubMedCrossRefGoogle Scholar
  23. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306PubMedCrossRefGoogle Scholar
  24. DOE (2016) National algal biofuels technology review. In: U.S. Department of Energy OoEEaRE, Bioenergy Technologies Office (ed). DOE (U.S. Department of Energy), Washington, DC, pp 1–212Google Scholar
  25. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321PubMedCrossRefGoogle Scholar
  26. Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fan J, Yan C, Andre C, Shanklin J, Schwender J, Xu C (2012) Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiol 53:1380–1390PubMedCrossRefGoogle Scholar
  28. Feng S, Xue L, Liu H, Lu P (2009) Improvement of efficiency of genetic transformation for Dunaliella salina by glass beads method. Mol Biol Rep 36:1433–1439PubMedCrossRefGoogle Scholar
  29. Galloway CA, Sowden MP, Smith HC (2003) Increasing the yield of soluble recombinant protein expressed in E. coli by induction during late log phase. BioTechniques 34:524–530PubMedGoogle Scholar
  30. Garcia-Malea MC, Acien FG, Del Rio E, Fernandez JM, Ceron MC, Guerrero MG, Molina-Grima E (2009) Production of astaxanthin by Haematococcus pluvialis: taking the one-step system outdoors. Biotechnol Bioeng 102:651–657PubMedCrossRefGoogle Scholar
  31. Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu J, Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91PubMedCrossRefGoogle Scholar
  32. Gimpel JA, Henriquez V, Mayfield SP (2015) In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front Microbiol 6:1376PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gong J, You FQ (2015) Value-added chemicals from microalgae: greener, more economical, or both? ACS Sustain Chem Eng 3:82–96CrossRefGoogle Scholar
  34. Gupta SK, Kumari S, Reddy K, Bux F (2013) Trends in biohydrogen production: major challenges and state-of-the-art developments. Environ Technol 34:1653–1670PubMedCrossRefGoogle Scholar
  35. Hadley KB, Ryan AS, Nelson EB, Salem N Jr (2010) Preclinical safety evaluation in rats using a highly purified ethyl ester of algal-docosahexaenoic acid. Food Chem Toxicol 48:2778–2784PubMedCrossRefGoogle Scholar
  36. Hawkins RL, Nakamura M (1999) Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr Microbiol 38:335–341PubMedCrossRefGoogle Scholar
  37. He DM, Qian KX, Shen GF, Zhang ZF, Li YN, Su ZL, Shao HB (2007) Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chloroplasts. Colloid Surf B55:26–30CrossRefGoogle Scholar
  38. Hejazi MA, Holwerda E, Wijffels RH (2004) Milking microalga Dunaliella salina for beta-carotene production in two-phase bioreactors. Biotechnol Bioeng 85:475–481PubMedCrossRefGoogle Scholar
  39. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639PubMedCrossRefGoogle Scholar
  40. Huang TY, Lu WC, Chu IM (2012) A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. Bioresour Technol 123:8–14PubMedCrossRefGoogle Scholar
  41. Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed Eng 46:7184–7201CrossRefGoogle Scholar
  42. Jamers A, Blust R, De Coen W (2009) Omics in algae: paving the way for a systems biological understanding of algal stress phenomena? Aquat Toxicol 92:114–121PubMedCrossRefGoogle Scholar
  43. Jia J, Han DX, Gerken HG, Li YT, Sommerfeld M, Hu Q, Xu J (2015) Molecular mechanisms for photosynthetic carbon partitioning into storage neutral lipids in Nannochloropsis oceanica under nitrogen-depletion conditions. Algal Res 7:66–77CrossRefGoogle Scholar
  44. Johnson X, Alric J (2012) Interaction between starch breakdown, acetate assimilation, and photosynthetic cyclic electron flow in Chlamydomonas reinhardtii. J Biol Chem 287:26445–26452PubMedPubMedCentralCrossRefGoogle Scholar
  45. Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12:776–793PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kang NK, Jeon S, Kwon S, Koh HG, Shin SE, Lee B, Choi GG, Yang JW, B-r J, Chang YK (2015) Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnol Biofuels 8:200PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kathiresan S, Chandrashekar A, Ravishankar GA, Sarada R (2015) Regulation of astaxanthin and its intermediates through cloning and genetic transformation of beta-carotene ketolase in Haematococcus pluvialis. J Biotechnol 196–197:33–41PubMedCrossRefGoogle Scholar
