Skip to main content

Screening for Lipids from Marine Microalgae Using Nile Red

  • Reference work entry
  • First Online:

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

The fluorescent stain Nile Red has been used extensively for the quantification of lipids in phytoplankton, including microalgae, because it preferentially stains neutral lipids and it is economical and sensitive to use for screening purposes. Although its basic application has not changed for several decades, recent improvements have been made to improve its utility across applications. Here we describe additional refinements in its application and interpretation as a high-throughput method for the rapid quantification of neutral lipids in liquid cultures of marine phytoplankton. Specifically we address (1) interspecies comparisons, (2) fluorescence excitation and emission wavelengths, and (3) the time course of the Nile Red signal in the context of using bulk or cell-specific fluorescence to quantify neutral lipids of live or preserved cells. We show that with proper caution in its interpretation across species and physiological states the quantity of lipid in hundreds of small volume samples can be reliably assessed daily using a refined Nile Red protocol.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   359.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

DAG:

Diacylglycerol

DGCC:

1,2-Diacylglyceryl-3-(O-carboxyhydroxymethylcholine)

DGDG:

Digalactosyl diacylglycerol

DGTA:

1,2-Diacylglyceryl-O-2″-(hydroxymethyl)-(N,N,N-trimethyl)-β-alanine

DGTS:

Diacylgycerol-N-trimethylhomoserine

MGDG:

Monogalactosyl diacylglycerol

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylgycerol

SQDG:

Sulfoquinovosyl diacylglycerol

TAG:

Triacylglycerol

References

  • Andersen RA (2005) Algal culturing techniques. Elsevier/Academic Press, Burlington

    Google Scholar 

  • Ben-Amotz A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–81

    Article  CAS  Google Scholar 

  • Bittar TB, Sassano LR, Wheeler BJ, Brown SL, Cochlan WP, Johnson ZI (2013) Carbon allocation under light and nitrogen resource gradients in two model marine phytoplankton. J Phycol 49:523–535

    Article  CAS  PubMed  Google Scholar 

  • Bligh E, Dyer W (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77:41–47

    Article  CAS  PubMed  Google Scholar 

  • Choi GT, Casu M, Gibbons WA (1993) N.m.r. lipid profiles of cells, tissues and body fluids. Neutral, non-acidic and acidic phospholipid analysis of Bond Elut chromatographic fractions. Biochem J 290:717–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooksey KE, Guckert JB, Williams SA, Callis PR (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J Microbiol Methods 6:333–345

    Article  CAS  Google Scholar 

  • Dempster TA, Sommerfeld MR (1998) Effects of environmental conditions on growth and lipid accumulation in Nitzschia communis (Bacillariophyceae). J Phycol 34:712–721

    Article  CAS  Google Scholar 

  • Doe (2016) National algal biofuels technology review. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office, Washington, DC

    Google Scholar 

  • Elsey D, Jameson D, Raleigh B, Cooney MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Methods 68:639–642

    Article  CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Sloane Stanley G (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488:329–335

    Article  CAS  PubMed  Google Scholar 

  • Goldman JC, Mccarthy JJ (1978) Steady state growth and ammonium uptake of a fast-growing marine diatom. Limnol Oceanogr 23:695–703

    Article  CAS  Google Scholar 

  • Gordon J, Polle J (2007) Ultrahigh bioproductivity from algae. Appl Microbiol Biotechnol 76:969–975

    Article  CAS  PubMed  Google Scholar 

  • Greene C and others (2016) Marine microalgae: climate, energy, and food security from the sea. Oceanogr 29:10–15

    Google Scholar 

  • Greenspan P, Fowler SD (1985) Spectrofluorometric studies of the lipid probe, nile red. J Lipid Res 26:781–789

    CAS  PubMed  Google Scholar 

  • Greenspan P, Mayer EP, Fowler SD (1985) Nile Red – a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    Article  CAS  PubMed  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2009) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726

    Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms I. Cyclotella nana Hustedt, and Detonula Confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Gurr MI, James AT (1980) Lipid biochemistry, an introduction, 3rd edn. Chapman and Hall, London

    Book  Google Scholar 

  • Harvey JD (1991) Identification by gas chromatography and mass spectrometry of lipids from the rat Harderian gland. J Chromatogr 565:27–34

    Article  CAS  PubMed  Google Scholar 

  • Holčapek M, Jandera P, Zderadička P, Hrubá L (2003) Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 1010:195–215