  48. Kaye Y, Grundman O, Leu S, Zarka A, Zorin B, Didi-Cohen S, Khozin-Goldberg I, Boussiba S (2015) Metabolic engineering toward enhanced LC-PUFA biosynthesis in Nannochloropsis oceanica: overexpression of endogenous Δ12 desaturase driven by stress-inducible promoter leads to enhanced deposition of polyunsaturated fatty acids in TAG. Algal Res 11:387–398CrossRefGoogle Scholar
  49. Kilian O, Benemann CS, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci USA 108:21265–21269PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–334PubMedCrossRefGoogle Scholar
  51. Kim DH, Kim YT, Cho JJ, Bae JH, Hur SB, Hwang I, Choi TJ (2002) Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar Biotechnol 4:63–73PubMedCrossRefGoogle Scholar
  52. Kim SW, Koo BS, Lee DH (2014) A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed. Bioresour Technol 162:96–102PubMedCrossRefGoogle Scholar
  53. Kim YJ, Joo HW, Park J, Kim DK, Jeong KJ, Chang YK (2015) Production of 2, 3-butanediol by Klebsiella oxytoca from various sugars in microalgal hydrolysate. Biotechnol Prog 31:1669–1675PubMedCrossRefGoogle Scholar
  54. Kolesárová N, Hutňan M, Bodík I, Špalková V (2011) Utilization of biodiesel by-products for biogas production. J Biomed Biotechnol 2011:126798PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga – Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738CrossRefGoogle Scholar
  56. Kumar G, Mudhoo A, Sivagurunathan P, Nagarajan D, Ghimire A, Lay C-H, Lin C-Y, Lee D-J, Chang J-S (2016) Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production. Bioresour Technol 219:725–737PubMedCrossRefGoogle Scholar
  57. Kumaraswamy GK, Guerra T, Qian X, Zhang SY, Bryant DA, Dismukes GC (2013) Reprogramming the glycolytic pathway for increased hydrogen production in cyanobacteria: metabolic engineering of NAD(+)-dependent GAPDH. Energy Environ Sci 6:3722–3731CrossRefGoogle Scholar
  58. Kwak M, Park WK, Shin SE, Koh HG, Lee B, Jeong Br, Chang YK (2017) Improvement of biomass and lipid yield under stress conditions by using diploid strains of Chlamydomonas reinhardtii. Algal Research 26, 180–189Google Scholar
  59. Lauersen KJ, Willamme R, Coosemans N, Joris M, Kruse O, Remacle C (2016) Peroxisomal microbodies are at the crossroads of acetate assimilation in the green microalga Chlamydomonas reinhardtii. Algal Res 16:266–274CrossRefGoogle Scholar
  60. Li Y, Sommerfeld M, Chen F, Hu Q (2010) Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus Pluvialis (Chlorophyceae). J Appl Phycol l22:253–263CrossRefGoogle Scholar
  61. Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR (2011a) Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Bioresour Technol 102:10861–10867PubMedCrossRefGoogle Scholar
  62. Li Y, Han D, Sommerfeld M, Hu Q (2011b) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol 102:123–129PubMedCrossRefGoogle Scholar
  63. Liu J, Sun Z, Gerken H, Huang J, Jiang Y, Chen F (2014) Genetic engineering of the green alga Chlorella zofingiensis: a modified norflurazon-resistant phytoene desaturase gene as a dominant selectable marker. Appl Microbiol Biotechnol 98:5069–5079PubMedCrossRefGoogle Scholar
  64. Liu J, Lei J, He J, Deng L, Wang L, Fan K, Rong L (2015) Hydroprocessing of jatropha oil for production of green diesel over non-sulfided Ni-PTA/al2O3 catalyst. Sci Rep 5:11327PubMedPubMedCentralCrossRefGoogle Scholar
  65. Liu J, He J, Wang L, Li R, Chen P, Rao X, Deng L, Rong L, Lei J (2016) NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil. Sci Rep 6:23667PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lv X, Xie W, Lu W, Guo F, Gu J, Yu H, Ye L (2014) Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. J Biotechnol 186:128–136PubMedCrossRefGoogle Scholar