    Article  PubMed  Google Scholar 

  • Holčapek M, Lísa M, Jandera P, Kabátová N (2005) Quantitation of triacylglycerols in plant oils using HPLC with APCI-MS, evaporative light-scattering, and UV detection. J Sep Sci 28:1315–1333

    Article  PubMed  Google Scholar 

  • Huntley ME and others (2015) Demonstrated large-scale production of marine microalgae for fuels and feed. Algal Res 10:249–265

    Google Scholar 

  • Invitrogen. http://www.lifetechnologies.com/us/en/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html

  • Jeffrey SW, Mantoura RFC, Wright SW (eds) (1997) Phytoplankton pigments in oceanography. UNESCO, Paris

    Google Scholar 

  • Johnson ZI and others (2010) The effects of iron- and light-limitation on phytoplankton communities of deep chlorophyll maxima of the Western Pacific Ocean. J Mar Res 68:1–26

    Google Scholar 

  • Levitan O and others (2015) Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress. Proc Natl Acad Sci U S A 112:412–417

    Google Scholar 

  • Marchetti A and others (2010) Iron and silica acid effects on phytoplankton productivity, diversity and chemical composition in the central equatorial Pacific Ocean. Limnol Oceanogr 55:11–29

    Google Scholar 

  • Miller FP, Vandome AF and McBrewster J (2009) Algae fuel. Alphascript Publishing, Beau Bassin, Mauritius

    Google Scholar 

  • McLachlan J (1973) Growth media-marine. In: Stein JR (ed) Handbook of phycological methods – culturing methods and growth measurements. Cambridge University Press, pp 22–51 Cambridge

    Google Scholar 

  • Natunen K, Seppälä J, Schwenk D, Rischer H, Spilling K, Tamminen T (2014) Nile Red staining of phytoplankton neutral lipids: species-specific fluorescence kinetics in various solvents. J Appl Phycol 27:1161–1168

    Google Scholar 

  • Pick U, Rachutin-Zalogin T (2012) Kinetic anomalies in the interactions of Nile red with microalgae. J Microbiol Methods 88:189–196

    Article  CAS  PubMed  Google Scholar 

  • Rumin J and others (2015) The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnol Biofuels 8:42

    Google Scholar 

  • Shifrin NS, Chisholm SW (1980) Phytoplankton lipids: environmental influences on production and possible commercial applications. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier Amsterdam, New York, Oxford

    Google Scholar 

  • Shifrin NS, Chisholm SW (1981) Phytoplankton lipids – interspecific differences and effects of nitrate, silicate and light-dark cycles. J Phycol 17:374–384

    Article  CAS  Google Scholar 

  • Silversand C, Haux C (1997) Improved high-performance liquid chromatographic method for the separation and quantification of lipid classes: application to fish lipids. J Chromatogr B Biomed Sci Appl 703:7–14

    Article  CAS  PubMed  Google Scholar 

  • Sturt HF, Summons RE, Smith K, Elvert M, Hinrichs K-U (2004) Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry – new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom 18:617–628

    Article  CAS  PubMed  Google Scholar 

  • Van Mooy BAS, Rocap G, Fredricks HF, Evans CT, Devol AH (2006) Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. PNAS 103:8607–8612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Mooy BAS and others (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72

    Google Scholar 

  • Vaulot D, Courties C, Partensky F (1989) A simple method to preserve oceanic phytoplankton for flow cytometric analyses. Cytometry 10:629–635

    Article  CAS  PubMed  Google Scholar 

  • Walsh MJ and others (2016) Algal food and fuel coproduction can mitigate greenhouse gas emissions while improving land and water-use efficiency. Environ Res Lett 11:114006

    Google Scholar 

  • Williams PJLB, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554–590

    Article  CAS  Google Scholar 

  • Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. J Appl Phycol 9:189–194

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge valuable contributions to design of this experiment and critical reading of a prior version of the manuscript by Mark Huntley and Ian Archibald. The authors also thank anonymous reviewers and editors for helpful comments. This work was funded in part by US DOE #DE-EE0007091 and US NSF OCE#14-16665 to ZIJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zackary I. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Johnson, Z.I. et al. (2017). Screening for Lipids from Marine Microalgae Using Nile Red. In: Lee, S. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50436-0_382

Download citation

Publish with us

Policies and ethics