  67. MacDougall KM, McNichol J, McGinn PJ, O’Leary SJ, Melanson JE (2011) Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography-high-resolution mass spectrometry. Anal Bioanal Chem 401:2609–2616PubMedPubMedCentralCrossRefGoogle Scholar
  68. Maoka T (2011) Carotenoids in marine animals. Mar Drugs 9:278–293PubMedPubMedCentralCrossRefGoogle Scholar
  69. Maruyama M, Horakova I, Honda H, Xing XH, Shiragami N, Unno H (1994) Introduction of foreign DNA into Chlorella Saccharophila by electroporation. Biotechnol Tech 8:821–826CrossRefGoogle Scholar
  70. Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 100:438–442PubMedPubMedCentralCrossRefGoogle Scholar
  71. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136PubMedPubMedCentralCrossRefGoogle Scholar
  72. Molnár I, Lopez D, Wisecaver JH, Devarenne TP, Weiss TL, Pellegrini M, Hackett JD (2012) Bio-crude transcriptomics: gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa). BMC Genomics 13:576PubMedPubMedCentralCrossRefGoogle Scholar
  73. Oncel SS, Kose A, Faraloni C, Imamoglu E, Elibol M, Torzillo G, Sukan FV (2014) Biohydrogen production using mutant strains of Chlamydomonas reinhardtii: the effects of light intensity and illumination patterns. Biochem Eng J 92:47–52CrossRefGoogle Scholar
  74. Park J, Hong SK, Chang YK (2015) Production of DagA and ethanol by sequential utilization of sugars in a mixed-sugar medium simulating microalgal hydrolysate. Bioresour Technol 191:414–419PubMedCrossRefGoogle Scholar
  75. Peng B, Yao Y, Zhao C, Lercher JA (2012) Towards quantitative conversion of microalgae oil to diesel-range alkanes with bifunctional catalysts. Angew Chem 51:2072–2075CrossRefGoogle Scholar
  76. Polle JE, Neofotis P, Huang A, Chang W, Sury K, Wiech EM (2014) Carbon partitioning in green algae (Chlorophyta) and the enolase enzyme. Meta 4:612–628Google Scholar
  77. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648PubMedCrossRefGoogle Scholar
  78. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501PubMedPubMedCentralCrossRefGoogle Scholar
  79. Rasala BA, Mayfield SP (2015) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res 123:227–239PubMedCrossRefGoogle Scholar
  80. Rasala BA, Muto M, Lee PA, Jager M, Cardoso RM, Behnke CA, Kirk P, Hokanson CA, Crea R, Mendez M, Mayfield SP (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 8:719–733PubMedPubMedCentralCrossRefGoogle Scholar
  81. Razeghifard R (2013) Algal biofuels. Photosynth Res 117:207–219PubMedCrossRefGoogle Scholar
  82. Robota HJ, Alger JC, Shafer L (2013) Converting algal triglycerides to diesel and HEFA jet fuel fractions. Energy Fuel 27:985–996CrossRefGoogle Scholar
  83. Roleda MY, Slocombe SP, Leakey RJ, Day JG, Bell EM, Stanley MS (2012) Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresour Technol 129C:439–449Google Scholar
  84. Sanchez JF, Fernandez-Sevilla JM, Acien FG, Ceron MC, Perez-Parra J, Molina-Grima E (2008) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol 79:719–729PubMedCrossRefGoogle Scholar
  85. Satyanarayana KG, Mariano AB, Vargas JVC (2011) A review on microalgae, a versatile source for sustainable energy and materials. Int J Energy Res 35:291–311CrossRefGoogle Scholar
  86. Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727PubMedCrossRefGoogle Scholar
  87. Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin WS, Lee B, Hwangbo K, Kim J, Ye SH, Yun JY, Seo H, Oh HM, Kim KJ, Kim JS, Jeong WJ, Chang YK, Jeong B-r (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810PubMedPubMedCentralCrossRefGoogle Scholar
  88. Somchai P, Jitrakorn S, Thitamadee S, Meetam M, Saksmerprome V (2016) Use of microalgae Chlamydomonas reinhardtii for production of double-stranded RNA against shrimp virus. Aquacult Rep 3:178–183CrossRefGoogle Scholar
  89. Song W, Rashid N, Choi W, Lee K (2011) Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis. Bioresour Technol 102:8676–8681PubMedCrossRefGoogle Scholar
  90. Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32:1373–1383PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sukenik A (1991) Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis Sp (Eustigmatophyceae). Bioresour Technol 35:263–269CrossRefGoogle Scholar
  92. Talebi AF, Tohidfar M, Bagheri A, Lyon SR, Salehi-Ashtiani K, Tabatabaei M (2014) Manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina using AccD and ME genes to enhance lipid content and to improve produced biodiesel quality. Biofuel Res J 1:91–97CrossRefGoogle Scholar
  93. Vardon DR, Sharma BK, Jaramillo H, Kim D, Choe JK, Ciesielski PN, Strathmann TJ (2014) Hydrothermal catalytic processing of saturated and unsaturated fatty acids to hydrocarbons with glycerol for in situ hydrogen production. Green Chem 16:1507–1520CrossRefGoogle Scholar
  94. Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ, Harvey C, Reca IB, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Armenia Ferguson A, Handee W, Kong Q, Li X, Liu B, Lundback S, Peng C, Roston RL, Sanjaya SJP, Terbush A, Warakanont J, Zauner S, Farre EM, Hegg EL, Jiang N, Kuo MH, Lu Y, Niyogi KK, Ohlrogge J, Osteryoung KW, Shachar-Hill Y, Sears BB, Sun Y, Takahashi H, Yandell M, Shiu SH, Benning C (2012) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP 1779. PLoS Genet 8:e1003064PubMedPubMedCentralCrossRefGoogle Scholar
  95. Volgusheva A, Kruse O, Styring S, Mamedov F (2016) Changes in the photosystem II complex associated with hydrogen formation in sulfur deprived Chlamydomonas reinhardtii. Algal Res 18:296–304CrossRefGoogle Scholar
  96. Vorapreeda T, Thammarongtham C, Cheevadhanarak S, Laoteng K (2012) Alternative routes of acetyl-CoA synthesis identified by comparative genomic analysis: involvement in lipid production of oleaginous yeast and fungi. Microbiology 158:217–228PubMedCrossRefGoogle Scholar
  97. Wang HW, Zhang B, Hao YJ, Huang J, Tian AG, Liao Y, Zhang JS, Chen SY (2007) The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J 52:716–729PubMedCrossRefGoogle Scholar
  98. Wang Q, Lu Y, Xin Y, Wei L, Huang S, Xu J (2016) Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. Plant J 88:1071–1081PubMedCrossRefGoogle Scholar
  99. Wilkie AC, Edmundson SJ, Duncan JG (2011) Indigenous algae for local bioresource production: phycoprospecting. Energy Sustain Dev 15:365–371CrossRefGoogle Scholar
  100. Xue J, Niu YF, Huang T, Yang WD, Liu JS, Li HY (2015) Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 27:1–9PubMedCrossRefGoogle Scholar
  101. Yang B, Liu J, Jiang Y, Chen F (2016a) Chlorella species as hosts for genetic engineering and expression of heterologous proteins: progress, challenge and perspective. Biotechnol J 11:1244–1261PubMedCrossRefGoogle Scholar
  102. Yang CY, Li R, Cui C, Liu SP, Qiu Q, Ding YG, Wu Y, Zhang B (2016b) Catalytic hydroprocessing of microalgae-derived biofuels: a review. Green Chem 18:3684–3699CrossRefGoogle Scholar
  103. Yao Y, Lu Y, Peng KT, Huang T, Niu YF, Xie WH, Yang WD, Liu JS, Li HY (2014) Glycerol and neutral lipid production in the oleaginous marine diatom Phaeodactylum tricornutum promoted by overexpression of glycerol-3-phosphate dehydrogenase. Biotechnol Biofuels 7:110CrossRefGoogle Scholar
  104. Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microbiol 57:419–425PubMedPubMedCentralGoogle Scholar
  105. Zhang J, Hao Q, Bai L, Xu J, Yin W, Song L, Xu L, Guo X, Fan C, Chen Y, Ruan J, Hao S, Li Y, Wang RR, Hu Z (2014) Overexpression of the soybean transcription factor GmDof4 significantly enhances the lipid content of Chlorella ellipsoidea. Biotechnol Biofuels 7:128PubMedPubMedCentralGoogle Scholar
  106. Zhu LY, Zhang XC, Ji L, Song XJ, Kuang CH (2007) Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities. Process Biochem 42:210–214CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea
  2. 2.Advanced Biomass R&D Center (ABC)Korea Advanced Institute of Science and Technology (KAIST)DaejeonKorea

Personalised recommendations